
 
                Categorical Data Analysis 
 
         (These notes are available as a pdf file on the following 
website:   http://www.biostat.umn.edu/%7Ejohn-c/ph7460.f2006.html
Go to the link called: ‘kisumu.2011’. )  
 
Introduction 
 
     There are many kinds of data.  There are quantitative, or measured variables 
like blood pressure or temperature.  There are counts, like the number of 
students in a classroom who have had chickenpox.  There are times to events, 
like the number of days after birth that a baby has an infectious disease.  Data 
need not be numeric; data can be the names of drugs that a patient is taking.   
 
     Categorical data in general are counts.  Counts of items or events are 
expressed as nonnegative integers.  That is, counts are numbers like 0, 1, 2, 3, 
4, 5, …, 100, 101, …  Note that zero is a possible count: for example, if you do 
not own a cat, the count of the number of cats that you own is zero. 
 
A.  One Sample 
 
A.1.  The Simplest Possible Data 
 
     The simplest possible data describe the state of one entity.  The entity might 
be a person.  The state could be expressed as 0 or 1.  Suppose the state in 
question is marital status.  Let X represent the state.  So if X = 0, the person is 
not married.  If X = 1, the person is married. 
 
     A variable like X, which can take on only two values – 0 or 1 – is called a 
Bernoulli random variable.  The term ‘random’ means that if you have no 
information about the person, you cannot predict with certainty whether X = 0 or 
X = 1 for that person.  Again, if X represents marital status, and you meet a 
person for the first time, you will not know whether he or she is married. 
This means that X is a random variable representing the outcome of one 
observation.   
 
     A good example of a Bernoulli random variable is the outcome of flipping a 
coin.  Let X = 0 if the outcome is tails, X = 1 if the outcome is heads.  You cannot 
say with certainty in advance whether X will equal 0 or 1.  If the coin is “fair”, that 
is, not some kind of trick coin that tends to give more heads than tails, you would 
expect that X = 0 about half the time and X = 1 about half the time.  This means 
that the expectation of X is  
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              5.015.005.0)( =⋅+⋅=XE  
 
That is, the expectation is the average outcome. 
 
     However, it is not usually true that the expectation of a Bernoulli random 
variable is 0.5.  Suppose X represents the event that a person has blood type 
O+.  That is, X = 1 if the person has blood type O+ and X = 0 otherwise.  The 
prevalence of blood type O+ in South Africa is 39%, that is, the probability of 
having blood type O+ among people in South Africa is 0.39.  The expectation of 
X in this case is 
 

              39.0139.0061.0)( =⋅+⋅=XE  
 

More generally, if ),(~ pBerX  then .)( pXE =  
 
     Here is the more general rule for computing expectation.  Suppose a random 

variable X can take on values   Suppose that the i-th value  is 

taken on with probability .  Then the expected value is the weighted average, 

.,...,,, 321 nxxxx ix

ip
 

              ....)( 2211 nn xpxpxpXE ⋅++⋅+⋅=  
 
 
 
Exercise 1: Suppose X is a random variable which represents how many tires on 
a car are older than 5 years old.  Suppose that: 
 

              ,2.)0( ==Xprob  
              ,15.)1( ==Xprob  
              ,25.)2( ==Xprob  
              ,15.)3( ==Xprob  
              .25.)4( ==Xprob  
 
(Note that these probabilities must add up to 1.0). 
 
Compute the expectation of X.  
  
 
 
     You might think Bernoulli random variables cannot tell you much: they just 
involve one observation on one person.  The person either has the characteristic 
that X represents, or doesn’t.  Usually statistics involves many observations.  
What can you tell from one observation? 
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     Suppose someone says to you, “There are no people whose eyes have 
different colors.”  You can view this as a hypothesis.  The hypothesis could also 
be stated as  
 

               ,0)1( ==Xprob  
 
where X is the Bernoulli random variable which is 1 if a person’s eyes are of 
different colors and 0 if a person’s eyes are of the same color.  To say that a 
probability is zero is basically the same thing as saying: this event is impossible. 
 
     Then one day you happen to meet someone whose eyes are of different 
colors.  That is, you observe .1=X   You have observed a rare event.  More 
than that: this one observation is enough to prove that the hypothesis above is 
false! 
 
     This also illustrates something about statistics.  People state hypotheses.  
Sometimes they are stated as positive assertions.  For example, “All people have 
eyes that are the same color.”  How many observations would you need to make 
to prove this hypothesis?  Answer: You might have to examine everyone on 
Earth.  Even this would not be enough, because by the time you got done 
examining everyone, an enormous number of new people would have been born 
that were not there before.  So you would have to start over and examine all of 
them also.  There are over 6 billion people on Earth.  If you examine one person 
every second, it would take you over 190 years to examine everyone who is alive 
right now.  You probably will not live that long.  A great many of those 6 billion + 
people will have died before you get to examine them.  Even if you did, billions of 
new people would be born before you finished.  (Plus, you would need to take 
time to have lunch and a nap now and then.)  Conclusion: there is no practical 
limit on how many people you would need to observe to prove the hypothesis.  
But only one observation would be sufficient to disprove it. 
 
A.2.  Statistics and p-values 
 
     In general statistics do not prove or disprove hypotheses.  They provide 
evidence.  The strength of the evidence is stated in terms of probabilities.  You 
collect data and you compile statistics and from this you compute probabilities.  
The probabilities are related to some underlying hypothesis.  A very low 
probability (like, for example, 0.001) indicates that you have observed a rare 
event.  This could be due to just luck, or it could be due to the fact that your 
underlying hypothesis is not true.  This is how statistics get used in clinical and 
medical research.  The probabilities that are computed are often called p-values.    
 
A.3.  Bernoulli and Binomial Random Variables 
 

 3



     Bernoulli random variables have only two possible values, 0 and 1.  One 
number is sufficient to describe a Bernoulli random variable X.  That is the 
probability that 1=X .  If this probability is p then the probability that  is  0=X

p−1 .  We say that X has a Bernoulli distribution with parameter p.  This is also 

written as:  ).(~ pBerX  
 
     Different random variables can be added together to produce new random 

variables.  Suppose nXXXX ...,,, ,321  are all Bernoulli random variables with 

parameter p.  Let ....21 nsum XXXX +++=   This is a new random variable.  The 

smallest value it can take on is 0 (which happens only if all of the sX i '  are 0), 

and the largest value it can take on is (multiple choice: ,,1,0 np  or n ???)  The 

expected value for sumX  turns out to be .np   Now, if all the sX i '  are 

independent, then sumX  has a special distribution called the binomial 

distribution.  Here is what it means for the sX i '  to be independent: the value that 

is taken on by any one of the sX i '  is not influenced by the values that are taken 

on by any of the other sX i ' .  It is easiest to see what ‘independent’ means by 

thinking of examples where random variables are not independent.  Suppose 1X  
is the random variable that indicates that Mary Ulauwe, aged 9, has had chicken 

pox, and 2X  indicates that her brother, Samuel Ulauwe, aged 7, has had chicken 

pox.  Then 1X  and 2X  are not independent – chicken pox is extremely 
contagious – if one child has it, there is a 95% chance that his or her siblings will 
catch it also.   
 
     An example of two random variables that are almost certainly independent: let 

1Y  represent the event that Mary Ulauwe flips a coin and it comes up heads, and 

2Y  similarly represents the event that her brother Samuel flips a coin and it 
comes up heads.  The outcomes of the two coin-flips almost certainly will not 
influence each other. 
 

     The fact that  has a binomial distribution is represented as follows: sumX
 

       ).,(~ pnBinomX sum

 

It is possible for  to take on any value between 0 and n.  The probability that 

 takes on the value j is given by the formula: 

sumX

sumX
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, and .123...)2()1(! ⋅⋅⋅⋅−⋅−⋅= nnnn  (pronounced as 
“n factorial”).  Similar definitions apply for j! and (n – j)!. 
 

Exercise 2:  Suppose  are independent Bernoulli random 54321 ,,,, XXXXX

variables, all with parameter 30.=p .  What is the probability that  equals sumX

3?  What is the probability that ?2≤sumX   What is the probability that  ?4≥sumX
 
     The behavior of binomial random variables is central to much of categorical 
data analysis.  Below is a histogram for X ~ Binom(60, .333): 
 
Figure 1: 
 

 
 
     Assume X ~ Binom(n, p).  In general you will know what n is – you will know 
how many observations were taken.  However, you will not know what p is.  You 
will have to estimate p from the data.   
 
     Here is an example.  You take a random sample of 100=n  people from the 
population.  You ask each person: have you had malaria in the past year?  Each 
person’s outcome can be recorded as a Bernoulli random variable,  (no) or 0=X

1=X  (yes).  Add up all the values of the X’s.  The result, , is a Bernoulli 
random variable with unknown parameter p.  Suppose that 40 people answer 

sumX
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yes, they have had malaria in the past year.  That is, .40=sumX   In this case the 

best estimate of the unknown parameter p is 40.0100/40/ˆ === nXp sum .   
 

     Note that I have used  here to denote a sample estimate of the value of 
the unknown parameter 

p̂
p .  It is important to distinguish between parameters, 

the true values of which generally are not known, and estimates, which are 
based on a sample of data.    
 
     In general it is difficult to compute binomial probabilities.  This is because of 
all the factorial expressions in equation [1].  However many computing packages 
(for example, Stata) will do the arithmetic for you. 
 

