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Section 1 demonstrates the connection between the Brier Score in the absence of censoring

versus the inverse probability-of-censoring weighted Brier Score. Section 2 derives the mean-

squared error decomposition presented in Section 3 of the main paper, and presents illustrations

and examples regarding the impact of candidate survival models on performance. In addition, a

simple example illustrates the situation of stacking a “parametric” and “non-parametric” survival

model. Section 3 proves the asymptotic properties of stacked survival models presented in Section

4 of the main paper. In addition, Section 3.3 discusses the potential of distributional results for

the conditional survival function. Section 4 discusses time-dependent stacking and compares the

performance to time-independent stacking [equation (2.4) in the main paper]. Section 5 considers

several extensions to the simulation study in the main paper.

1. BS(t) versus IPCW -BS(t)

We demonstrate the difference between the Brier Score, BS(t) [see equation (2.1) in the main pa-

per], and the inverse probability-of-censoring weighted Brier Score for censored data, IPCW -BS(t)
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[see equation (2.2) in the main paper]. In particular, we consider a simple simulation scenario

where the survival time distribution is an exponential distribution with a rate parameter of one.

We estimate BS(t) with the complete data and then estimate the IPCW -BS(t) using data sub-

ject to two different levels of censoring. The censoring is generated by an exponential censoring

distribution with a rate parameter that ensures approximately 25% and 50% censoring. We note

that the estimated survival function is the same for each estimate of the Brier Score, thus the

differences are entirely due to inverse probability-of-censoring weights, which adjust the observed

Brier Score to account for censoring. Figure 1 illustrates that the BS(t) and IPCW -BS(t) are

very similar early in the support, and experience progressively more variation as the relative

amount of censoring increases.

2. Mean-Squared Error Decomposition

We want to define certain quantities and make a connection to the Brier Score before deriving

the mean-squared error decomposition presented in Section 3 of the main paper. We define the

mean-squared error for a conditional survival function estimator as the integral of the squared

error at time t over Ω = (0, τ): MSEτ{Ŝ(·|x)} = E
∫ τ

0
[Ŝ(t|x)−So(t|x)]

2dt, where the expectation

is over the random variable for the covariate space and the sampling distribution of the stacked

estimator. As mentioned in Section 3 of the main paper, the mean-squared error has a direct

connection to the Brier Score. In particular,

E

∫ τ

0

IPCW -BS(t)dt =

∫ τ

0

E

[
∆(t)

G(T (t)|x)
× {Z(t)− Ŝ(t|x)}2

]

=

∫ τ

0

E
[
{Z(t)− Ŝ(t|x)}2dt

]
, by iterative expectation

= E

∫ τ

0

{Z(t)− So(t|x) + So(t|x)− Ŝ(t|x)}2dt

= E

∫ τ

0

{
[Z(t)− So(t|x)]

2 + [So(t|x)− Ŝ(t|x)]2
}
dt

= σ2 +MSEτ{Ŝ(·|x)},
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where σ2 is irreducible prediction error.

We define the bias and variance of a conditional survival function estimator at time t as,

respectively, Bias{Ŝ(t|x)} = E[Ŝ(t|x) − So(t|x)] and Var{Ŝ(t|x)} = E[Ŝ(t|x) − EŜ(t|x)]2. The

mean squared error of the stacked estimator is then decomposed as

MSEτ{Ŝ(·|x)} = E

∫ τ

0

[Ŝ(t|x)− So(t|x)]
2dt

= E

∫ τ

0

[Ŝ(t|x)− EŜ(t|x) + EŜ(t|x)− So(t|x)]
2dt

=

∫ τ

0

E{[Ŝ(t|x)− EŜ(t|x)]2 + [EŜ(t|x)− So(t|x)]
2}dt

=

∫ τ

0

E

{
[

m∑

k=1

αk{Ŝk(t|x)− EŜk(t|x)}]
2 + [

m∑

k=1

αk{EŜk(t|x)− So(t|x)}]
2

}
dt (2.1)

=

∫ τ

0

m∑

k=1

m∑

l=1

αkαl

{
E{[Ŝk(t|x)− EŜk(t|x)][Ŝl(t|x)− EŜl(t|x)]}+

E{[EŜk(t|x)− So(t|x)][EŜl(t|x)− So(t|x)]}
}

=

m∑

k=1

α2
kE

∫ τ

0

[
Bias2{Ŝk(t|x)} +Var{Ŝk(t|x)}

]
dt+

E
m∑

k=1

∑

l 6=k

αkαl

∫ τ

0

[
Bias{Ŝk(t|x)} × Bias{Ŝl(t|x)}+Cov{Ŝk(t|x), Ŝl(t|x)}

]
dt

=

m∑

k=1

α2
kMSEτ{Ŝk(·|x)}+ E

m∑

k=1

∑

l 6=k

αkαl

∫ τ

0

[
Bias{Ŝk(t|x)} × Bias{Ŝl(t|x)}+

Corr{Ŝk(t|x), Ŝl(t|x)} ×Var{Ŝk(t|x)}
1
2 ×Var{Ŝl(t|x)}

1
2

]
dt

where line (2.1) holds since
∑m

k=1 αkSo(t|x) = So(t|x) by the sum-to-one constraint. As outlined

in the main paper, this decomposition motivates stacking a diverse set of survival models in order

to lower the correlation between predicted survival curves.

