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Section 1 presents several extensions to the simulation study in the main paper, while

Section 2 proves that the mean-squared error of the treatment specific conditional survival

functions place an upper bound on the mean-squared error of the restricted mean treatment

effect.

1 Furthering the Simulation Study

We present several extensions to the simulation study. Section 1.1 in the Supporting Infor-

mation investigates the bias and MSE of the restricted mean estimators at a larger sample

size (n = 900). Section 1.2 in the Supporting Information compares the bootstrap variance

to the Monte Carlo variance. Section 1.3 in the Supporting Information considers differ-

ent approaches (including a bias correction) to bootstrap estimation of confidence intervals.

Section 1.4 in the Supporting Information investigates the influence of time point selection

in minimizing the Brier Score for stacked survival models.

1.1 Larger Sample Size

We present the results of the simulation scenarios from the main paper with a larger sample

size (n = 900 rather than n = 300) as the more robust approaches (i.e., splines and random
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survival forests) should perform better with a larger sample size.

Tables 1 and 2 present the relative bias ([Eγ̂(τ) − γ(τ)]/γ(τ)), the mean-squared error

(MSE) ratio relative to the Cox estimator, and the integrated squared survival error (ISSE)

ratio relative to the Cox estimator. For the exponential scenarios, both Stacked estimators

show improved relative bias and MSE ratio compared to a smaller sample size. In addition,

the Splines estimator performs relatively better in terms of MSE and, in particular, ISSE. In

contrast, the Cox estimator maintains, as expected, the same relative bias in the exponential

scenario with non-linear covariate effects despite the larger sample size. For the gamma

scenarios, each estimator experiences a small increase in relative bias. This is likely due to

the misspecification of each parametric and semi-parametric model. Both Stacked estimators,

which perform very similarly at a larger sample size, still possess good MSE compared to the

Cox model, while the Splines estimator improved the most in terms of the MSE and ISSE

ratios compared to the scenarios with a smaller sample size.

The correlation between the mean-squared error of the conditional survival function (i.e.,

‘Integrated Squared Survival Error’) with the MSE of the restricted mean treatment effect

is stronger at a larger sample size, while the correlation is attenuated for the bias of the

restricted mean treatment effect. In particular, Figure 1 illustrates that the Pearson corre-

lation between ISSE and the MSE of the restricted mean treatment effect is close to 1, while

the correlation between ISSE and the bias of the restricted mean treatment effect and ISSE

is much higher at a larger sample size (∼ 0.65 rather than ∼ 0.20).

1.2 Standard Errors: Bootstrap versus MC

To help explain the poor performance of the confidence intervals for the Stacked estimator

with random survival forests (RSF), we compare the bootstrapped variance to the expected

variance from the Monte Carlo simulations (i.e., MC Var = MSE− Bias2). If the bootstrap

variance is less than the Monte Carlo variance, then the bootstrap based confidence intervals
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Table 1: Simulation results for the exponential distributed scenarios: N = 900, NSIM =
1000, and a marginal censoring of 30%. ‘Percent Relative Bias’ is the ratio of the bias
and true restricted mean difference. ‘MSE Ratio’ is the ratio of MSE relative to the Cox
estimator. ‘ISSE Ratio’ is the ratio of integrated squared survival error, which corresponds
to the mean-squared of the conditional survival function, relative to the Cox estimator.

Percent
Estimator Relative Bias MSE Ratio ISSE Ratio

Linear
γ(20) = −2.965

Cox 0 1.00 1.00
Splines -2 1.12 1.23
Stacked -2 1.03 1.04
Stacked (with RSF) -2 1.04 1.04

Non-Linear
γ(20) = 2.690

Cox 9 1.00 1.00
Splines 1 0.61 0.81
Stacked 2 0.57 0.80
Stacked (with RSF) 2 0.56 0.81

Linear
γ(50) =
−12.318

Cox 0 1.00 1.00
Splines 0 1.08 1.12
Stacked 0 0.99 1.00
Stacked (with RSF) 1 1.01 0.99