     Suppose you flip a coin 100 times.  Let  be the Bernoulli random variable 

which indicates that the i-th flip comes up heads; that is, 

iX
1=iX  if heads comes 

up and  if tails comes up.  Let 0=iX ∑= isum XX  be the binomial random 
variable which is the sum of the 100 Bernoulli random variables.  If the coin is 

fair, we expect that   How likely is it that when you flip the coin 100 

times, the observed value of 

.50)( =sumXE
40=sumX  or less?   

 
     The answer is obtained from equation [1]; it may be written as  
 

[2]       

jnj
k

j
sum ppn

jkXprob −

=

−⋅⋅⎟
⎠
⎞

⎜
⎝
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In this case we assume: 
 
            100=n
           40=k  
           5.=p  
 
Stata has a function which computes the probability in equation [2]; you can use 
it by typing 
 
       display binomial(100, 40, .5). 
 
Stata displays the answer as .0288. 
 
 
Exercise 3: 
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3.1  Compute the probability that, if you flip a fair coin 100 times, then you will    
obtain 41 or more heads. 

 

3.2  Compute manually:  )2( ≤Xprob , where X is the number of heads in 5 flips  
of a fair coin. 

 

3.3  Use Stata or a similar statistical package to compute )70( ≥Xprob , where  
       X is the number of heads in 100 flips of a fair coin. 
 
 
     Here is how binomial probabilities get used in statistical inference.  You 
assume a null hypothesis H0.  For example, H0: coin is fair.  Another way to state 

this is: H0:  5.0)1( ==Xprob , where X is the variable which is 1 if the coin flip 
comes up heads, 0 if tails.  Now suppose you flip the coin 100 times, and it 
comes up heads 40 times and tails 60 times.  What is the probability this would  
happen, if the coin were fair?  More precisely, if the coin is fair, what is the 
probability that in 100 flips, it would come up heads in 40 or fewer flips?  The 

answer as given above is 0288.0)5,.40,100( =binomial .  This is a fairly low 
probability.  Should you reject the null hypothesis, and conclude that the coin you 
were flipping is unfair?   
 
     The answer to this depends on your threshold for rejection of a null 
hypothesis.  This is the significance level of your statistical test.  The significance 
level is frequently taken to be 0.05.  There is nothing magic about 0.05, but it is 
widely used as a criterion for making the decision to reject the null hypothesis. 

The p-value, 0288.0=p , for the coin-flip experiment just described, is the 
probability that you would observe 40 or fewer heads in 100 flips of a fair coin.  
Since , if 0.05 is your chosen significance level, you would reject 
the hypothesis that this coin is fair. 

05.00288.0 <

 
     This is in fact fairly weak evidence of unfairness of a coin.  If you repeated the 
experiment of flipping the coin 100 times, you would observe 40 or fewer heads 
in about 2.88% of those experiments.  This is not all that unlikely.  It could be that 
in this case, the significance level of 0.05 is too large. 
 
     But now suppose you flipped the coin 1000 times.  What is the probability that 
it would come up heads in 40% or fewer of the flips?  This means that you want 

to compute )5,.400,1000(binomial .  If in Stata you type in 
 
     display binomial(1000, 400, .5), 
 
Stata will print out: 1.364e-10, which is the same thing as 0.0000000001364. 
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This is a REALLY small number.  If something like this occurred in flipping a coin 
1000 times, you would have observed a very rare event – PROVIDED it was a 
fair coin.  You would be strongly tempted to conclude it wasn’t fair, that it was 
weighted somehow so it is more likely to come up tails than heads. 
 
     Binomial probabilities apply to more than just fair coins.  Suppose you are 
examining records of earthquakes of magnitude 6.0 or greater.  You find records 
for the 1000 most recent earthquakes of magnitude 6.0 or greater.  You find that 
60 of these earthquakes occurred during the month of April.  There are 30 days 
in April and, on average, 365.25 days in a year.  If earthquakes are equally likely 
to occur on any day of the year, you would expect that the probability that an 
earthquake would occur in April would be  
 
     08214.025.365/30 =  
 
So in 1000 earthquakes, you would expect that about 82 would occur in the 
month of April.  How likely is it that you would observe 60 or fewer of the 1000 
earthquakes to be in the month of April? 
 
You can obtain the answer from Stata by typing: 
 
     display binomial(1000, 60, .08214).   
 
Stata says: 0.00482563.  So this is a rather small probability, less than 0.005.  
You would likely reject the null hypothesis.  In this case the null hypothesis is   
 
     H0: prob(earthquake occurs in April) = 0.08214. 
 
That is, you would conclude that earthquakes are less likely to occur in April than 
in other months.  
 
 
Exercise 4: Suppose that of the 1000 most recent earthquakes, you observed 
that 110 of them occurred in September.  Test the hypothesis that earthquakes  
are no more likely to occur in September than in other months.  
 
 
 
 
Exercise 5: The expected ratio of boy babies to girls is 105:100.  In recent years 
in China, the observed ratio of boy babies to girls was 116:100.  Is this ratio 
significantly higher than expected? 
 
[State a null hypothesis as the probability that a baby is a boy.  Then assume that 
among 1000 babies born in China, a certain number were boys.  Then test your 
null hypothesis using the binomial distribution.]  
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A.4  Is 49% Different from 50%? 
 
     49% is quite close to 50%.  But is it significantly different? 
 
     You have a random sample of 100 people.  Your null hypothesis is that the 
true proportion of females in the population is 0.50.  However, in your sample, 49 
of 100 are female and 51 are male.  Stata says that 
 
         Binomial(100, 49, .5) = 0.4602. 
 
This p-value is clearly not close to statistically significant. 
 
But now suppose your sample is n = 1000, and again 49% (490) are female. For 
this, Stata says: 
 
         Binomial(1000,490,.5) = 0.2739. 
 
That’s closer to “significant”, but clearly still larger than the usual threshold of 
0.05. 
 
So now you increase your sample to n = 10,000.  49% of 10,000 is 4900.  Stata 
gives: 
 
         Binomial(10000, 4900, .5) = 0.0232. 
 
Conclusion: whether a proportion differs significantly from the null hypothesis 
depends on how large the sample is.  Even 49.9% will be significantly different 
from 50% if the sample size is big enough.  
 
This illustrates the difference between statistically significant and clinically 
significant.  If you were testing a new drug against an old drug, and the new drug 
had a 49% failure rate, whereas the old drug had a 50% failure rate, would you 
prefer the new drug?  Not such a simple question.  You would need to compare 
the frequency of adverse effects between the drugs.  The cost would likely be 
different.  One drug might taste worse than the other one, which sounds like a 
minor problem, but it could mean that some people would refuse to take the 
worse-tasting drug.  It is true that if you were comparing a 49% failure rate to a 
50% failure rate, and the two drugs were completely equivalent otherwise, you 
would prefer the new drug.  But it is almost never true that the two drugs would 
be equivalent otherwise.   
 
A.5  Too Good to be True? 
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Suppose you are flipping a coin that you believe to be fair.  You flip it 10,000 
times.  The expected number of heads is 5,000.  What does this mean?  Does it 
mean that you are more likely to come up with 5,000 heads than any other 
number?  Or that there is a high probability that you come up with 5,000 heads? 
If you observe exactly 5,000 heads in 10,000 flips, is someone going to accuse 
you of faking the data, getting exactly 5,000 is just … too good to be true? 
 
You can compute the probability of getting exactly 5,000 heads using the Stata 
Binomial function.  Recall that binomial(n, k, p) is the probability of getting k  
OR FEWER events.  So the probability of obtaining exactly 5,000 heads given 
that the null hypothesis is H0: p = 0.50 is true is: 
 
             binomial(10000, 5000, .5) – binomial(10000,4999, .5). 
 
Stata says:  
 
             binomial(10000, 5000, .5) = .50398932 and  
             binomial(10000, 4999, .5) = .49601068. 
 
Therefore prob(exactly 5000 heads in 10000 flips, p = .5) = 0.00797864. 
 
So that is a pretty small number.  Not likely to occur by chance.  But you can 
similarly find that  
 
 
        prob(exactly 4999 heads in 10000 flips, p = .5) = .49601068 - .48803363 
              
                                                                                   = .00797705   
 
And prob(exactly 5001 heads in 10000 flips, p = .5) = .51196637 - .30398932 
                    
                                                                                   = .00797705, 
 
both of which are just slightly smaller than the probability of getting exactly 5000 
heads. 
 
You conclude that (1) the probability of getting exactly 5000 heads is not very 
high, and (2) the probability of getting exactly 5000 heads is still higher that the 
probability of getting any other number, assuming the coin is fair (p = .5). 
 
The issue of ‘too good to be true’ has arisen regarding the work of Gregor 
Mendel, a pioneering geneticist, who carried out experiments on varieties of 
peas.  Mendel tabulated the numbers of peas with certain inherited 
characteristics.  He developed some basic theory to compute the expected 
numbers, assuming random mixtures of genes from the parent pea plants.  He 
then reported his observed numbers.  They were in extremely close agreement 
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with the expected numbers.  The agreement was so close that the famous 
statistician, R. A. Fisher, suspected that Mendel was changing his data to agree 
better with the expectations: 
 
Table 1: 
 
                Mendel’s Data on Inherited Characteristics of Peas 
 
                                                Predicted                      Reported (by Mendel)  
          Category              Number and Percent             Number and Percent 
          -------------             ----------------------------             ---------------------------- 
                 1                           5493 (75%)                          5474 (74.74%)           
                 2                           1831 (25%)                          1850 (25.25%) 
                             
 
What do you think?  Do Mendel’s data look too good to be true? 
 