We now consider a simple example to illustrate the potential of stacking a survival model

with low bias but high variance and a badly misspecified parametric model (i.e., high bias; low

variance). For example, consider a set of two independent candidate survival models where both

survival models possess the same mean-squared error, say MSEτ{Ŝk(·|x)} = 10 for k = 1, 2. For

the sake of simplicity, the bias and variance of both survival models are constant across time and
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the covariate space. We set the bias of the first model to
∫ τ

0
Bias2{Ŝ1(t|x)}dt = 9 and consider two

different values of bias for the second model: Bias{Ŝ2(t|x)} = 0 and
∫ τ

0
Bias2{Ŝ2(t|x)}dt = 1.

These fully define the operating characteristics of both survival models. The first model cor-

responds to a badly misspecified parametric model, while the second model corresponds to a

non-parametric estimator (first with no bias, then with some small sample bias). For this sim-

ple scenario, Figure 2 illustrates that the stacked estimator always achieves lower MSE than

the individual models when the non-parametric estimator possesses no bias (left plot). However,

this advantage can, depending on the degree of correlation, decrease substantially when the non-

parametric estimator is slightly biased (right plot). In addition, the effectiveness of the stacked

estimator in both situations decreases when the correlation increases between the survival models.

Based on the MSE decomposition, we can see that, everything else being equal, smaller pair-

wise correlations will improve the performance of the stacked estimator. In particular, suppose

there are two potential survival models to add to the current set of candidate survival models

that possess the same bias and variance terms, then adding the model with the lower correlation

with the current set of candidate models in the stack would be expected to perform better. It

is noteworthy that models that span parametric, semi-parametric and non-parametric classes

may still be correlated. Thus, as recommended by an anonymous reviewer, a direction of future

research may be the development of a method that incorporates correlation information into the

estimation of weights (see Section 7 of the main paper for further discussion).

To further illustrate the impact of correlated candidate survival models on performance, we

present the results of a small simulation study. In particular, we consider the gamma and Weibull

distributed scenarios with linear covariate effects (i.e., with respect to the specifications outlined

in the main paper: {d, q} = {3, 1} and {d, q} = {2, 1} for the gamma and Weibull scenarios,

respectively). In this example, suppose we want to use the Cox proportional hazards model with

a baseline hazard estimate, but are unsure about the covariates to include in the Cox model and,
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thus, consider up to six different models. The first model is the same model that is fit in the main

paper (eight covariates), while each successive model fits a Cox model with two additional noise

covariates until there are a total of eighteen covariates. Figure 3 illustrates that the ISSE of the

stacked estimator increases as more and more correlated Cox models are added to the current

set of models to the stack. We also find that the average number of models receiving non-zero

weight increases as additional correlated models are added to the current set of candidate models

in the stack, and the percentage of times that only one model receives non-zero weight decreases

as additional correlated models are added (Table 1).

3. Asymptotic Properties

For both proofs, we consider the general case where l of the m estimators for the stacking

procedure are uniformly consistent. Recall that the conditional survival function is estimated on

Ω = (0, τ). Now assume the following conditions throughout the Supplementary Materials.

A1. There exists l estimators that are uniformly consistent within the set of estimators used

for the stacking procedure. Without loss of generality, let these estimators be Ŝk(t|x) for

k = 1, ..., l and, by uniform consistency, suptǫΩ sup
x
|Ŝk(t|x)− So(t|x)| → 0 for k = 1, ..., l.

Additionally, for k = l + 1, ...,m, suptǫΩ sup
x
|Ŝk(t|x)− So(t|x)| → ck where ck > 0.

A2. The estimator for the censoring distribution is uniformly consistent: suptǫΩ sup
x
|Ĝ(t|x) −

G(t|x)| → 0, and there exists a δ > 0 such that G(τ |x) > δ for all x.

A3. Let Γ = {t1, t2, ..., ts} where tr ǫ Ω for r = 1, ..., s, i.e., the set of time points used to

minimize the Brier Score for the stacking procedure. Define the sum of misspecified model

weights as α̃ =
∑m

k=l+1 αk. Then for all α̃ > 0 there exists at least one tr ǫ Γ such that,

sup
x

|

m∑

k=l+1

αk

α̃
Ŝk(tr|x)− So(tr|x)| → c,

where c > 0.
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3.1 Proof of Theorem 4.1

Lets start by considering the supremum of the difference between the observed and expected

inverse probability-of-censoring weighted Brier Score:

sup
α

|

n∑

i=1

∆i(t)

Ĝ(Ti(t)|xi)
× {Zi(t)−

m∑

k=1

αkŜ
(−i)
k (t|xi)}

2 − E{IPCW -BS(t)}| = sup
α

|

n∑

i=1

∆i(t)