Non-Linear
γ(50) = 7.929

Cox 9 1.00 1.00
Splines 2 0.58 0.83
Stacked 3 0.58 0.82
Stacked (with RSF) 2 0.56 0.82
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Table 2: Simulation results for the gamma distributed scenarios: N = 900, NSIM = 1000,
and a marginal censoring of 30%. ‘Percent Relative Bias’ is the ratio of the bias and true
restricted mean difference. ‘MSE Ratio’ is the ratio of MSE relative to the Cox estimator.
‘ISSE Ratio’ is the ratio of integrated squared survival error, which corresponds to the mean-
squared of the conditional survival function, relative to the Cox estimator.

Percent
Estimator Relative Bias MSE Ratio ISSE Ratio

Linear
γ(20) = −0.753

Cox -14 1.00 1.00
Splines -10 0.98 1.14
Stacked -6 0.81 0.87
Stacked (with RSF) -7 0.83 0.89

Non-Linear
γ(20) = −0.931

Cox -18 1.00 1.00
Splines -11 0.85 0.86
Stacked -8 0.70 0.81
Stacked (with RSF) -9 0.72 0.81

Linear
γ(50) = −6.599

Cox -8 1.00 1.00
Splines -6 1.03 1.13
Stacked -3 0.78 0.93
Stacked (with RSF) -3 0.81 0.94

Non-Linear
γ(50) = −6.407

Cox -15 1.00 1.00
Splines -8 0.68 0.83
Stacked -7 0.58 0.80
Stacked (with RSF) -7 0.57 0.80
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Figure 1: An investigation into the relationship between restricted mean treatment effect
performance and the quality of the conditional survival function estimation with a larger
sample size (n = 900).
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are more likely to perform poorly in terms of coverage probability. As illustrated in Table 3,

the Stacked estimator with RSF possesses a bootstrapped variance up to 10% lower than

the expected Monte Carlo variance for the gamma distributed scenarios (i.e., the situations

that the Stacked estimator with RSF achieved less than 90% coverage).

1.3 Confidence Interval Construction

Due to the poor confidence interval performance of the Stacked estimator with random

survival forests (RSF), we investigate two additional bootstrap approaches to confidence

interval estimation. We first consider estimating the confidence intervals with a Normal

approximation based only on B = 50 bootstrap replications. The second approach is the

‘Bias-Corrected bootstrap’ (referred to as ‘BC Bootstrap’), which modifies the percentile

based confidence intervals with a bias correction (Efron, 1981; Efron and Tibshirani, 1993).

Confidence interval performance is assessed with two measures: the ratio average confi-
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Table 3: The ratio of the Monte Carlo variance and the bootstrapped variance for the
simulation scenarios in the main paper (i.e., Boot Var

MC Var
). In particular, a ratio greater than one

indicates that the bootstrap overestimates the variance, while a ratio less than one indicates
that the bootstrap underestimates the variance. N = 300 and NSIM = 1000 with a marginal
censoring of 30%.

Exponential Scenarios Gamma Scenarios
Estimator Linear Non-Linear Linear Non-Linear

τ = 20

Cox 1.13 1.04 1.02 1.03
Splines 1.22 1.11 1.15 1.12
Stacked 1.18 1.13 1.26 1.24
Stacked (with RSF) 1.01 0.89 1.13 1.08

τ = 50

Cox 1.02 1.06 0.94 0.94
Splines 1.07 1.10 0.95 0.95
Stacked 1.09 1.13 1.05 1.01
Stacked (with RSF) 0.84 0.77 0.88 0.84

dence interval length (ACL) compared to the Cox estimator and coverage probability. Ta-

bles 4 and 5 present the performance of the two confidence interval methods for the simula-

tion scenarios presented in the main paper. As noted in Section 1.2, the Stacked estimator

with random survival forests (RSF) occasionally possesses a smaller than expected bootstrap

variance. Thus, the Normal based confidence intervals still fail to achieve nominal coverage.