 
A.6  Confidence Intervals 
 
     Take a random sample of 1000 people in Kenya.  Ask each one: have you 
had malaria?  A total of 663 of them say yes.  So in your sample, the proportion 
of people who have had malaria is 0.663.  Of course you don’t know the true 
proportion in the whole population.  It is not practical for you to ask everyone, 
since there are over 37 million people in Kenya.  You would like to say: the 
proportion of people who have had malaria is 0.663.  But you are not certain of 
this answer.  Maybe your sample was not typical.  You need to qualify your 
estimate by a statement about the uncertainty of the estimate. 
 
     This is done by specifying a confidence interval.  It will turn out that a 95% 
confidence interval for the true proportion who have had malaria is  
 
     (0.632, 0.692) 
 
     You can obtain this from Stata by entering: 
 
      cii 1000 663 
 
     What does this mean?  What is a 95% confidence interval? 
 
     Here first is what it doesn’t mean.  It doesn’t mean that there is a 95% 
chance that the true value of the proportion is between 0.632 and 0.692. 
 
     That is what you would like for it to mean, but it is not correct.  Here is the 
right interpretation.  Suppose you take repeated samples of size 1000.  You get 
results like the following 
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Table 2: Results of Repeated Sampling 
 
     Number                 Number who             Proportion who         95% Confidence 
     In Sample              have had malaria      have had malaria            Interval   
     --------------             ------------------------     ------------------------    ----------------------- 
         1000                            663                          0.663            (0.632, 0.692) 
         1000                            650                          0.650            (0.619, 0.680) 
         1000                            677                          0.667            (0.637, 0.696) 
         1000                            620                          0.620            (0.589, 0.650) 
         1000                            701                          0.701            (0.671, 0.729) 
            …                              …                                …                           … 
 
     Note that the 95% confidence interval changes with each sample.  The true 
value is a fixed but unknown number.  It either lies inside of a given confidence 
interval or it doesn’t.  If it is inside of a given confidence interval, the probability 
that it is inside is 1.00.  If it is not, that probability is 0.00.  The point being, the 
probability that the true value is inside of a specified 95% confidence interval is 
not 0.95.  It is either 0 or 1.  Say, for example, the true value is 0.625.  In the 5 
samples above, 0.633 lies within the 95% confidence interval in samples 2 and 4.   
 
     So what does “95% Confidence Interval” actually mean? 
 
     Here is how it works.  You take a sample.  There is an algorithm for 
computing the lower and upper bounds in the 95% confidence interval.  Stata 
and other statistical packages use that algorithm.  Those lower and upper 
bounds are variables; they depend on what your sample says.  To say that 
(lower_bound, upper_bound) is a 95% confidence interval for the true value 
means that if you repeat the whole experiment of sampling 1000 people over and 
over again, and compute the confidence interval for each sample, then 95% of 
the time, the true value will lie between lower_bound, upper_bound. 
 
 
Exercise 6:  Assume you take a random sample of 400 college students.  You 
find that 168 of them are male and 232 are female.  Use Stata to compute a 95% 
confidence interval for the true proportion of female students. 
 
 
 
     You can compute approximate 95% confidence intervals for proportions in 
the following way, without having to use Stata.  First, take a random sample of 
size n.  Assume that m people in your sample have the characteristic you are 
interested in (for example, m of the n people sampled say they have had malaria.  
The sample proportion is 
 

        . nmp /ˆ =

 12



 
Then an approximate 95% confidence interval for the true proportion is: 
 

[3] (95% CI):        npppboundlower /)ˆ1(ˆ96.1ˆ_ −⋅⋅−= , 

                            npppboundupper /)ˆ1(ˆ96.1ˆ_ −⋅⋅+= . 
 
 
Exercise 7: Repeat Exercise 6, but using the formulas just given for the lower 
and upper bounds for the 95% confidence interval.  How different are your 
answers from those given by Stata? 
 
 
     It is possible to compute confidence intervals for other levels of confidence.  
For example, you might want to compute 99% confidence intervals for a certain 
proportion.  This can be done in Stata by entering: 
 
     cii 1000 663, level(99) 
 
You should think about this a bit.  Is the 99% confidence interval going to be 
bigger, or smaller, than the 95% confidence interval? 
 
The answer that Stata comes back with is (0.632, 0.701).  So the 99% 
confidence interval is bigger. 
 
You can compute this by hand also as given above in [3], but one thing has to 
change: you need to replace 1.96 by 2.57: 
 

[4] (99% CI):    npppboundlower /)ˆ1(ˆ57.2ˆ_ −⋅⋅−=  

                        npppboundupper /)ˆ1(ˆ57.2ˆ_ −⋅⋅+= . 
 
Again you can see that the 99% confidence interval has to be bigger.  Note that 

in these formulas, the sample estimate  is exactly in the middle of the 
confidence interval. 

p̂

 
                 
 
Exercise 8:  Use [4] to compute the 99% CI for the true proportion, given that 120 
out of a random sample of 150 people say they have had malaria.  
 
 
A.7  Binomial Variables in Data Files 
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In Stata, as in most statistical packages, you can analyze data in files.  The 
following data file, “hsb2.dta” related to data on people in high school and 
beyond.  It can be downloaded from the internet by typing in the following 
command in Stata: 
 
     use http://www.ats.ucla.edu/stat/stata/hsb2
 
This file has 200 observations, and a number of variables for each observation.  
One of the variables is female.  This variable takes on only two values: 1 (for 
female students) or 0 (for male students).  If you type in  
 
     summarize female 
  
in Stata, the following table is displayed: 
 
     variable     Obs     Mean     Std. Dev.     Min      Max 
    ---------------------------------------------------------------------- 
     female       200      .545     .4992205         0          1 
 
(“Std. Dev.”, standard deviation, will be explained below). 
 
Note that a mean of .545 implies that 54.5% of the people represented on the file 

were female, that is, the sample proportion is 545.0200/109ˆ ==p .   
 
If you want the 95% confidence interval for the true proportion of females, you 
can enter the following in Stata: 
 
      ci female 
 
This gives the 95% confidence interval as (0.475, 0.615).  
 
 Now, to define standard deviation: you first have to define variance.  Given a 
random variable X, the variance is defined in terms of the expectation.  Here is a 
reminder of the definition of expectation: 
 
 
 
 

If a random variable X takes on values , where the probability of 

taking on the value  is .  Then the expected value is the weighted average, 

nxxxx ,...,,, 321

ix ip
 

              ....)( 2211 nn xpxpxpXE ⋅++⋅+⋅=  
 
Given this, the definition of Var(X) is: 
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XE , the expectation of X is computed, and then t

 

 
This may look like double-talk: you could read it as, the expectation of X s
minus the expectation of X squared.  But there is an important difference 

between the two expectations on the right side.  In the first one, )( 2XE , the 
is first squared, then its expectation is computed.  In the second term, 

2))(( hat value is squared.  
 
Here is how it works for the simplest of random variables, the Bernoulli random

variable X.  Let ).1( == Xprobp   Since X can take only the two values 0
and 1, and since 0-squared is 0 and 1-squared is 1, 

on  
2X   is always equal to X .  

Therefore ).()( 2 XEXE =   But pXE =)( , so pXE =)( 2
 also. On the other 

and, .  This means that  

     

 
22))(( pXE =h

 

 ).1())(()()( 222 ppppXEXEXVar −⋅=−=−=    
 
The standard deviation of a random variable X is by definition equal to the 
quare root of the variance: 

 

      

s

 )()( XVarXSDev =  . 

andom variable X with probability p of being equal to 1, 
e standard deviation is: 

 

      

 
Therefore, for a Bernoulli r
th

 )1()( ppXSDev −⋅=  . 

om variable is the sum of several independent Bernoulli 
ndom variables:   

      

 is not true for 
ndom variables which are not independent.)  This means that 

          

 
Now, a binomial rand
ra
 

 ....21 nsum XXXX +++=    
 
There is a fact about independent random variables: namely, the variance of a 
sum of random variables equals the sum of the variances.  (This
ra
 

 ).(...)()()( 21 nsum XVarXVarXVarXVar +++=    
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But if all the  are Bernoulli random variables with parameter p and are 
ent, then 

sum −⋅⋅

 iX
independ
 

             Var ).1()1(...)1()1()( ppnppppppX + ⋅ − + + ⋅ − =−⋅=  

e,  
 
Therefor
 

)1()( ppnXSDev sum −⋅⋅= .              
 
Example: Suppose X is the count of females in a random sample of size 200, 

e probability in the general population of being female is 0.5.  Then where th
 

071.750)5.05.0200)( ==⋅⋅=XSDev .              
 
But what are standard deviation and variance, really? 
 