[
1

Ĝ(Ti(t)|xi)
−

1

G(Ti(t)|xi)
+

1

G(Ti(t)|xi)

]
× {Zi(t)−

m∑

k=1

αkŜ
(−i)
k (t|xi)}

2 − E{IPCW -BS(t)}|

6 sup
α

|

n∑

i=1

[
∆i(t)

Ĝ(Ti(t)|xi)
−

∆i(t)

G(Ti(t)|xi)

]
× {Zi(t)−

m∑

k=1

αkŜ
(−i)
k (t|xi)}

2|+

sup
α

|

n∑

i=1

∆i(t)

G(Ti(t)|xi)
× {Zi(t)−

m∑

k=1

αkŜ
(−i)
k (t|xi)}

2 − E{IPCW -BS(t)}|

The first supremum, which is the difference between estimated and true censoring distributions,

approaches zero due to assumption A2. The second supremum approaches zero if the expected

value of the Brier Score is bounded by some function that has finite expectation [see Lemma 2.4

of Newey and McFadden (1994)]. By assumption A2,

E[
∆i(tr)

G(Ti(tr)|xi)
{Zi(tr)−

m∑

k=1

αkŜ
(−i)
k (tr|xi)}

2] < E[
1

δ
{Zi(tr)−

m∑

k=1

αkŜ
(−i)
k (tr|xi)}

2] < ∞.

This implies that our minimization procedure, i.e., the Brier Score, asymptotically approaches its

expectation. We can therefore determine the asymptotic minimizer by considering the expectation

of the Brier Score. Since assumption A2 implies E[ ∆(tr)
G(T (tr)|x)

|T,x] = 1
G(T (tr)|x)

×E[∆(tr)|T,x] =

1, we obtain by double expectation that

E[IPCW -BS(tr)|x] = E[{Z(tr)−
m∑

k=1

αkSk(tr|x)}
2|x]

= E[{Z(tr)− So(tr|x)}
2|x] + {So(tr|x)−

m∑

k=1

αkSk(tr |x)}
2

= So(tr|x){1− So(tr |x)} + {So(tr|x)−
m∑

k=1

αkSk(tr|x)}
2
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The asymptotic minimization problem becomes

α̂ = argmin
α

s∑

r=1

[So(tr|x)(1 − So(tr|x)) + {So(tr|x)− [

l∑

k=1

αkSo(tr|x) +

m∑

k=l+1

αkSk(tr|x)]}
2]

= argmin
α

s∑

r=1

[So(tr|x)− {So(tr|x)

l∑

k=1

αk +

m∑

k=l+1

αkSk(tr|x)}]
2.

At this point, we know there exists α such that
∑m

k=1 αkSk(tr|x) = So(tr|x), e.g., α1 = 1.

However, we need to show that the sum of correctly specified model weights equals one, i.e.,

∑l

k=1 αk = 1. Suppose the sum of misspecified model weights is greater than zero, i.e., α̃ =

∑m

k=l+1 αk > 0, then

m∑

k=1

αkSk(tr|x) = So(tr|x)

⇒ So(tr|x)
l∑

k=1

αk +
m∑

k=l+1

αkSk(tr|x) = So(tr|x).

Subtracting the correctly specified models from each side, we obtain by the sum-to-one constraint

that
∑m

k=l+1 αkSk(tr|x) = So(tr|x)
∑m

k=l+1 αk. This implies that

m∑

k=l+1

αk

α̃
Sk(tr|x) = So(tr|x),

which contradicts assumption A3. Therefore, by the non-negativity constraint, α̃ = 0 and hence

∑l

k=1 α̂k → 1 as n → ∞.
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3.2 Proof of Theorem 4.3

Define the random variables: Ak
n = suptǫΩ sup

x
|Ŝk(t|x)−So(t|x)|. By assumption A1, as n → ∞,

Ak
n → 0 for k = 1, ...l, while Ak

n → ck for some ck > 0 (k = l + 1, ...,m). Now

sup
tǫΩ

sup
x

|

m∑

k=1

α̂kŜk(t|x)− So(t|x)| = sup
tǫΩ

sup
x

|

m∑

k=1

α̂kŜk(t|x)−

m∑

k=1

α̂kSo(t|x)|, since

m∑

k=1

α̂k = 1

= sup
tǫΩ

sup
x

|

m∑

k=1

α̂k{Ŝk(t|x)− So(t|x)}|

6

m∑

k=1

α̂k sup
tǫΩ

sup
x

|Ŝk(t|x)− So(t|x)|, triangle inequality

=
l∑

k=1

α̂kA
k
n +

m∑

k=l+1

α̂kA
k
n

→ 1× 0 +

m∑

k=l+1

{0× ck} = 0,

by Slutsky’s lemma and Theorem 1. This implies that the stacked estimator is uniformly consis-

tent as long as the correctly specified models are uniformly consistent.

3.3 Distributional Results

The main paper briefly mentions that the stacked estimate of the conditional survival function is

likely an intractable distribution. This is specifically due to the constrained minimization of α.

