Estimation of non-stationary
spatial covariance structure

DAVID J. NOTT
Department of Statistics, University of New South Wales, Sydney 2052, Australia
djn@maths.unsw.edu.au

WILLIAM T. M. DUNSMUIR
Division of Biostatistics, School of Public Health, A460, Mayo Building, MMC303, 420 Delaware St SE, Minnesota MN 55455
dunsmuir@biostat.umn.edu

SUMMARY

We introduce a method for estimating non-stationary spatial covariance structure from space-time data and apply the method to an analysis of Sydney wind patterns. Our method constructs a process honouring a given spatial covariance matrix at observing stations and uses one or more stationary processes to describe conditional behaviour given observing site values. The stationary processes give a localized description of the spatial covariance structure. The method is computationally attractive, and can be extended to the assessment of covariance for multivariate processes. The technique is illustrated for data describing the east-west component of Sydney winds. For this example, our own methods are contrasted with a geometrically appealing though computationally intensive technique which describes spatial correlation via an isotropic process and a deformation of the geographical space.

Some key words: Covariance estimation, Non-stationarity, Spatio-temporal modelling.
1. INTRODUCTION

Assessment of spatial covariance structure is an important aspect of many spatio-temporal modelling problems arising in meteorological and environmental applications. In these applications, assumptions such as stationarity and isotropy of the spatial covariance are often unrealistic, and may not be necessary where we have spatial measurements replicated in time.

In this paper we describe methods for estimating non-stationary spatial covariance structure that preserve a given non-stationary spatial covariance matrix at observing stations and use one or more stationary process models to extend the covariance structure to unobserved locations in the region of interest. The method is computationally attractive, produces a valid non-negative definite non-stationary covariance function and is readily extended to the assessment of covariance for multivariate processes. The technique is illustrated for data describing the two orthogonal components of Sydney winds. The method may be useful in applications to spatial prediction, network design and as a tool for visualizing spatial covariance structure.

The problem of assessing spatially non-stationary covariance behaviour for space-time data has received much recent attention. Guttormp and Sampson (1994) summarize the early literature and Sampson, Damian and Guttormp (2001) describe more recent developments. Existing methods include those based on empirical orthogonal functions (Obled and Creutin, 1986), on a process convolution approach (Higdon, 1988), those which use basis function expansions to define non-stationary processes in a similar way to the EOF approach (see Nychka, Royle and Wikle, ‘Large spatial prediction problems and nonstationary random fields,’ which is a technical report of the Geophysical Statistics Project, National Center for Atmospheric Research, Boulder, Colorado), Bayesian hierarchical models (Brown, Le and Zidek, 1993), empirical Bayes techniques (Brown, Le and Zidek, 1993), kernel smoothing (Oehlert, 1993) and spatial deformation (Sampson and Guttorp, 1992). For the spatial deformation approach, recent attention has concentrated on a Bayesian implementation.
(see Schmidt and O’Hagan, ‘Bayesian inference for nonstationary spatial covariance structure via spatial deformations,’ which is a research report of the Department of Statistics, University of Sheffield, and Damian, Sampson and Guttorp, 2001).

The paper is organized as follows. Section 2 describes our method for covariance estimation, which is based on the idea of honouring a given spatial covariance matrix for observing sites which is then extended to the whole region of interest by one or more representative stationary processes. Section 3 describes estimation of parameters used in the stationary extension models. Section 4 briefly describes the Sampson-Guttorp approach, as well as the method of Loader and Switzer and its connection with our own method. Section 5 compares our method with the spatial deformation method for modelling the covariance structure of wind fields in the Sydney area, and discussion and conclusions are given in Section 6.

2. MODELS FOR NONSTATIONARY COVARIANCE STRUCTURES

Let

$$Z = \{Z(s), s \in \mathbb{R}^d\}$$

be a spatial process which can be observed at the sites \(J = \{s_1, ..., s_n\}\). The covariance matrix for \((Z(s_1), ..., Z(s_n))^T\) is denoted by \(\Gamma\). For the present we assume that this is known. Estimation of \(\Gamma\) will be discussed in Section 4.

Our method takes as a starting point this possibly non-stationary covariance matrix and extends it to a valid non-stationary covariance function for the whole region using one or more stationary processes with covariance functions chosen to approximate, regionally or sub-regionally, that of the non-stationary field at the observing sites.