The variance and standard deviation of X are measures of how “dispersed” the 
values of X are, or how “spread out” they are.  A random variable X which is very 
concentrated around its expected value will have a small variance and small 
standard deviation.  A random variable which is highly dispersed takes on a wide 
range of values; it will have a large variance and a large standard deviation.  
Examples: levels of sodium in human blood have a very small standard deviation 
(about 5 milli-equivalents per liter where the average is about 140 meq/L), 
whereas low-density lipoprotein (LDL) levels in serum have a standard deviation 
of about 25 mg/dL, where the average is about 100 mg/dL.  The reason for this 

, the human body canis not tolerate levels of sodium that deviate much from the 
verage, whereas the body can tolerate large deviations away from the average 
 serum LDL levels.   

l 

sum 
more than the count  of people in the sample who have had malaria.  

he proportion of people who have had malaria is the count divided by the total; 
, 

a
in
 
 
 
A.8: Binomial Proportions: 
 
We need to define a new kind of random variable which is related to the binomia
random variables.  This is the binomial proportion.  This may lead to some 
confusion.  If Xsum is a binomial random variable representing, for example, the 
number of people in a sample of 1000 who have had malaria, then X  is 
othing n

T
that is
 

        ./ˆ_ nXpproportionbinomial sum==  
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A binomial random variable will range between 0 and n.  A binomial proportion
will range between 0 and 1.   
 

e will want to compute the var

 

iance and standard deviation of the binomial 

.  To do this, you need to know the following little fact about 
ces of random variables: 

Xar  

ed s fact is easy to prove from the definition of 
b

ere the factor

W
p̂proportion 

arianv
 

        )( 2 VfXfVar ⋅=⋅ )(
 
(If you are inclin  to do the math, thi
ariance given a ove.) v

 
fH   is just a constant. 

erring to [5], e expression for a binomial proportion, 

in this expression, let

 
ef  thR

 

  
 

   ./ˆ nXp sum=  

 ./1 nf =So   This means that  

222 pp −⋅
 

     )/1()()/1()()ˆ( nnXVarnXVarfpVar sumsum )1(⋅⋅=⋅=⋅=  
                ./)1( npp −⋅=    

 
he square root of variance,  And since standard deviation is t

 

npppSDev /)1()ˆ( −⋅=      . 

his should remind you of part of the formula for lower and upper confidence 
 
(T
limits!) 
 
 
Exercise 9.  Use the formulas above to compute the standard deviation for the 
sample proportion of females in the hsb2 file.   
 
 
 
 
Exercise 10.  Polling organizations like to make predictions of regarding 
elections.  Assume there are two candidates, Mr. A and Mr. B.  The polling 
organization typically assembles a random sample of potential voters of size 
about n = 1000.  They ask each person in the sample if they are going to vote for 
Mr. A or Mr. B.  They count up the answers.  Suppose for example 470 people 
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prefer Mr. A, and 530 people prefer Mr. B.  If the proportion favoring one 
candidate is significantly different from 0.50, then the polling organization will say 
“Mr. A (or Mr. B) holds a significant lead in the race”.  Or if the proportion is not 
significantly different from 0.50, they will say “Mr. A and Mr. B are statistically 
tied.” 
 
So: with the split being 470 (A) and 530 (B), what will the polling organization 
say? 
 
What is a 95% confidence interval for the true proportion who would vote for Mr. 
A? 
 
If you were to state a null hypothesis for this situation, what would it be? 
 
 
  
B.  Two or More Samples 
 
B.1  2 x 2 Tables 
What we have done in Section A is about estimates of sample proportions for a 
single group, and comparisons of those estimates with hypothesized ‘true’ 
roportions.  We can estimate proportions, do tests to see if they are significantly 

 for the 

e 100 of them to have the active vaccine (group A) and 100 to have an 
active placebo (group P).   You follow each person for a 3-year period.  At the 

ho had a diagnosis of 
erpes. 

 
You can represent the data in a 2 x 2 table, as follows: 
 

p
different from hypothesized proportions, and compute confidence intervals
true proportions. 
 
In this section we will consider situations where you want to estimate and 
compare proportions for two or more groups.   
 
Assume you carry out a clinical trial for prevention of herpes, using a new 
vaccine.  You find a sample of 200 people who have not had herpes.  You 
randomiz
in
end you count up the number of people in each group w
h
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Table 3: A 2 x 2 Table: Herpes Clinical Trial 
 
  

  E+ 
 

 
  E- 

 
   Row 
margins 

 
D+ 

 
a= 28 

 
b= 40 

 
 n = 68 

 
D- 

 
c= 72 

 
d= 60 

 
 m = 132 
  

Col 
margs. 

 
r=100   

 
s= 100 

 
   N =200 

 
Here E+ and E- represent drug treatment groups; E+ = active vaccine, and E- = 
placebo vaccine.  D+ and D- represent disease outcomes: D+ indicates that the 
patients were positive for herpes, while D- indicates they did not have herpes. 
The main entries in the table a, b, c, and d are counts of people; for example, 60 
people are in the (D+, E-) cell indicating positive for herpes and placebo vaccine. 
 
The numbers n and m are called row margins; r and s are called column 
margins.   
 
The object of a clinical trial like this one is to determine which drug is better.  The 
better drug is the one which has a higher probability of a good outcome.  The 
table makes it possible to estimate the proportion of good outcomes in the two 
groups.  Note that in this case, a good outcome is D-.  The proportion of people 

who have a good outcome in the E+ group is 72.0100/72ˆ ==+Ep , while the 
proportion of people having a good outcome in the E- group is 

.  This looks like a fairly strong difference, but is it 
significant? 

60.0100/60ˆ ==−Ep

 

The ‘true’ proportions,  and , are not known.   and  are estimates 
of these unknown true values.  Unlike what was done in the previous section, we 

do not compare  and  to some fixed constants.  We need to compare 
them to each other.  Obviously they are different.  The question is, do they differ 
from what you might expect to get by chance?  Can we assign a probability to 
this? 

+Ep −Ep +Ep̂ −Ep̂

+Ep̂ −Ep̂

 

You can state a null hypothesis.  It would be written as H0: −+ = EE pp .  (Note that 

it would be a logical mistake to state the null hypothesis as  H0: .  The −+ = EE pp ˆˆ
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true proportions are not known; the observed proportions  and  are 
estimates of the true proportions, and we already know that they are not equal.) 

+Ep̂ −Ep̂

 
There are several ways to test the null hypothesis.  Some you can do ‘by hand’ 
and some require a computer.  Here are some possibilities: 
 
1.  Use a web app called GraphPad: 
     http://www.graphpad.com/quickcalcs/contingency1.cfm 
 
     This program will ask you to enter the 4 numbers in a 2 x 2 table.  If you enter 
the numbers shown above (28, 40, 72, 60) the program will then ask which test 
you want to use.  The choices are Fisher’s Exact Test, Chi-square with Yates’ 
correction, or Chi-square without Yates’ correction.  The ‘recommended’ test for 
a variety of reasons is Fisher’s Exact test.  The program also asks if you want to 
do a two-tailed test or a one-tailed tests.  In each case the program gives you 
back a p-value.  In most cases you will choose the two-tailed test.  The p-values 
returned by the program are the following: 
 
     Fisher’s Exact test:                               p = 0.1003 
 
     Chi-square with Yates’ Correction:       p = 0.1006 
 
     Chi-square without Yates’ Correction:  p = 0.0733 
 
None of these would be considered significant by the usual 0.05 criterion.   
The p-value for the chi-square without Yates’ correction is smaller than that for 
the Fisher Exact test or the chi-square with Yates’ correction.  This test tends to 
be less ‘conservative’ than the other two tests – that is, it is more likely to reject 
the null hypothesis even if it is true.  This is part of the reason for preferring the 
Fisher Exact test – it is not necessarily a good thing to reject the null hypothesis 
when it is in fact true. 
 
2.  Use a statistical package like Stata.  This is not quite as easy.  Stata has a 
function to compute either the Fisher or Chi-square p-values, but the function 
operates on a data file rather than having you just enter the four numbers.  For 
the data above, you would need a data file with 200 observations.  The file would 
be structured as follows: 
 
 
 
 
      Observation                 E                       D 
      ----------------             ---------             ------------- 
              1                          1                        1 
              2                          1                        0 
              3                          1                        0  

 20



            …                          …                      … 
            99                          1                        1 
           100                         1                        0 
           101                         0                        1 
           102                         0                        0 
            …                          …                      … 
           199                         0                        0 
           200                         0                        1 
 
Here all of the first 100 observations are in Group E+, and all of the 2nd 100 are in 
group E-.  Among the first 100, 28 have outcome D+ and 72 have outcome D-.  
In the second 200, all are in Group E- and 40 are D+, and 60 are D-.  This needs 
to be the active data set (*.dta) in Stata.  The command for Fisher’s Exact test is  
 
     tabulate e d, exact 
 
where e and d are the column headings in the dataset, and e is coded as 1 for 
E+, 0 for E-, and d is coded similarly.  In this case Stata returns 
(1) the two-sided Fisher Exact test p-value, 0.100, and (2) the one-sided p-value 
(0.050).  [Note: It is not always true that the one-sided p-value is half of the two-
sided p-value.] 
 
3.  To compute an approximate p-value by hand: Go back to the 2 x 2 table 
above, and compute 
 

               srmn
bcadN
⋅⋅⋅

−⋅
=

2
2 )(χ

 
 
This is the uncorrected chi-square statistic.  To find the associated p-value, you 
need chi-square  tables.  Here is an excerpt from a typical table: 
 
Table 4: The Chi-square Distribution 
 
df  0.995  0.99  0.975  0.95  0.90  0.10  0.05  0.025  0.01   
------------------------------------------------------------------------------------------ 
1  ---  ---  0.001  0.004  0.016  2.706  3.841  5.024  6.635   
2  0.010  0.020  0.051  0.103  0.211  4.605  5.991  7.378  9.210   
3  0.072  0.115  0.216  0.352  0.584  6.251  7.815  9.348  11.345  
… 
 
The numbers across the top correspond to p-values.  The first column labeled ‘df’ 
stands for ‘degrees of freedom’.  The entries in the table are values of the chi-
square statistic.  The degrees of freedom in this case is 1, so we need only look 
at the first row in the table.  The table does not give exact p-values.  What it says, 

 21



for example, is that if the chi-square statistic 
2χ  as computed above is between 

3.841 and 5.024, then the p-value is between 0.05 and 0.025. 
 