For example, the estimation procedure for α has a strong connection with the LASSO; in partic-

ular, replace the sum-to-one constraint with a sum-less-than-one constraint. Potscher and Leeb

(2009) show that the asymptotic distribution of LASSO parameter estimates depends on the

asymptotic behavior of the penalty term. In some cases, the asymptotic distribution is Normal,

but Potscher and Leeb (2009) argue that the asymptotic distribution is, in general, a poor rep-

resentation of the finite sample distribution which is always non-Normal. In addition, a major

practical difficulty is that there exists no uniformly consistent estimator of the distribution of

LASSO parameter estimates. These issues present major issues for a distributional result for
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stacked survival models.

4. Time-Dependent Stacking

Potential added flexibility for stacked survival models allows the weights to depend on time, i.e.,

α̂k(t). Similar to the approach proposed by Fan and Zhang (2000) for functional data analysis, a

two-step estimation procedure is investigated that first obtains “raw estimates” at event times,

then smoothes the raw estimates to obtain the final refined time-dependent weights.

The first step estimates the stacking weights for each N event times (i.e., t(1), ..., t(N)). That

is, for a given t(r),

α̂(t(r)) = arg min
α(t(r)),αk(t(r))>0

n∑

i=1

∆i(t(r))

G(Ti(t(r))|xi)
× {Zi(t(r))−

m∑

k=1

αk(t(r))Ŝ
(−i)
k (t(r)|xi)}

2,

with the additional constraint that
∑m

k=1 α̂k(t(r)) = 1. The α̂k(t(r)) are called the “raw estimates”.

Since the raw estimates can vary substantially across time, the second step smoothes the raw

estimates to decrease variability.

While there are several potential avenues for smoothing the raw estimates, local constant

regression, e.g., see Ruppert et al. (2003), stabilizes the estimates while maintaining both the

sum-to-one and non-negativity constraints. In particular,

α̂TD
k (t) =

N∑

r=1

K

(
t(r) − t

h

)
α̂k(t(r))/

N∑

r=1

K

(
t(r) − t

h

)
,

where t(r) the rth ordered event time, and K(·) is a symmetric probability density. The final

estimate for the time-dependent stacking procedure is

ŜTD(t|x) =

m∑

k=1

α̂TD
k (t)Ŝk(t|x), (4.2)

where Ŝk(t|x) is the kth conditional survival estimate using all the data. This two-step approach

to estimating time-dependent weights is appealing for its simplicity and straightforward compu-

tational implementation.
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Conceptually, time-dependent weights may perform better by shifting weight between sur-

vival models as the appropriateness of the distributional assumptions vary across time. How-

ever, time-dependent weights increase the flexibility of stacked survival models and, therefore,

generally possess a larger variance than time-independent weights. As such, when the stack in-

cludes a correctly specified model, time-independent weights will likely perform better than time-

dependent weights. In addition, the conditional survival function with time-dependent weights,

i.e., ŜTD(t|x), is not guaranteed to be a non-increasing function with respect to survival time

(which is an essential characteristic of survival functions). In fact, an increasing survival function

occurred for a handful of points in the GBCS analysis (see Section 6 in the main paper). As such,

time-dependent weights may improve predictive performance, but the conceptual cohesion of the

conditional survival function is potentially compromised.

We note that adding a non-decreasing constraint on all of the time-dependent weights would

ensure a non-increasing survival function. However, it is easy to show that a non-decreasing

constraint on all of the time-dependent weights would result in constant (i.e., time-independent)

weights due to the sum-to-one constraint. In addition, we note that a non-decreasing constraint

on one survival model and a non-increasing constraint on a separate survival model will not

ensure a non-increasing survival function. Thus, it is difficult to fix the conceptual cohesion of

the time-dependent stacking.

Remark 1. Estimating time-dependent weights requires the selection of a bandwidth h. A rea-

sonable approach sets the bandwidth to the standard error of the observed event times. This

ensures h approaches 0 at a correct speed for the asymptotic results. However, there may exist a

more optimal approach.

Remark 2. Tables 2 and 3 compare time-dependent stacking to time-independent stacking (i.e.,

the approach in the main paper). Time-independent stacking performs as good, or slightly better,
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than time-dependent stacking. Although, time-dependent stacking was slightly better for non-

linear effects with a large covariate space.

5. Furthering the Simulation Study

In this section, we consider several extensions to the simulation study introduced in the main

paper. Section 5.1 investigates the simulation scenarios in the main paper when the sample size

is doubled. Section 5.2 investigates the robustness of the stacking procedure to the misspecifica-

tion of a censoring model. Section 5.3 investigates the computational time required for different

aspects of stacking (e.g., minimizing the weighted least squares problem). Section 5.4 investi-

gates the effect of the out-of-bag estimator for RSF on the performance of the stacked estimator.

Section 5.5 investigates the impact of including additional points when estimating the stacking

weights. Section 5.6 considers simulation scenarios with a high censoring rate (e.g., administrative

censoring). Section 5.7 considers simulation scenarios with quadratic covariate effects rather than

a smooth step function.