Consider a collection of independent, zero mean, stationary processes \(W_i(s), i = 1, ..., I\) with covariance functions \(R_i(h), h \in \mathbb{R}^d\). The processes \(W_i(s)\) describe behaviour locally about a collection of locations \(z_i, 1 \leq i \leq I\) chosen on a grid or on a knowledge of likely sources of non-stationary behaviour for \(Z\).
For the collection of sites \mathcal{J}, let $W_i = (W_i(s_1), ..., W_i(s_n))^T$, let C_i be the covariance matrix of W_i and let $c_i(s) = (R_i(s - s_1), ..., R_i(s - s_n))^T$ be the vector of cross-covariances between $W_i(s)$ and W_i. The random field $W_i(s)$ can be represented as

$$W_i(s) = c_i(s)^T C_i^{-1} W_i + \delta_i(s)$$

(1)

where $\delta_i(s)$ is a zero mean non-stationary random field with covariance function

$$R_{\delta_i}(s, t) = R_i(t - s) - c_i(s)^T C_i^{-1} c_i(t).$$

The function $c_i(s)^T C_i^{-1} w$ is the simple kriging predictor of $W_i(s)$ given $W_i = w$ and, since the process $\delta_i(s)$ describes the residual variation, $\delta_i(s)$ is zero at the sites $s_1, ..., s_n$.

We now define a non-stationary process by a weighted sum of the processes $\mu_i(s) = c_i(s)^T C_i^{-1} W^*$ and $\delta_i(s)$, $i = 1, ..., I$, (where W^* is a zero mean $n \times 1$ random vector with covariance matrix Γ uncorrelated with each $\delta_i(s)$) to get

$$W^*(s) = \sum_i v_i(s) \mu_i(s) + \sum_i v_i^{1/2}(s) \delta_i(s)$$

(2)

Note that W^* is common to all the $\mu_i(s)$. The covariance function of $W^*(s)$ is

$$R^*(s, t) = \sum_{i,j} v_i(s) v_j(t) c_i(s)^T C_i^{-1} \Gamma C_j^{-1} c_j(t) + \sum_i v_i(s)^{1/2} v_i(t)^{1/2} R_{\delta_i}(s, t).$$

(3)

The weight function used in (2) is chosen to satisfy $v_i(s) \geq 0$, $\sum_i v_i(s) = 1$, $v_i(s)$ has a maximum at s_i and decays smoothly to zero as $\|s - s_i\| \to \infty$. One choice of the $v_i(s)$ uses a kernel function such as

$$f_\eta(t) = \exp \left(-\frac{\|t\|^2}{\eta^2} \right)$$

(where η is a smoothing parameter) and then

$$v_i(s) = \frac{f_\eta(s - z_i)}{\sum_j f_\eta(s - z_j)}.$$

The construction of the above process can be motivated by the following consideration: suppose we have a zero mean process with the covariance function (3), and that the vector $W^* = w$ is observed at the monitored sites. Also, suppose that $\{z_1, ..., z_l\}$ is the set of observing sites \mathcal{J}. Then the simple kriging predictor for the process at s is easily shown to be

$$\sum_i v_i(s)c_i(s)^TC_i^{-1}w$$

and the simple kriging variance is

$$\sum_i v_i(s)R_{\delta_i}(s, s).$$

What these relations tell us is that the simple kriging predictor and variance can be obtained as a weighted mean of simple kriging predictors and variances for the stationary processes $W_i(\cdot)$. The weights $v_i(s)$ vary spatially so that the contribution from $W_i(\cdot)$ increases as s becomes close to s_i. The extension is similar in spirit to a method of spatial prediction called moving window kriging due to Haas (1990a,b, 1995, 1996, 1998) in which covariance non-stationarity is modelled implicitly by local fitting of stationary models in windows centered on prediction locations.

It is easy to check that with $s = s_k$ and $t = s_l$, (3) is Γ_{kl} since $c_i(s_k)$ and $c_j(s_l)$ are the kth column of C_i and lth column of C_j respectively (so that, for instance, $c_i(s_k)^TC_i^{-1}\Gamma C_j^{-1}c_j(s_l) = \Gamma_{kl}$ in (3)). It is obvious from these remarks, or from the construction (2) of the non-stationary process, that the non-stationary covariance function (3) is a valid non-negative definite covariance function which reproduces the covariance matrix Γ at the monitored sites regardless of what stationary covariance functions $R_i(h)$ are used in the construction. Note that if s and t are far away from monitored sites (3) is approximately $\sum_i v_i(s)^0.5v_i(t)^0.5R_i(t-s)$ if $R_i(h) \to 0$ as $\|h\| \to \infty$.