Although, the Normal based confidence intervals perform better than the percentile based

approach from the main paper. The bias-corrected confidence intervals are associated with

substantially worse performance than the percentile based approach for each estimator. For

example, the Stacked estimator with RSF possesses coverage levels as low as 59%. Note

that Efron and Tibshirani (1993) warn that bias-corrected bootstrap confidence intervals are

potentially dangerous in practice.
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Table 4: The confidence intervals results for the exponential distributed scenarios in the main
paper: N = 300, NSIM = 1000, and a marginal censoring of 30%. The ‘Normal Bootstrap’
estimates the variance with B = 50 bootstrap replicates, while the ‘BC Bootstrap’ estimates
the confidence interval with B = 300 bootstrap replicates. ‘ACL Ratio’ is the ratio of average
confidence interval lengths compared to the Cox estimator. The γ(20) and γ(50) are the true
restricted mean treatment effects for τ = 20 and τ = 50, respectively.

Normal Bootstrap BC Bootstrap
Estimator ACL Ratio Cov. ACL Ratio Cov.

Linear
γ(20) = −2.965

Cox 1.00 0.96 1.00 0.95
Splines 1.12 0.96 1.12 0.95
Stacked 1.05 0.95 1.03 0.91
Stacked (with RSF) 0.97 0.95 0.91 0.75

Non-Linear
γ(20) = 2.690

Cox 1.00 0.93 1.00 0.94
Splines 1.04 0.95 1.05 0.95
Stacked 0.98 0.95 0.98 0.92
Stacked (with RSF) 0.86 0.92 0.81 0.63

Linear
γ(50) = −12.318

Cox 1.00 0.95 1.00 0.94
Splines 1.06 0.95 1.10 0.94
Stacked 1.00 0.95 1.01 0.90
Stacked (with RSF) 0.42 0.92 0.77 0.42

Non-Linear
γ(50) = 7.929

Cox 1.00 0.91 1.00 0.93
Splines 0.99 0.94 1.06 0.94
Stacked 0.96 0.93 0.98 0.92
Stacked (with RSF) 0.76 0.88 0.78 0.80
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Table 5: The confidence interval results for the gamma distributed scenarios in the main
paper: N = 300, NSIM = 1000, and a marginal censoring of 30%. The ‘Normal Bootstrap’
estimates the variance with B = 50 bootstrap replicates, while the ‘BC Bootstrap’ estimates
the confidence interval with B = 300 bootstrap replicates. ‘ACL Ratio’ is the ratio of average
confidence interval lengths compared to the Cox estimator. The γ(20) and γ(50) are the true
restricted mean treatment effects for τ = 20 and τ = 50, respectively.

Normal Bootstrap BC Bootstrap
Estimator ACL Ratio Cov. ACL Ratio Cov.

Linear
γ(20) = −0.753

Cox 1.00 0.94 1.00 0.94
Splines 1.18 0.96 1.20 0.92
Stacked 1.05 0.97 1.05 0.84
Stacked (with RSF) 1.02 0.96 0.94 0.63

Non-Linear
γ(20) = −0.931

Cox 1.00 0.92 1.00 0.93
Splines 1.15 0.95 1.15 0.93
Stacked 1.04 0.97 1.04 0.87
Stacked (with RSF) 0.99 0.95 0.90 0.59

Linear
γ(50) = −6.599

Cox 1.00 0.92 1.00 0.93
Splines 1.17 0.93 1.13 0.93
Stacked 1.11 0.95 1.03 0.87
Stacked (with RSF) 1.29 0.92 0.86 0.56

Non-Linear
γ(50) = −6.407

Cox 1.00 0.90 1.00 0.92
Splines 1.09 0.94 1.07 0.94
Stacked 1.04 0.94 1.00 0.89
Stacked (with RSF) 1.21 0.91 0.84 0.59
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1.4 Stacking Question: Selection of ts

As noted by Wey et al. (2013), the selection of time points for minimizing the Brier Score can

have a substantial effect on the performance of stacked survival models. Wey et al. (2013)

recommend minimizing over nine equally spaced quantiles of the observed event distribution.