5.1 Larger Sample Size

The simulation scenarios presented in the main paper are extended with a larger sample size

(n = 400). Tables 4 and 5 illustrate that the qualitative observations in the main paper (e.g., the

stacking procedure performing well in a wide variety of situations) remain the same. In addition,

the ISSE decreases as expected in each scenario with a larger sample size.

5.2 Misspecified Censoring Distribution

The simulation scenarios presented in the main paper are modified to have a conditional censoring

distribution. In particular, the censoring distribution is the same as the event distribution except

the scale/mean parameter is scaled to ensure approximately 25% censoring. Similar to the main
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paper, the stacking procedure and the cross-validated estimator use a Kaplan-Meier, which is

misspecified in these scenarios, to estimate the censoring distribution in the Brier Score. Tables 6

and 7 illustrate that the stacking procedure and cross-validation are robust against a misspecified

censoring distribution for the scenarios investigated here. In particular, the stacking procedure

remains a top two estimator in every simulation scenario.

5.3 Computational Time

For the simulation scenarios presented in the main paper, we investigate the average elapsed time

(in seconds) for the stacking procedure with time-independent and time-dependent weights. The

average elapsed time is also presented for the minimization problem. Tables 8 and 9 show that the

estimation of individual models and the out-of-bag estimators are the main computational cost

for stacked survival models. In particular, the ’minimization’ of the time-independent stacking is

always a fraction of the elapsed time for time-independent stacking. In addition, time-dependent

stacking almost always takes longer than time-independent stacking. This is not surprising consid-

ering that time-dependent stacking requires N minimizations, where N is the number of unique

events, of the weighted least squares problem.

It is important to note that this is the elapsed time rather than computational time. As

such, the presence of other processes on shared Unix serves affects the average time presented

here. However, these results provide a rough guide on the ordering of the computational re-

quirements for each method. In particular, the minimal effect of the minimization procedure

for time-independent stacking is not surprising, while the time-dependent stacking procedure is

expected to take longer than the time-independent stacking procedure.
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5.4 Out-of-bag estimator for RSF

In the main paper, the rsf function implicitly estimates the out-of-bag estimate for random

survival forests (RSF) [see Ishwaran et al. (2008) for details]. This out-of-bag estimate is not

the same as the five-fold cross-validation estimator used for the parametric and semi-parametric

models. The out-of-bag estimate was used from the rsf function for computational convenience.

However, the differential estimation of the out-of-bag estimate may have influenced the perfor-

mance of the stacked estimator. To investigate this point, Table 10 presents the ratio of ISSE for

the stacked estimator when the out-of-bag estimator for RSF is the rsf function versus five-fold

cross-validation. In every scenario, the performance of the stacked estimator was insensitive to

the out-of-bag estimator of RSF. In addition, Table 11 illustrates that, in every scenario, the rsf

function is approximately 65% faster (computationally) than the five-fold cross-validation.

5.5 Influence of the Number of Time Points

As mentioned in the main paper, the performance of the stacked estimator is influenced by the

number time points in the minimization procedure. However, there is a point of diminishing re-

turns where the addition of more time points does not appreciably improve the stacked estimator.

We have generally found that nine equally spaced quantiles of the observed event distribution is

past the point of diminishing returns. Table 12 shows that the ratio of ISSE is essentially one

for 9 and 19 equally spaced quantiles of the observed event distribution. Despite the extremely

marginal improvement in ISSE, Table 13 shows that 9 equally spaced quantiles takes approx-

imately 40% less computational time than 19 equally spaced quantiles of the observed event

distribution.



14

5.6 High Censoring

This setting is similar to Section 5.1 in the main paper except that the censoring rate is approx-

imately 75% and the sample size is n = 1000. In addition, the censoring distribution is designed

to mimic large observational trials that experience substantial administrative censoring at the

end of the observed support. To simulate administrative censoring, the censoring is uniformly

distributed: Cd,q ∼ Unif(c(d, q), c(d, q) + 0.5), where c(d, q) is a constant that depends on (d, q)

and ensures approximately 75% censoring.

Table 14 presents the results in terms of integrated squared survival error (ISSE). Again, the

top two estimators are bolded to highlight flexibility in a wide range scenarios. Stacked survival

models is a top two estimator for five of the six scenarios, while none of the alternatives are a top

two estimator for more than two scenarios. Additionally, stacking possesses approximately 20%

higher ISSE than correctly specified parametric models (i.e., log-Normal andWeibull distributions

with linear effects), and as good or better ISSE when the parametric models are slightly misspec-

ified (i.e., Gamma distribution with linear effects). The stacking procedure also outperforms the

model selected via cross-validation in every situation. For the non-linear scenario, the stacking

possesses 10% to 20% lower ISSE than second best survival model (i.e., stacking is outperforming

each model in the set of candidate survival models).

5.7 Quadratic Non-Linearity

These settings are similar to both simulation scenarios in the main paper, but the non-linearity

is induced by a quadratic function rather than a ‘smooth’ monotonic step function. In particular,

the only difference is that γ = x
2
p rather than γ

1 = xp or γ2 = Φ(4×xp), which are studied in the

main paper. Similar to Section 5 in the main paper, the censoring rate is a uniform distribution

designed to enforce approximately 25% censoring.