In this case,  
 

              209.3)10010011288/()72406028(200 22 =⋅⋅⋅⋅−⋅⋅=χ , 
 
which, in the first row of the table above, is between 2.706 and 3.841.  This 
means that the p-value is between 0.05 and 0.10.  Note that this is in agreement 
with the uncorrected chi-square p-value (0.0733) obtained from GraphPad.  As a 
rule, the uncorrected chi-square p-value is smaller than the Fisher Exact test p-
value.  
 
4.  The Yates-corrected chi-square statistic is defined as 
 

             srmn
NbcadN

c ⋅⋅⋅
−−⋅

=
2

2 )2/(
χ

. 
 

      For the data in the table above, one obtains .696.22 =cχ   From the top row 
of the chi-square table above, you can see that the p-value must be just slightly 
bigger than 0.10.  The Yates-corrected chi-square agrees more closely with the 
Fisher Exact test than does the uncorrected chi-square. 
 
The theoretical underpinnings of these tests are beyond the scope of these 
notes.  Briefly, the Fisher Exact test is based on a distribution of numbers in 2 x 2 
tables, called the hypergeometric distribution.  The chi-square tests are based on 
the fact that the binomial distribution is fairly well approximated by the normal 
distribution (which will not be discussed here).  Because the chi-square tests are 
based on approximations, they should not be used when the sample sizes are 
too small.  How small?  The sample size in each cell of the 2 x 2 table should be 
at least 5.   
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B.2:  2 x 2 Tables: Some Definitions and Terminology 
 
Table 5: Generic 2 x 2 Table 
                      
  

  E+ 
 

 
  E- 

 
   Row 
margins 

 
D+ 

 
    a 

 
   b 

 
n =a+b 

 
D- 

 
    c 

 
   d 

 
m = c+d 
  

Col 
margs. 

 
r=a+c   

 
s=b+d 

 
     N  

 
 
 
Exposure:  ‘Exposure’ in a clinical trial refers to exposure to the drug or agent 
being tested.  If E+ denotes active drug and E- denotes placebo, then we say the 
E+ group is exposed and the E- group is unexposed. 
 
Risk:  Risk is the probability of having the disease outcome of interest, that its, 
D+.  In general you expect that risk is different for the exposed people than for 
the unexposed people.  The risks for an exposed person and an unexposed 
person respectively are: 
 
 
 

             risk of disease given exposure     = ).|( ++ EDprob                    
      

             risk of disease given no exposure = ).|( −+ EDprob                
 
These are the ‘true’ risks in the population.  The entries a, b, c, and d in the 2 x 2 
table are data from a sample of the population.  These data provide estimates of 
the risks, as follows: 
 

             estimated risk given exposure = )/( caa + , and  
 

             estimated risk given no exposure = )./( dbb +  
 
Note that, since risk is a probability, risk is always a number between 0 and 1. 
 

 23



Odds:  Odds are closely related to risk.  The term is related to betting odds, 
which you might encounter if you spend time at a horse-race track.  Specifically, 
odds is defined as  
 

              ).1/( riskriskodds −=
 
For the 2 x 2 table, we refer to odds of disease given exposure and odds of 
disease given no exposure.  These are defined as: 
 

             odds of disease given exposure = )|(1
)|(
++−

++
EDprob

EDprob

, and 
 

             odds of disease given no exposure = )|(1
)|(
−+−

−+
EDprob

EDprob

. 
 
Again, these are population parameters which must be estimated from the data 
in the 2 x 2 table: 
 

            estimated odds of disease given exposure = 
ca

cac
caa /
)/(
)/(
=

+
+

, and  
 

            estimated odds of disease given no exposure = 
db

dbd
dbb /

)/(
)/(
=

+
+

. 
 
Note that odds is always a non-negative number, but it is not restricted to being 
less than 1.  Also, note that odds can be undefined (infinite) if one of the 
denominators is 0.   
 
 
 
 
 
Exercise 11: Compute the estimates of risk and odds given exposure and of risk 
and odds given no exposure, for the data in the 2 x 2 table for the clinical trial 
involving herpes. 
 
 
B.3:  Risk Ratio and Odds Ratio: 
 
Risk ratio (also called relative risk) is defined as the ratio of the risk for exposed 
people divided by the risk for unexposed people.  Specifically, it is: 
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            Risk ratio = )|(
)|(

−+
++

EDprob
EDprob

.   
 
The risk ratio can be estimated from the data in the 2 x 2 table: 
 

            Estimated risk ratio = )(
)(

)/(
)/(

cab
dba

dbb
caa

+⋅
+⋅

=
+
+

. 
 
Odds ratio (or relative odds) has an analogous definition:  
 

            Odds ratio = )|(
)|(

−+
++

EDodds
EDodds

. 
 
This can be estimated as follows: 
 

            Estimated odds ratio = bc
ad

db
ca
=

/
/

. 
 
This is sometimes called the cross-product ratio. 
 
 
 
 
 
 
Exercise 12:  Compute the risk ratio and the odds ratio for the data in the herpes 
clinical trial. 
 
 
Now, suppose that the herpes vaccine has no effect on a person’s chances of 
getting herpes.  This means that 
 

           ).|()|( −+=++ EDprobEDprob  
 
Note that, from the definition of risk ratio given above, this implies that  
 
           Risk ratio = 1.00. 
 
The same is true for the odds ratio:  Odds ratio = 1.00. 
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In a typical clinical trial, the null hypothesis is that there is no difference between 
the two drug groups; the probability of D+ is the same whether you get E+ or E-.  
Therefore another way to state the null hypothesis is: 
 
            Risk ratio = 1.00    or 
 
            Odds ratio = 1.00. 
 
If you carried out a clinical trial and you obtained the following data,  
 
 
Table 6:  A Hypothetical Clinical Trial 
 
 
 

  
 

 
  E+ 
 

 
  E- 

 
   Row 
Margins

 
 

 
D+ 

 
    36 

 
  48   

 
     84 

 
 
 
  

D- 
 
   54  

 
  72 

 
    126  
  

 
 
 Col 

Margs. 
 
   90     

 
 120 

 
   210  

 
 
then when you compute the relative risk or the odds ratio, you will get exactly 
1.00 for both.  This happens essentially because the second row is a multiple of 
the first row: 1.5 *(first row) = second row.  In this case there is no evidence 
whatsoever that E+ has any different effect from E- on the disease outcome.   
 
 
 
B.4: Observed vs. Predicted 
 
There is another way to think of this which can be helpful.  Suppose we knew the 
row and column margins of the table, but not what the cell numbers are inside: 
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 Table 7: Known Margins, Unknown Cells 
 

   
  E+ 
 

 
  E- 

 
   Row 
Margins

 
How could we compute what the numbers 
would be in the cells, if the null hypothesis 
is true?    

D+ 
 
    a 

 
    b 

 
     84  

It turns out that, for example, to figure out 
what the “b” cell would be, we compute  

 
D- 

 
   c 

 
    d 

 
    126  
   

            48210/12084 =⋅ . Col 
 
That is, we compute the product of the row 

margin and the column margin corresponding to the “b” cell, and divide by the 
total in the table. 

Margs. 
 
   90     

 
 120 

 
   210 

 
This is the predicted value of the “b” cell, under the null hypothesis.  If all the 
cell values are computed in this way, you will get back Table X above. 
 
To put this another way: if you compute what all the cell contents would be from 
the margins as we just did for the “b” cell, you will get a table of predicted values 
for which the null hypothesis is true – that is, the relative risk and the odds ratio 
for that table will both equal exactly 1.00. 
 
 
Let’s go back to the herpes clinical trial.  The 2 x 2 table was:  
 
Table 8:  Herpes Clinical Trial - Observed 
 
  

  E+ 
 

 
  E- 

 
   Row 
Margins 

 
D+ 

 
   28 

 
   40 

 
      68 

 
D- 

 
  72 

 
   60 

 
    132 
  

Col 
margs. 

 
 100     

 
  100 

 
    200 

    
This is the observed data.  We can compare this to the predicted data, where 
the predicted values are computed as above:  
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Table 9: Herpes Clinical Trial - Predicted 
 
  

  E+ 
 

 
  E- 

 
   Row 
Margins 

 
D+ 

 
   34 

 
   34 

 
      68 

 
D- 

 
   66 

 
   66 

 
    132 
  

Col 
margs. 

 
 100     

 
  100 

 
    200 

 
 
One way to compare the observed and predicted values is to subtract the 
predicted values from the observed.  This would give you the following table: 
 
 
Table 10: Herpes Clinical Trial: Observed - Predicted 
 
  

  E+ 
 

 
  E- 

 
   Row 
Margins 

 
D+ 

 
    -6 

 
   +6 

 
      0  

 
D- 

 
   +6 

 
    -6 

 
      0 
  

Col 
margs. 

 
    0      

 
     0 

 
      0 

 
 
From this you can see how the observed data deviates from the data you would 
expect if the null hypothesis were true: the observed data in the “a” cell, for 
example, is smaller than the predicted; the observed data in the “b” cell is larger 
than the predicted.  In terms of the medical outcomes: from the “a” cell, there are 
fewer cases of herpes than you would predict if the vaccine had no effect.  That 
is, the vaccine seems to be effective.  In the “b” cell, there are more cases of D+ 
than would be predicted under the null hypothesis: which means that in the 
placebo group, there is an excess of cases of herpes.  Again this suggests that 
the vaccine is effective.  However, bear in mind that the Fisher Exact test p-value  
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for this table was 1003.0=p , which means that, although the effect of the 
vaccine seems to be beneficial, there is not a statistically significant effect 
observed in this clinical trial. 
 