3. ESTIMATION OF NONSTATIONARY COVARIANCE STRUCTURES
In the above construction we have assumed that the covariance matrix of the observed spatial process is known. In practice this will need to be estimated. We assume that we have replicates of the process through time. Let \(Z_k = (Z_k(s_1), ..., Z_k(s_n))^T \) be the observation of the spatial process at time \(k, 1 \leq k \leq M \), write \(z_k \) for the corresponding realization of \(Z_k \) and let

\[
\bar{z} = \frac{1}{M} \sum_{k=1}^{M} z_k
\]

be the estimated spatial mean vector at the monitored sites. Write \(R_Z(s, t) \) for the spatial covariance function of \(Z \),

\[
R_Z(s, t) = \text{cov}(Z(s), Z(t)),
\]

let \(\Gamma \) be the covariance matrix of \(Z_k \), and let \(\hat{\Gamma} \) be an estimate of \(\Gamma \) (the covariance matrix of \(Z_k \)) obtained by averaging over time,

\[
\hat{\Gamma} = \frac{1}{M} \sum_{i=1}^{M} (z_i - \bar{z})(z_i - \bar{z})^T.
\]

If there are missing values then a different estimator for \(\Gamma \) may be used (see the example of Section 4 for instance).

It will sometimes be convenient to describe the second order spatial structure of \(Z \) via the spatial dispersion function or variogram,

\[
D_Z(s, t) = \text{var}(Z(s) - Z(t)) = R_Z(s, s) + R_Z(t, t) - 2R_Z(s, t).
\]

We write \(D = [d_{ij}] \) for the dispersion matrix of \(Z_k \), and \(\hat{D} = [\hat{d}_{ij}] \) for an estimated dispersion matrix.

Estimation of the stationary covariance functions \(R(\mathbf{h}) \) can be done parametrically within windows centred on the points \(z_i \). Write \(\gamma(\mathbf{h}; \theta_i) \) for the corresponding dispersion function parametrized by \(\theta_i \). See, for instance, Cressie (1993, pp.85-86) for a list of parameteric forms which could be adopted for this dispersion function.
For any given form, various methods of estimation can be used. For example writing $\partial i(l)$ for the set of sites lying in the smallest disc centered on z_i and containing at least l points, we obtain θ_i by a local non-linear least squares fit minimizing

$$
\sum_{s_j, s_k \in \partial i(l)} \left(\frac{\hat{d}_{jk} - \gamma(s_j - s_k; \theta_i)}{\gamma(s_j - s_k; \theta_i)} \right)^2
$$

with respect to θ_i.

After obtaining an estimate $\hat{\theta}_i$ of θ_i, we obtain estimated values $\hat{c}_i(s_i), \hat{c}_j(t), \hat{C}_i, \hat{C}_j$ and $\hat{R}_\delta(s,t)$ in the above construction and our final estimated spatial covariance function is

$$
\hat{R}^*(s,t) = \sum_{i,j} v_i(s)v_j(t)\hat{c}_i(s)\hat{C}_i^{-1}\hat{C}_j^{-1}\hat{c}_j(t) + \sum_i v_i(s)\frac{1}{2}v_i(t)\frac{1}{2}\hat{R}_\delta(s,t).
$$

We suggest either choosing I and $z_1, ..., z_I$ as a set of grid points covering the design region, or choosing these parameters based on knowledge of likely sources of non-stationary behaviour in the problem at hand. In the examples we have looked at performance of the method does not seem to be very sensitive to the parameter η, although η may be chosen objectively using some form of cross-validation. For choosing the number of sites in the local fitting of the stationary models, we recommend using at least 10 sites in each window, although this can be increased if any numerical problems are experienced in fitting. Haas (1990a, b) considers adaptive ways of choosing a window size for fitting stationary models locally in some purely spatial problems.

Once a covariance function for W has been determined, computation of (5) is straightforward. The computational cost in evaluating the covariance function is dominated by the need to solve two linear systems in \hat{C}_i. If (5) is to be evaluated for a large number of pairs of sites, as is usually the case, then initial Cholesky decompositions of the \hat{C}_i’s could be obtained which enables the required solution of the linear systems to be done efficiently. The initial decomposition is feasible for up to several hundred sites, which makes the method computationally attractive relative to alternative approaches.
As an illustration of our method we present a simple one-dimensional example where the results are easily visualized. An application of our method for real data is given in Section 4.