Tables 15 presents the results for the modest and large covariate spaces with quadratic covari-
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ate effects. In contrast to the non-linear scenario in the main paper, which has a ‘smooth’ and

monotone step function, the random survival forests (RSF) perform substantially better relative

to the parametric and semi-parametric models. In addition, the stacked estimator is, again, a top

two estimator in every scenario with larger relative differences compared to the scenarios with

a ‘smooth step function’. The stacked estimator also performs better in every scenario than the

cross-validated estimator.
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Fig. 1. The difference between the Brier Score calculated on complete data (BS(t)) versus the inverse
probability-of-censoring weighted Brier Score (IPCW -BS(t)). The sample size for the illustration is 5000.
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Fig. 2. The example of stacking a misspecified, but efficient, parametric model and a low biased, but
highly variable, non-parametric model (see Section 2). Figure (a) shows a non-parametric estimator with
no bias, while Figure (b) shows a non-parametric estimator with a small amount of bias. Note that
the effectiveness of stacking decreases as the correlation (ρ) increases. The mean-squared error of both
candidate survival models is 10, which is represented by the dotted line.
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Table 1. Simulation results for Section 2 in the Supplementary Materials. The scenarios investigate
the effect of including highly correlated candidate survival models, and correspond to the Gamma and
Weibull scenarios with linear covariate effects (i.e., following notation in the main paper: {d, q} = {2, 1}
and {d, q} = {3, 1} for the Weibull and gamma scenarios, respectively, with n = 200). The simulation
scenario is replicated 2000 times.

Number of Candidate Number of Models with % of Times Only One
Survival Models Non-Zero Weights Model Recieved Weight

Scenario Gamma Weibull Gamma Weibull
2 1.73 1.66 26.6% 33.7%
3 2.17 2.06 13.8% 20.0%
4 2.49 2.34 9.0% 13.0%
5 2.73 2.56 6.8% 9.9%
6 2.93 2.74 5.2% 8.3%

Table 2. Simulation results for Section 5.1 in the main paper (n = 200, p = 8 covariates, and 25% censor-
ing) presented in integrated squared survival error (ISSE) over the observed support. Each simulation is
replicated 2000 times, and the error is multiplied by 10. ‘Stacking (TI)’ is stacking with time-independent
weights, and ‘Stacking (TD)’ is stacking with time-dependent weights. The standard error for the estimate
ISSE for each method in each scenario is less than 0.01.

Models log-Normal Weibull Gamma
Linear Stacking (TI) 0.42 0.58 0.37
Effects Stacking (TD) 0.45 0.61 0.39
Non-Linear Stacking (TI) 3.49 2.08 3.69
Effects Stacking (TD) 3.54 2.13 3.73

Table 3. Simulation results for Section 5.2 in the main paper (n = 200, p = 80 covariates, and 25% censor-
ing) presented in integrated squared survival error (ISSE) over the observed support. Each simulation is
replicated 2000 times, and the error is multiplied by 1. ‘Stacking (TI)’ is stacking with time-independent
weights, and ‘Stacking (TD)’ is stacking with time-dependent weights. The standard error for the estimate
ISSE for each method in each scenario is less than 0.005.

Models log-Normal Weibull Gamma
Linear Stacking (TI) 2.43 1.68 2.50
Effects Stacking (TD) 2.43 1.68 2.50
Non-Linear Stacking (TI) 1.97 1.00 2.04
Effects Stacking (TD) 1.96 0.99 2.03
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Fig. 3. The progession of integrated squared survival error (ISSE) as the number of irrelevant candidate
survival models increases in the set of candidate survival models.
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Table 4. Larger sample size results for Section 5.1 in the main paper (n = 400, p = 8 covariates, and
25% censoring) presented in integrated squared survival error (ISSE) over the observed support. Each
simulation is replicated 2000 times, and the error is multiplied by 10. The two top estimators are bolded
for each simulation scenario. ‘RSF’ stands for random survival forests, ‘Stacking’ is stacked survival
models, and ‘CV’ is the cross-validated selected estimator. The standard error for the estimate ISSE for
each method in each scenario is less than 0.01.

Models log-Normal Weibull Gamma

log-Normal 0.17 0.53 0.17

Single Weibull 0.38 0.25 0.21
Linear Models Cox 0.51 0.34 0.36
Effects RSF 6.16 4.24 6.26

Flexible Stacking 0.20 0.29 0.18

Models CV 0.45 0.41 0.27

log-Normal 4.54 2.17 4.87
Single Weibull 4.92 1.91 5.10

Non-Linear Models Cox 4.89 1.94 5.10
Effects RSF 3.56 3.20 3.67

Flexible Stacking 2.91 1.70 3.08

Models CV 4.76 2.07 4.94
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Table 5. Larger sample size results for Section 5.2 in the main paper (n = 400, p = 80 covariates, and
25% censoring) presented in integrated squared survival error (ISSE) over the observed support. Each
simulation is replicated 1000 times, and the error is multiplied by 1. The two top estimators are bolded for
each simulation scenario. ‘RSF’ stands for random survival forests, ‘Stacking’ is stacked survival models,
and ‘CV’ is the cross-validated selected estimator. The standard error for the estimate ISSE for each
method in each scenario is less than 0.005.