However, when estimating restricted mean treatment effects, stacked survival models may

work better by restricting to time points within the support of interest. For example, in the

simulation scenarios, the largest time point of interest is τ = 50. Yet Table 6 shows that

for the gamma distributed scenarios the recommended nine equally spaced quantiles of the

observed event distribution results in approximately 40% of these points beyond τ = 50.

Tables 7 and 8 compares the performance of stacking when the nine equally spaced

quantiles of the observed event distribution are restricted to times less than τ = 50 to the

performance of stacking over nine equally spaced quantiles of the unrestricted observed event

distribution. Restricting the time points has a negligible effect on bias and MSE, but it is

associated with up to 9% larger ISSE in the gamma scenarios (i.e., the scenarios expected

to benefit the most from restricting the event distribution).

Table 6: The average percent of ts for the stacked survival model that occur beyond τ = 20
and τ = 50 for the simulation scenarios in the main paper. For each simulation iteration,
the ts were the nine equally spaced quantiles of the observed event distribution.

Distribution Scenario τ = 20 τ = 50

Exponential
Linear 58% 23%
Non-Linear 31% 11%

Gamma
Linear 87% 40%
Non-Linear 79% 41%
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Table 7: Simulation results for restricting the minimization procedure for the exponential
distributed scenarios: N = 300, NSIM = 1000, and a marginal censoring of 30%. ‘Relative
Bias’ is the ratio of the bias and true restricted mean difference. ‘MSE Ratio’ is the ratio
of MSE relative to the ‘Stacked’ estimator. ‘ISSE Ratio’ is the ratio of integrated squared
survival error, which corresponds to the mean-squared of the conditional survival function,
relative to the ‘Stacked’ estimator. The ‘Stacked’ estimators use nine equally spaced quantiles
of the unrestricted observed event distribution, while the ‘Res. Stacked’ estimators use nine
equally spaced quantiles of the observed event distribution restricted to τ = 50.

Estimator Relative Bias MSE Ratio ISSE Ratio

Linear
γ(20) = −2.965

Stacked -0.02 1.00 1.00
Res. Stacked -0.02 0.99 1.00
Stacked (with RSF) -0.01 1.00 1.00
Res. Stacked (with RSF) -0.01 0.98 1.00

Non-Linear
γ(20) = 2.690

Stacked 0.05 1.00 1.00
Res. Stacked 0.04 1.02 1.01
Stacked (with RSF) 0.06 1.00 1.00
Res. Stacked (with RSF) 0.05 1.00 1.01

Linear
γ(50) =
−12.318

Stacked 0.02 1.00 1.00
Res. Stacked 0.01 1.00 1.01
Stacked (with RSF) 0.03 1.00 1.00
Res. Stacked (with RSF) 0.02 0.98 1.00

Non-Linear
γ(50) = 7.929

Stacked 0.06 1.00 1.00
Res. Stacked 0.07 1.01 1.01
Stacked (with RSF) 0.06 1.00 1.00
Res. Stacked (with RSF) 0.06 0.99 1.02
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Table 8: Simulation results for the gamma distributed scenarios: N = 300, NSIM = 1000,
and a marginal censoring of 30%. ‘Relative Bias’ is the ratio of the bias and true restricted
mean difference. ‘MSE Ratio’ is the ratio of MSE relative to the ‘Stacked’ estimator. ‘ISSE
Ratio’ is the ratio of integrated squared survival error, which corresponds to the mean-
squared of the conditional survival function, relative to the ‘Stacked’ estimator. The ‘Stacked’
estimators use nine equally spaced quantiles of the unrestricted observed event distribution,
while the ‘Res. Stacked’ estimators use nine equally spaced quantiles of the observed event
distribution restricted to τ = 50.