The observed – predicted table gives another way of computing the chi-square 
statistic.  The following is called Pearson’s chi-square:   
 

          , 
}/){( 2

4

1

2
iii

i
Pearson predpredobs −=∑

=

χ

 
where the summation is over all 4 cells in the table.  If you do this computation 
for the herpes clinical trial, you get: 
 

          209.366/666/)6(34/634/)6( 22222 =+−++−=Pearsonχ . 
 
This happens to be exactly the same value that you get from the formula for the 
uncorrected chi-square,   
 

         srmn
bcadN
⋅⋅⋅

−⋅
=

2
2 )(χ

, 
 
as was shown above.  And as you may recall, the corresponding p-value was 
0.0733. 
 
We thus now have 4 ways to compute p-values for 2 x 2 tables: Fisher’s Exact 
test (where you usually need a computer program to do the computations, the 
Yates-corrected chi-square, the uncorrected chi-square, and Pearson’s chi-
square.  The one which is most often recommended is the Fisher Exact test, but 
the Yates-corrected chi-square is often used also.  There are at least two other 
ways to compute p-values for 2 x 2 tables, one of which we will explain when we 
get to logistic regression. 
 
 
 
Exercise 13: Compute the Pearson chi-square statistic for the following 2 x 2 
table:  
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Table 11:  Hypothetical Clinical Trial 
 
  

  E+ 
 

 
  E- 

 
   Row 
Margins 

 
D+ 

 
  100 

 
  200 

 
    300 

 
D- 

 
  300 

 
  400 

 
    700 
  

Col 
margs. 

 
  400    

 
  600 

 
  1000 

 
 
Back to Relative Risks and Odds Ratios 
 
 Below are two tables where the relative risks are different: 
 

Table 12A: Relative Risk = 
.50.0

100/40
100/20

=
 

 
  

  E+ 
 

 
  E- 

 
   Row 
Margins 

 
D+ 

 
   20 

 
   40 

 
      68 

 
D- 

 
   80 

 
   60 

 
    132 
  

Col 
margs. 

 
 100     

 
  100 

 
    200 
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Table 12B:  Relative Risk = 
39.0

640/40
820/20

=
. 

 
  

  E+ 
 

 
  E- 

 
   Row 
Margins 

 
D+ 

 
   20 

 
   40 

 
      60 

 
D- 

 
  800 

 
  600 

 
  1400 
  

Col 
margs. 

 
 820     

 
  640 

 
  1460 

 
However, the odds ratios for these two tables are exactly the same: 
 

     Odds ratio, Table A:  
375.0

8040
6020

=
⋅
⋅

    
 

     Odds ratio, Table B: 
375.0

80040
60020

=
⋅
⋅

. 
 
 
Why is this?  And why is the difference between the odds ratio and the relative 
risk large in Table A (.5 vs. .375), but not so large in Table B (.39 vs. .375) ? 
 
Fact 1:  If the positive outcomes (that is, D+ outcomes) are relatively rare, then 
the relative risk and the odds ratio are approximately equal. 
 

To see this, think of risk as a probability, p.  Then by definition, p
podds
−

=
1 .  If 

p is small, then 1 – p is close to 1.  This means that  
 

                      
odds

p
pprisk =
−

≈=
1 . 

 
To see this even more concretely, assume risk is small, for example, .01.=risk   
Then .0101.099./01. ==odds   If the risk is small in both the E+ column and the 
E- column, the corresponding odds for both columns will be approximately equal 
to the risks, and the odds ratio will approximately equal the risk ratio. 

 31



 
 
 
Exercise 14:  Find two 2 x 2 tables which have the same relative risk, but the 
odds ratios are different. 
 
 
 
 B.6: Case-Control Sampling 
 
There are many study designs other than clinical trials.  One of the most useful in 
epidemiologic studies is the case-control design.  The basic idea here is the 
following.  You are interested in knowing whether a certain risk factor causes a 
certain disease.  For example, does cigarette smoking cause breast cancer?  
You identify a group of women who have breast cancer.  These are the cases.  
You also identify a group of women who do not have breast cancer.  This is the 
control group.  You may try to select the controls to have similar ages or to live in 
the same neighborhood as the cases.  The two groups do not have to have equal 
sizes, and in fact in many studies, the control group is 2-4 times larger than the 
case group. 
 
An important principle here: if you want to study smoking, you must not select 
either the cases or the controls based on their history of smoking.  That is, your 
selection of both cases and controls must be independent of their smoking 
habits or history. 
 
Once you have selected the cases and controls, you then ask them about their 
smoking history: for example, “Do you now smoke cigarettes?  Have you ever 
smoked at least 100 cigarettes in your lifetime?  (if yes) When did you first start 
smoking cigarettes?  For how many years did you smoke?  During the years that 
you smoked, how many cigarettes did you smoke per day, on average?”  These 
are standard questions to determine exposure to cigarette smoke.   
 
Another important principle: if you want to study a certain exposure factor in a 
case-control study, you must not match cases and controls on that factor.  So if 
you matched cases and controls on, for example, body mass index, you would 
not be able to study the effects of body mass index on incidence of breast 
cancer.  (Do you see why?) 
 
After you have collected the smoking exposure data, you are ready to do 
statistical analysis.  You tabulate what percent of the cases smoked cigarettes 
and what percent of the controls.  You can summarize this in a 2 x 2 table: 
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  E+ 
 

 
  E- 
 

 
   Row 
Margins 

 
D+ 

 
   50 

 
    30 

 
      80 

 
D- 

 
 100 

 
  140 

 
    240 
  

Col 
Margs. 

 
 150     

 
  170 

 
    320 

 
The column labeled ‘E+’ denotes smokers (women exposed to smoking), and ‘E-‘ 
denotes nonsmokers.  The cases are designated by ‘D+’ and the controls by ‘D-‘. 
Note that the total number of controls is 3 times larger than the total number of 
cases.   
 
The statistical analysis in this study is basically the same as it was for the herpes 
clinical trial.  You compute the Fisher Exact test p-value or the chi-square statistic 
and the corresponding p-value.  GraphPad gives the following results:  
 
     Fisher Exact test p-value:          0.0018 
 

     Yates-corrected chi-square and p-value: 0019.0,638.92 == pcχ . 
 
Also, you note that the proportion of smokers is higher among the cases than it is 
among the controls:  
 
      Proportion of smokers among cases:     625.080/50 = , 
 
      Proportion of smokers among controls:  417.0240/100 = . 
 
Further, you can compute an odds ratio for the table above: 
 

      Odds ratio = 
33.2

10030
14050

=
⋅
⋅

. 
 
This is a fairly large odds ratio; it says that the odds that a case is a smoker are 
2.33 times larger than the odds that a control is a smoker.   
 
Important warning! 
 
Now, one thing you cannot do in a case-control study is compute an estimate of 
the relative risk.  In this case, ‘risk’ refers to the risk of breast cancer.  To 

 33



estimate this risk among smokers and nonsmokers, you would need to have a 
different study structure.  You would need to start with a group of smokers and 
another group of nonsmokers, and then follow them for, say, 30 years (cancer 
has a long latency period) and then determine which ones had breast cancer 
during that time.  These groups are called ‘cohorts’.  In the table above, we have 
a group of smokers (the people in the E+ column) and a group of nonsmokers 
(the people in the E- column), but they were not selected as cohorts.  They 
were selected after it had been determined that they were cases or controls.  If 
you tried to estimate relative risk in the usual way, you would get: 
 

89.1
170/30
150/50

)|(
)|(???_ ==

−+
++

=
EDprob
EDprobriskrelative . 

 
But this is wrong, because, for example, 50/150 is not an estimate of 

)|( ++ EDprob .  To estimate the latter, you would need to start with a group of 
smokers and follow them for a period of time.  That, however, is not how the 
cases and controls were selected.  First we determined their case or control 
status, and then we determined their smoking history. 
 
But the estimate of the odds ratio given above is valid!  How can this be? 
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Table 13:  Population Categories and Case-Control and Cohort Sampling 
 
Case-          Exposure Status 
Control 
Status      E+      E-    Case-Control Sampling 
------- -----------------  

                                             Sampling Fraction f1 

   D+       A       B    ----------------------> f1*A   f1*B   
 
                          Sampling Fraction f2 

   D-       C       D    ----------------------> f2*C   f2*D 
 
 Cohort     |       | 
 Sampling   | g1     | g2 

            |       | 
            V       V 
 
           g1*A     g2*B 
 
           g1*C     g2*D 
 
In the 2 x 2 table shown here, the entries A, B, C, and D represent numbers of 
people in the population in the various cells.  For example, there are B people in 
the population who are D+ and E-.  Case-control sampling is represented by the 
arrows pointing to the right.  In case-control sampling, the sample of cases 
selected (f1) is the same whether the people are exposed (E+) or unexposed  
(E-).  Similarly there is a constant fraction of controls sampled.  Note that f1 and f2 
need not be the same.  In cohort sampling, represented below the table by the 
vertical lines, the sampling fractions g1 and g2 are the same regardless of the 
disease status (D+ or D-).   
 
These sampling fractions result in the 2 x 2 tables on the right and below the 
original population table. 
 
For the lower table, generated by cohort sampling, the relative risk would be 
computed as: 
 

 
)/(

)/(

222

111

DgBgBg
CgAgAgRRsample +

+
=  = 

)/(
)/(

DBB
CAA

+
+

=  populationRR

 
because the factors  and  cancel out in the numerator and denominator 
respectively.    