Models log-Normal Weibull Gamma

Single Cox - Lasso 2.40 1.57 2.48

Linear Models Cox - Boosting 2.60 1.72 2.66
Effects RSF 2.44 1.84 2.48

Flexible Stacking 2.40 1.57 2.48

Models CV 2.40 1.57 2.48

Single Cox - Lasso 1.94 0.96 2.01
Non-Linear Models Cox - Boosting 1.98 0.95 2.07
Effects RSF 1.85 1.12 1.91

Flexible Stacking 1.91 0.94 1.98

Models CV 1.95 0.96 2.02

Table 6. Misspecified estimator of the censoring distribution for Section 5.1 in the main paper (n = 200,
p = 8 covariates, and 25% censoring) presented in integrated squared survival error (ISSE) over the
observed support. Each simulation is replicated 2000 times, and the error is multiplied by 10. The
two top estimators are bolded for each simulation scenario. ‘RSF’ stands for random survival forests,
‘Stacking’ is stacked survival models, and ‘CV’ is the cross-validated selected estimator. The standard
error for the ISSE estimate of the Weibull model is 0.04 in the gamma distributed scenario with linear
covariate effects, otherwise the standard error for the estimate ISSE for each method in each scenario is
less than 0.01.

Models log-Normal Weibull Gamma

log-Normal 0.32 0.82 0.33

Single Weibull 0.48 0.51 0.41
Linear Models Cox 0.74 0.68 0.67
Effects RSF 8.13 5.43 8.46

Flexible Stacking 0.38 0.56 0.35

Models CV 0.58 0.73 0.50

log-Normal 4.67 2.41 5.00
Single Weibull 5.12 2.10 5.32

Non-Linear Models Cox 5.03 2.17 5.27
Effects RSF 4.61 3.60 4.88

Flexible Stacking 3.65 1.95 3.92

Models CV 4.96 2.27 5.20
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Table 7. Misspecified estimator of the censoring distribution for Section 5.2 in the main paper (n = 200,
p = 80 covariates, and 25% censoring) presented in integrated squared survival error (ISSE) over the
observed support. Each simulation is replicated 2000 times, and the error is multiplied by 1. The two top
estimators are bolded for each simulation scenario. ‘RSF’ stands for random survival forests, ‘Stacking’
is stacked survival models, and ‘CV’ is the cross-validated selected estimator. The standard error for the
estimate ISSE for each method in each scenario is less than 0.004.

Models log-Normal Weibull Gamma

Single Cox - Lasso 2.41 1.65 2.47

Linear Models Cox - Boosting 2.55 1.72 2.61
Effects RSF 2.49 1.86 2.54

Flexible Stacking 2.41 1.65 2.47

Models CV 2.43 1.67 2.49

Single Cox - Lasso 1.99 1.02 2.05
Non-Linear Models Cox - Boosting 1.98 0.99 2.05
Effects RSF 1.88 1.13 1.94

Flexible Stacking 1.95 0.99 2.02

Models CV 1.98 1.01 2.04

Table 8. Average elapsed time (in seconds) for the simulation scenarios presented in Section 5.1 in the
main paper (n = 200, p = 8 covariates, and 25% censoring). Each simulation is replicated 2000 times.
‘Time-Independent Stacking’ is the average time for the entire stacking procedure for time-independent
weights, ‘Minimization’ is the average time to solve the weighted least squares problem for only time-
independent weights, and ‘Time-Dependent Stacking’ is the average time for the entire stacking procedure
for time-dependent weights. The standard error for the average time for each method in each scenario is
less than 1 second.

Models log-Normal Weibull Gamma
Linear Time-Independent Stacking 5 7 7
Effects Minimization 0 1 1

Time-Dependent Stacking 40 38 35
Non-Linear Time-Independent Stacking 4 5 6
Effects Minimization 0 0 1

Time-Dependent Stacking 35 38 37
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Table 9. Average elapsed time (in seconds) for the simulation scenarios presented in Section 5.2 in the
main paper (n = 200, p = 80 covariates, and 25% censoring). Each simulation is replicated 1000 times.
‘Time-Independent Stacking’ is the average time for the entire stacking procedure for time-independent
weights, ‘Minimization’ is the average time to solve the weighted least squares problem for only time-
independent weights, and ‘Time-Dependent Stacking’ is the average time for the entire stacking procedure
for time-dependent weights. The standard error for the average time for each method in each scenario is
less than 2 seconds.

Models log-Normal Weibull Gamma
Linear Time-Independent Stacking 121 172 210
Effects Minimization 0 1 1

Time-Dependent Stacking 161 143 173
Non-Linear Time-Independent Stacking 120 95 180
Effects Minimization 1 0 1

Time-Dependent Stacking 133 122 146

Table 10. The ratio of ISSE for the stacked survival model with different estimators for the RSF out-
of-bag estimate. The numerator is the ISSE of the out-of-bag estimate from the rsf function, while the
denominator is the ISSE of the five-fold cross-validation based estimate. Each simulation is replicated
2000 times. The standard error for the average ratio for each method in each scenario is less than 0.001.