Estimator Relative Bias MSE Ratio ISSE Ratio

Linear
γ(20) = −0.753

Stacked -0.01 1.00 1.00
Res. Stacked 0.00 1.02 1.09
Stacked (with RSF) -0.04 1.00 1.00
Res. Stacked (with RSF) -0.03 0.99 1.08

Non-Linear
γ(20) = −0.931

Stacked -0.03 1.00 1.00
Res. Stacked -0.03 1.01 1.02
Stacked (with RSF) -0.07 1.00 1.00
Res. Stacked (with RSF) -0.07 1.02 1.06

Linear
γ(50) = −6.599

Stacked -0.01 1.00 1.00
Res. Stacked -0.02 1.01 1.04
Stacked (with RSF) -0.02 1.00 1.00
Res. Stacked (with RSF) -0.03 1.01 1.05

Non-Linear
γ(50) = −6.407

Stacked -0.06 1.00 1.00
Res. Stacked -0.06 1.03 1.03
Stacked (with RSF) -0.07 1.00 1.00
Res. Stacked (with RSF) -0.08 1.02 1.05
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2 Influence of the Conditional Survival Function

This section proves that the mean-squared error of the treatment specific conditional survival

functions places an upper bound on the MSE of the restricted mean treatment effect.

Similar to Wey et al. (2013), we define the mean-squared error for a conditional survival

function estimator of the ath treatment as the integral of the squared error at time t over

(0, τ):

MSEτ{Ŝ(a)(·|x)} = E

∫ τ

0

[Ŝ(a)(t|x)− S(a)(t|x)]2dt.

Note that the expectation is with respect to the covariate distribution and the sampling

distribution of the estimator. A significant difference between this investigation and Wey

et al. (2013) is the addition of treatment a. Since restricted mean treatment effect estimation

requires two conditional survival functions (one for each treatment), we take the simple

average of the mean-squared error for both treatments. That is, the main paper uses

MSEτ{Ŝ(·|x)} =
1

2
× {MSEτ{Ŝ(0)(·|x)}+ MSEτ{Ŝ(1)(·|x)}}, (1)

as the mean-squared error for an estimator of the conditional survival function. We can

then show that the mean squared error of restricted mean treatment effect is bounded by

the mean-squared error of the conditional survival function:

Theorem 1. Let the mean squared error of a restricted mean treatment effect be MSE[γ̂(τ)] =

E{γ̂(τ)− γ(τ)}2, then

MSE[γ̂(τ)] ≤ 2τ ×MSEτ{Ŝ(·|x)}.

The result - which is a consequence of a sequential application of Jensen’s, the triangle, and
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Schwarz inequalities - helps justify the strong association of the restricted mean squared

error with the performance of the conditional survival function estimator. The bias is also

bounded, but the limit is less tight due to a positive variance term. This results in a less

strong, but still positive, association of bias with the mean-squared error of the conditional

survival function.

Proof: We need to first make a distinction between the sampling distribution for the estima-

tor of the conditional survival function [which we call the ‘learning sample’ (LS) distribution]

and the covariate distribution X. It is important to note that the learning sample distribu-

tion is independent of the covariate distribution (and the survival time distribution).

E{γ̂(τ)− γ(τ)}2 = ELS

{
EX|LS

∫ τ

0

[Ŝ(1)(t|x)− Ŝ(0)(t|x)]dt−

EX|LS

∫ τ

0

[S(1)(t|x)− S(0)(t|x)]dt

}2

≤ ELSEX|LS

{∫ τ

0

[Ŝ(1)(t|x)− S(1)(t|x)]dt+ (2)∫ τ

0

[S(0)(t|x)− Ŝ(0)(t|x)]dt

}2

≤ ELS,X

(
{
∫ τ

0

[Ŝ(1)(t|x)− S(1)(t|x)]dt}2+ (3)

{
∫ τ

0

[S(0)(t|x)− Ŝ(0)(t|x)]dt}2
)

≤ τ × ELS,X
(∫ τ

0

[Ŝ(1)(t|x)− S(1)(t|x)]2dt+ (4)∫ τ

0

[S(0)(t|x)− Ŝ(0)(t|x)]2dt

)
= τ × {MSEτ{Ŝ(0)(·|x)}+ MSEτ{Ŝ(1)(·|x)}}

= 2τ ×MSEτ{Ŝ(·|x)},

where line (2) holds by Jensen’s inequality, line (3) holds by the triangle inequality, and line

(4) holds by Schwarz’s inequality.
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