1g 2g

 
For the odds ratio, the same table gives: 
 

.
12

21
populationsample OR

BC
AD

CgBg
DgAgOR ==

⋅
⋅

=   
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This means that for cohort sampling, the sample estimates of both the relative 
risk and of the odds ratio would be expected on average to agree with the 
population relative risk and odds ratio respectively.   
 
It is also easy to show that the estimate of the odds ratio for case-control 
sampling would be expected to agree with the population  odds ratio. 
 
However, if we try to compute the relative risk for the case-control sample, we 
get the following: 
 

)/(
)/(

211

211

DfBfBf
CfAfAfRRsample +

+
= , 

 
and the factors  and  do not all cancel.  What this means is, case-control 
samples cannot give valid estimates of relative risk. 

1f 2f

 
 
 
 
 
 
 
    
 
Exercise 15:  Refer to Table 13 above.  Assume the following values for counts 
of people in the population:   
 
                  A =    50              B =     10 
 
                  C = 1000             D = 1000 
 
(1) Compute the odds ratio and relative risk for this population data. 
 
(2)  Assume a case-control sample is taken with sampling fractions: 
 

        
2.0
,8.0

2

1

=
=

f
f

 
       Compute the cell sizes and the odds ratio and relative risk for this sample. 
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In spite of what I said above, that relative risk cannot be obtained from case-
control studies, you will see relative risks in papers on case-control studies, even 
in good journals.  An example is given below.  Why is this? 
 
As I noted above also, if the probability of the outcome of interest is small, 
relative risk and odds ratio are approximately equal.  That’s one reason.  The 
other reason is, it is easier to understand what a relative risk is – it’s just the ratio 
of two probabilities – but the odds ratio is harder to understand, because in 
general people don’t know exactly what odds are.  It’s true, there is an exact 
correspondence between odds and probability – for example, if odds of an event 
is 1/4 then the probability of that event is 1/5; if the odds equal 1.0, then the 
probability of the event is 0.50.  The relationship between odds and probability is: 
 

               
prob

probodds
−

=
1

 , 

 
 
so general if you want to solve for the probability in terms of the odds, you get 
 

 
odds

oddsprob
+

=
1

. 

 
 
However, given an odds ratio, you cannot compute what the corresponding risk 
ratio (relative risk) would be. 
 
Main point here: You can estimate the odds ratio in clinical trials, cohort studies, 
and case-control studies.  If the disease condition you are interested is rare (low 
probability), then the relative risk is well approximated by the odds ratio.  
However in general you cannot reliably estimate relative risk from a case-control 
study. 
 
There is another reason that odds ratio is frequently used instead of relative risk.  
This is because if you are analyzing data using logistic regression (which will 
be explained later), you can obtain estimates of odds ratios, but not relative risks. 
 
The following table is from an article in the American Journal of Epidemiology, 
2006: Lonn S et al.: Mobile phone use and risk of parotid gland tumor.  V164 pp 
637-643:  
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 The Lonn article is based on a case-control study of 60 people who had 
malignant parotid [salivary] gland tumors, 112 benign pleomorphic adenomas, 
and 681 controls.  The risk factor of interest was mobile phone use.  If you focus 
on the main question of interest, upper left section of the table gives you a 2 x 2 
table as follows:  
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  E+ 
 

 
  E- 
 

 
   Row 
Margins 

 
D+ 

 
   25 

 
   35 

 
      60 

 
D- 

 
 401 

 
  280 

 
    681 
  

Col 
Margs. 

 
 426     

 
 315 

 
    741 

 
Here E+ denotes the exposed group, where ‘exposure’ is to regular use of a 
mobile phone use, while E- denotes people who never or rarely use a mobile 
phone.    
 
The odds ratio estimate is  
 

               488.0
401*35
280*25

==OR , 

 
which differs from the finding in the paper (OR = 0.70).  The difference is due to 
the fact that their analysis was adjusted for age, gender, geographic region, and 
education (using logistic regression, to be discussed later).  Note that the 
proportion of people in the case group who were exposed was 25/60 = 42%, 
while the proportion of people in the control group D-) who were exposed was  
401/681 = 59%.  There is thus no evidence at all that cases are more likely than 
controls to have been exposed; in fact the estimated odds ratio goes the other 
way.   
 
Fact:  that the odds of exposure given disease are the same as the odds of 
disease given exposure.   This is another reason case-control studies and the 
odds ratio are of value. 
 
 
Note that they also provide 95% confidence limits for the true odds ratio: 

.  This interval includes the number 1.0, which indicates that the data 
are consistent with the hypothesis that there is no effect of exposure on the odds 
of acquiring a parotid gland malignancy. 

)3.1,4.0(

But how would you compute a 95% confidence interval for the odds ratio? 
 
Here is the methodology: 
 
1.  Compute the estimated odds ratio as above.  Result: OR = 0.488 
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2.  Take the natural logarithm of the estimated odds ratio: 
 718.)488ln(.)ln( −=== ORy

 
3.  Compute the variance of y = ln(OR).  For a 2 x 2 table with cell entries a, b, c, 
and d, this turns out to be:  
 
          dcbaOR /1/1/1/1))var(ln( +++= , 
 
that is, it is just the sum of the reciprocals of the counts in each cell. 
 
4.  Find the standard error of ln(OR).  This is just the square root of the estimated 
variance: 
 

           dcbaORORserr /1/1/1/1)var(ln())(ln( +++== . 
 
5.  Compute the 95% confidence interval for the true values of ln(OR): 
 
           lower 95% bound for ln(OR) = ln(OR) – serr(ln(OR)), and  
 
          upper 95% bound for ln(OR) = ln(OR) + serr(ln(OR)).   
 
6.  Finally, to get things back on the original odds ratio scale, you do the opposite 
of taking the natural logarithm of the upper and lower bounds in [3]: that is, you 
apply the inverse function of the natural logarithm – you exponentiate the lower 
and upper limits by using the exponential function (note that exp(A) = eA).   
 
          Lower 95% bound for OR = exp(lower 95% bound for ln(OR)), 
 
          Upper 95% bound for OR = exp(upper 95% bound for ln(OR)) 
 
 
Exercise 16: Compute the 95% confidence interval for the true odds ratio for the 
parotid gland study data given in the 2 x 2 table above. 
 
 
The reason you first compute the confidence limits on the log scale and then 
exponentiate them is that confidence limit estimates usually depend on the fact 
that certain statistics are well-approximated by the normal distribution function.  
The odds ratio itself is not well-approximated by the normal distribution, but 
ln(OR) is.  It is possible to compute an estimated standard error for the odds ratio 
itself, but the resulting confidence limits are not very accurate.  
 
Note that, in this exercise, you will not get exactly the same answers as in Lonn’s 
table because their computation was adjusted for age, gender, geographic 
region, and education.   
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The SAS statistical package, applied to the data in the 2 x 2 table for the parotid 
gland study, gives:  
 
     1.  Fisher exact test p-value (two-sided):   p = .0093 
     2.  Uncorrected chi-square p-value        :   p = .0075 
     3.  Corrected chi-square p-value            :   p = .0112 
     4.  Odds ratio estimate                           :   488.0ˆ =RO   
     5.  95% Conf Limits for true OR             :   (0.29, 0.85). 
 
Note that the both the estimated odds ratio and the confidence limits differ 
somewhat from what appears in the table of Lonn et al. – this is, again, because 
the analysis shown here is not ‘adjusted’ for other covariates (age, gender, 
geographic region, education).   
 
 
C.  Logistic Regression 
 
C.1  The logistic function.   
 
Assume that you are studying the relationship between a predictor X and 
an outome variable, Y.  The outcome variable Y has only two states, 0 and 1 
(think: 0 = dead, 1 = alive).  The predictor X can take on several different values.  
For example, Y may be represent the event of having a in the next year.  X may 
be the person’s systolic blood pressure at the beginning of the year.  The higher 
X is, the more likely it is that he/she will have a stroke.   This is expressed by the 
equation: 
 

         
)exp(1

1)|1(
10 Xbb

XYprob
⋅−−+

== . 

 
This is the logistic function or the logistic risk function.   There are several 
things to note about it: 
 
1.  b0   and  b1 are unknown constants.   
2.  The function is always > 0.  This is true because 1 is nonnegative and 
exp(anything) is always nonnegative. 
3.  The function is always < 1.  This is true because (a) the first term in the 
denominator is 1 and the second term is positive.  Therefore (b) the denominator 
is larger than the numerator, so the whole fraction is < 1. 
4.  If b1 is positive, then when X increases, the risk of an event (Y = 1) increases. 
  
 
The objective with logistic regression is to estimate the unknown coefficients b0 
and b1, and to perform tests regarding these parameters.  In some special cases, 
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you can do this with pencil and paper.  However in most cases you will need to 
use computer software. 
 
Assume that X is age in years, and Y represents whether the person died during 
the years following entry (Y = 1) or the person survived during the one-year 
follow-up period (Y = 0). The function could be graphed as follows: 
 

 
 
This is the usual ‘sigmoidal’ shape of the logistic function.  It indicates that the 
risk of death within the next year is very low at age 25, but is very high at age 
100.  
 