Covariate Dimension Type of Effect log-Normal Weibull Gamma

p = 8
Linear 1.00 1.00 1.00
Non-Linear 0.99 1.01 0.99

p = 80
Linear 1.00 1.00 1.00
Non-Linear 0.99 1.00 0.99

Table 11. The ratio of computational time for the stacked survival model with different estimators for the
RSF out-of-bag estimate. The numerator is the time of the out-of-bag estimate from the rsf function,
while the denominator is the time of the five-fold cross-validation based estimate. Each simulation is
replicated 2000 times. The standard error for the average ratio for each method in each scenario is less
than 0.0007.

Covariate Dimension Type of Effect log-Normal Weibull Gamma

p = 8
Linear 0.35 0.34 0.34
Non-Linear 0.33 0.34 0.33

p = 80
Linear 0.36 0.36 0.36
Non-Linear 0.35 0.36 0.35
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Table 12. The ratio of ISSE for the stacked survival model with different numbers of time points in
the minimization procedure. The numerator is the ISSE for the estimator with 9 time points, while the
denominator is the ISSE for the estimator with 19 time points. Each simulation has a sample size of 400.
The p = 8 simulations are replicated 2000 times, while the p = 80 simulations are replicated 1000 times
due to computational requirements. The standard error for the average ratio for each method in each
scenario is less than 0.002.

Covariate Dimension Type of Effect log-Normal Weibull Gamma

p = 8
Linear 1.01 1.01 1.01
Non-Linear 1.00 1.01 1.00

p = 80
Linear 1.00 1.00 1.00
Non-Linear 1.00 1.00 1.00

Table 13. The ratio of elapsed time for the stacked survival model with different numbers of time points
in the minimization procedure. The numerator is the ISSE for the estimator with 9 time points, while
the denominator is the ISSE for the estimator with 19 time points. Each simulation has a sample size of
400. The p = 8 simulations are replicated 2000 times, while the p = 80 simulations are replicated 1000
times due to computational requirements. The standard error for the average ratio for each method in
each scenario is less than 0.006.

Covariate Dimension Type of Effect log-Normal Weibull Gamma

p = 8
Linear 0.53 0.52 0.54
Non-Linear 0.55 0.54 0.54

p = 80
Linear 0.60 0.54 0.61
Non-Linear 0.60 0.59 0.60
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Table 14. Simulation results for a high censoring scenario (n = 1000, p = 8 covariates, and 75% censoring)
presented in integrated squared survival error (ISSE) over the observed support. Each simulation is
replicated 1000 times, and the error is multiplied by 100. The two top estimators are bolded for each
simulation scenario. ‘RSF’ stands for random survival forests, ‘Stacking’ is stacked survival models, and
‘CV’ is the cross-validated selected estimator. The standard error for the estimate ISSE for each method
in each scenario is less than 0.004.

Models log-Normal Weibull Gamma

log-Normal 0.09 0.28 0.10

Single Weibull 0.22 0.14 0.12
Linear Models Cox 0.25 0.16 0.16
Effects RSF 3.00 1.73 3.01

Flexible Stacking 0.11 0.15 0.10

Models CV 0.23 0.21 0.13

log-Normal 2.75 0.69 2.76
Single Weibull 2.94 0.66 2.90

Non-Linear Models Cox 2.91 0.67 2.88
Effects RSF 1.33 1.05 1.30

Flexible Stacking 1.26 0.57 1.23

Models CV 1.33 0.85 1.30

Table 15. Simulation results for non-monotonic covariate effects presented as integrated squared survival
error (ISSE) over the observed support (see Section 5.7). Each simulation is replicated 2000 times. The
error is multiplied by 10 for the scenarios with a ‘modest covariate dimension’ (p = 8), while the error
is multiplied by 1 for the scenarios with a ‘large covariate dimension’ (p = 80). The two top estimators
are bolded for each simulation scenario. ‘RSF’ stands for random survival forests, ‘Stacking’ is stacked
survival models, and ‘CV’ is the cross-validated selected estimator. The standard error for the estimate
ISSE for each scenario with a ‘modest covariate dimension’ (p = 8) is less than 0.04, while the standard
error for the estimate ISSE for each scenario with a ‘large covariate dimension’ (p = 80) is less than
0.005,.

Models log-Normal Weibull Gamma

log-Normal 10.4 4.67 11.2
Single Weibull 10.9 4.48 11.5

Modest Covariate Models Cox 10.5 4.51 11.2
Dimension RSF 5.08 3.87 5.27

Flexible Stacking 5.09 3.52 5.27

Models CV 5.55 4.13 5.57

Single Lasso 1.89 0.87 1.98
Large Covariate Models Boosting 1.85 0.90 1.93
Dimension RSF 1.49 0.93 1.55

Flexible Stacking 1.55 0.83 1.60

Models CV 1.84 0.88 1.92
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