You can carry out logistic regression in most statistical software packages (SAS, 
R, Stata, SPSS, SYSTAT, etc.).  In general you will be analyzing a file which has 
the following structure:  
 
Observation             X           Y 
-----------------          -----        ----- 
         1                     54           0 
         2                     86           1  
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         3                     23           0 
        …                     …          … 
 
The logistic risk function has a lot of flexibility.  It can be used to model risk as a 
function of several variables.  Assume your data file has this structure: 
 
--------------------------------------------------------------- 
 
Obs           Y       Age      SBP      LDL     Cigs 
------         -----    -------    -------     -------    ------- 
  1               1         67      138       180        35 
  2               0         43      122       105          0 
  3               0         34      150       189        20  
  4               1         86      103         98          0 
  5               0         72      122       144          0  
 …              …        …       ….         ….         … 
 
---------------------------------------------------------------- 
 
Here the outcome variable, Y, indicates whether the person had a heart attack 
within 5 years of study entry.  Age in age in years, SBP is systolic blood 
pressure, LDL is low-density lipoprotein, and Cigs is how many cigarettes per 
day the person smokes.  A logistic risk function in this case could be: 
 
 

))exp(1/(1)|1( 43210 CigsbLDLbSBPbAgebbsriskfactorYprob −−−−−+==

.. 
To obtain estimates of the coefficients using Stata, you would write: 
 
  . logit Y age sbp ldl cigs  
 
 
The logistic model can also be used to carry out the odds ratio analysis 
discussed above for 2 x 2 tables.  Refer again to the data on parotid gland 
malignancy: 
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Table 16: Parotid Gland Malignancy and  
Exposure to Mobile Phones 
 
 
 

 
  E+ 
 

 
  E- 
 

 
   Row 
Margins 

 
D+ 

 
   25 

 
   35 

 
      60 

 
D- 

 
 401 

 
  280 

 
    681 
  

Col 
Margs. 

 
 426     

 
 315 

 
    741 

 
 
The idea here is, represent the exposure status with a variable E and the disease 
status with a variable D.  The data file would have the following structure: 
 
       Obs          D         E 
   -----------      -----      ----- 
      1-280         0          0                (this line is repeated 280 times) 
   281-681        0          1                (this line is repeated 401 times) 
   682-716        1          0                (this line is repeated  35 times) 
   717-741        1          1                (this line is repeated  25 times) 
 
The statistical model here is: 
 

             
)exp(1

1)|1(
10 Ebb

EDprob
−−+

== . 

 
and in Stata, the logistic analysis would be: 
 
       . logit  d e  
 
 
It is a good idea when analyzing categorical data in Stata to first examine the file.  
In this case, the ‘tabulate’ command is appropriate.  If you enter  
 
     .  tabulate d e 
 
In Stata, the follow table will be printed: 
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Table 17: Stata output from Tabulate command: 
 
 
                                                  e 
 
            d    |                  0                                1     |     Total 
------------------------------------------------------------------------------ 
            0    |                280                             401  |        681 
            1    |                  35                               25  |          60 
------------------------------------------------------------------------------- 
        Total  |                315                             426  |        741 
 
 
Stata output from logistic regression: 
 
Table 18: Stata output from logit command:  
 
  
    .   logit d e 
 
    Iteration 0:     log likelihood = -208.32186 
    Iteration 1:     log likelihood = -205.09666 
          …                    …                    … 
 
    Iteration 4:     log likelihood = -205.02284 
 
    Logistic regression                                        Number of obs =     741  
                                                                          LR chi2(1)        =    6.60 
                                                                          Prob > chi2      = 0.0102 
    Log likelihood  =  -205.02284                        Pseudo R2       = .0158 
 
----------------------------------------------------------------------------------------------- 
                 d    |       Coef          Std. Err.       z      P>|z|    [ 95% Conf Int ] 
------------------------------------------------------------------------------------------------ 
                 e    |   -.6956441     .273197    -2.55   0.011     -1.2311  - .1610 
            _cons |  - 2.079442     .1792843 -11.60  0.000     -2.4308  -1.7280 
------------------------------------------------------------------------------------------------- 
  
 
Here is how this is interpreted.  The logistic model was  
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)exp(1

1)|1(
10 ebb

edprob
+−+

==  

 
The estimate of the coefficient b1 is in the first row of the table under ‘Coef’.  That 
is  .  The estimate of b0 is in the row labeled ‘_cons’, which 

means, the constant term (also called the intercept), that is, . 

6956441.1̂ −=b
079442.20̂ −=b

In general, the term you are most interested in is b1.   
 
Now, a curious observation: if you exponentiate the term b1, you get 
 
          . 499.0)6956441.exp( =−
 
This happens to be the same as the estimated odds ratio from the simpler 
analysis – not a coincidence 
 
Fact: Relationship between logistic coefficients and odds ratios: 
 
In the logistic model, 
 

             
)...exp(1

1),...,,|1(
22110

21
pp

p XbXbXbb
XXXYprob

−−−−−+
== . 

 
the odds ratio corresponding to a 1-unit increase in the variable Xj is  
 
              . )exp( jj bOR =
 
So if, for example, you are analyzing data in which the outcome variable is death, 
and in which one of the predictors Xj is age: if the coefficient bj is estimated to be 
0.300 then the odds of death for Mr. Smith, who is 1 year older than Mr. Jones, is 

 times larger than the odds of death for Mr. Jones. 35.1)300.0exp( =
 
Now, what if Mr. Smith is 10 years old than Mr. Jones.  What is the odds ratio 
corresponding to that increase in age? 
 
              . 09.20)10300.0exp( =⋅
 
In general, if the variable Xj is increased by jXΔ  units, then the corresponding 
odds ratio is  
 
              . )ˆexp( jj Xb Δ⋅
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Exercise 17:  Assume gender is coded as 0 for men and 1 for women.  Assume 
that the coefficient of gender in a logistic regression where the outcome variable 
is onset of Type 2 diabetes is -0.105.  What is the odds ratio of Type 2 diabetes 
for men versus women? 
    
 

 
Exercise 18:  The Stata output shown above showed the coefficient of the 
exposure variable, but it did not show the corresponding odds ratio for exposed 
vs. nonexposed people.  Nor did it show 95% confidence limits for the true odds 
ratio.  Can you see a way to compute the 95% confidence interval from what is 
given in the table above? 
 
 
 
Exercise 19:  Reference the ‘High School and Beyond’ datafile, which can be 
accessed from Stata by the following command (if your PC is connected to the 
Web): 
 
    use http://www.ats.ucla.edu/stat/stata/notes/hsb2
  
This data file has 200 observations and a number of variables which you can see 
by using the describe command in Stata.  One of the variables is ‘female’.  This 
variable is coded as 1 if the person is female, 0 if male.   
 
Use logistic regression to explore whether other variables in the dataset ‘predict’ 
whether the person is female.  The dataset includes scores on math, science, 
reading and writing.   
 
 
The logit procedure in Stata, as shown above, produces estimates of 
parameters and their 95% confidence intervals.  The logistic command will 
produce estimates of the odds ratios associated with a 1-unit increase in the 
predictor.  The basic syntax is the same – for example,  
 
           .  logistic d e  
 
will produce an estimate of the odds ratio for the data on parotid gland cancer 
and mobile phone devices show in Table 16. 
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Exercise 20: Use logistic Stata on the hsby2 file to find estimates of the odds 
ratio of being female corresponding to a 10-point increase in the math test score.  
Check that this agrees with the estimates you can derived from the logit 
procedure. 
 
 
C.2  Testing for Interaction Using Logistic Regression 
 
Suppose age and gender are important predictors of coronary heart disease.  
The logistic model in this case would be:  
 

            
)**exp(1

1),|(
210 genderbagebb

genderageCHDprob
−−−+

=   . 

 
It may be that the effect of age is different for men that it is for women.  This 
means that there is an interaction between age and gender.  The interaction is 
often represented by adding another term to the logistic model, on the right side 
of the equation.  That term is often just the product of age and gender: 
 

)****exp(1
1),|(

3210 genderagecgendercagecc
genderageCHDprob

−−−−+
=

. 
Note that the coefficients  in this model are not the same, and will not 
have the same estimates, as the coefficients  in the first model. 

210 ,, ccc
210 ,, bbb

 
To compute logistic coefficients for the second model, you must first create a 
new variable, as follows: 
 
     .  generate agegender = age * gender  
 
Then you would use either the logit or logistic command: 
 
        logit chd age gender agegender. 
 
 
Evaluating the significance of an interaction term is not so easy.  The right way 
to do it is as follows: 
 
       Model 1:  logit chd age gender  
       Model 2:  logit chd age gender agegender 
 
Then find the value of  log(likelihood) for each model.  This is in the Stata 
printout.  The value for Model 2 will be larger than that for Model 1.  Both of the 
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values will very likely be negative numbers, but the Model 2 log likelihood will be 
larger.   
 
Then compute -2 * log(likelihood) for each model. 
 
Then subtract the value of -2 * log(likelihood) for Model 2 from the value for 
Model 1: 
 
       ))log(2()log(2 21 ModelModel likelihoodlikehooddiff ⋅−−⋅−= . 
 
This should always be a positive number. 
 
To find a p-value for the interaction, you have to compare diff to the chi-square 
distribution with 1 degree of freedom. 
 
 
Exercise 21:  In the hsby2 dataset, with female as the outcome variable, test for 
whether there is an interaction between the writing score and the math score.  
What would it mean if there were such an interaction? 
 
 
 
 
References: 
 
There are many, many references on categorical data analysis.  Two textbooks 
that I would recommend are: 
 
1.  Joseph L. Fleiss, Statistical Methods for Rates and Proportions, 3rd Edition 
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    http://www.ats.ucla.edu/stat/stata/whatstat.htm#bitest
 
Another reference on both categorical data and Stata is: 
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