Let $Y_i(t), t \in \mathbb{R}, i = 1, 2$ be a pair of independent one-dimensional stationary Gaussian processes having zero mean and covariance functions

$$R_{Y_1}(h) = \exp(-2|h|)$$

and

$$R_{Y_2}(h) = \exp(-0.5|h|).$$

We construct a non-stationary process $Y(t)$ as a weighted sum of $Y_1(t)$ and $Y_2(t)$ as follows:

$$Y(t) = \Phi(t)^{1/2}Y_1(t) + (1 - \Phi(t))^{1/2}Y_2(t)$$

where $\Phi(t)$ denotes the standard normal distribution function. The covariance function of this process is

$$Cov(Y(s), Y(t)) = \Phi(s)^{1/2}\Phi(t)^{1/2}R_{Y_1}(t - s) + (1 - \Phi(s))^{1/2}(1 - \Phi(t))^{1/2}R_{Y_2}(t - s).$$

A contour plot of this covariance function is shown in Figure 1.

Also shown in Figure 1 is a contour plot of an estimate of the covariance function obtained using our proposed method with $m = 2$ component stationary processes and $z_1 = -2, z_2 = 2$. A stationary covariance function of the same form as for $Y_1(t)$, $Y_2(t)$ was used for the component stationary processes. The sites $s_1, ..., s_n$ here are taken to be twenty equally spaced points between -4 and 4. Our estimate $\hat{\Gamma}$ of the covariance matrix for $Y(t)$ at these sites was based on fifty simulated replicates. In the parametric local stationary fits the ten nearest sites were used. The smoothing parameter was chosen to be $\eta = 1$.

4. OTHER APPROACHES
4.1 Spatial deformation approach

The idea of the Sampson-Guttorp approach to covariance estimation is to estimate a change of co-ordinates which results in isotropic spatial correlation. Let \(\gamma_\theta(\cdot) \) denote a valid isotropic dispersion function in \(\mathbb{R}^2 \) depending on a finite dimensional parameter \(\theta \), and let \(f \) denote a coordinate transformation

\[
f = (f_1, f_2) : \mathbb{R}^2 \rightarrow \mathbb{R}^2.
\]

This transformation takes the monitoring sites in the geographical or G-space to points in a transformed space (dispersion or D-space). Sampson and Guttorp (1992) model \(f_1(\cdot) \) and \(f_2(\cdot) \) as thin plate spline mappings, and after variance standardization of the empirical dispersions estimate \(\theta \) and \(f \) in such a way that

\[
d_{ij} = \gamma_\theta(\|f(s_i) - f(s_j)\|).
\]

(6)

Our implementation of this method follows the penalized weighted least squares approach to parameter estimation of Meiring, Guttorp and Sampson (1997). This requires selection of a smoothing parameter which controls a trade off between smoothness of the spatial deformation and fidelity to the empirical dispersions.

This method’s description of the covariance in terms of an isotropic model and spatial deformation mapping provides an elegant way of describing and visualizing non-stationary spatial covariance structure. However the method is not without its difficulties in practice as we indicate in the analysis of Section 5. In particular choice of smoothing parameter is not always straightforward – see Meiring, Monestiez and Sampson (1997) for a discussion of the difficulties here. Estimation of the spatial deformation also requires optimization of a possibly multimodal objective function in a high-dimensional space. This makes the method difficult to apply for large data sets. Another possible concern is that it is not possible to write any covariance function in the form (6). It is also not clear how multivariate covariance structure can be estimated in a natural way with this method. This question has been considered
by Mardia and Goodall (1993), who suggest using the same spatial deformation for each component of a multivariate process.

4.2. Loader and Switzer method

The method of Loader and Switzer (1992) is used in Section 5 for estimating the covariance matrix at observing sites. Loader and Switzer estimate the true spatial covariance matrix Γ by

$$\hat{\Gamma}_{LS} = \lambda \hat{\Gamma} + (1 - \lambda) \hat{C}$$

where $0 < \lambda < 1$ is a shrinkage parameter, and \hat{C} is a covariance matrix obtained by fitting some parametric stationary covariance function model. The shrinkage parameter λ is chosen by an empirical Bayes argument: an inverse Wishart prior distribution is assumed for Γ, $\Gamma \sim w^{-1}((m - n - 1)C, m)$. With this prior it can be shown that the posterior mean of Γ is

$$\lambda \hat{\Gamma} + (1 - \lambda) \hat{C}$$

where $\lambda = M/(M + m - n - 1)$. The marginal likelihood for the parameter m can be obtained by integrating out Γ - then an estimate of m, and hence of λ, can be obtained by maximum likelihood. See Loader and Switzer (1992) for further details.

For extension to a new site, s^*, Loader and Switzer suggest estimating the vector of cross-covariances

$$(\text{cov}(Z(s_1), Z(s^*)), \ldots, \text{cov}(Z(s_n), Z(s^*)))^T$$

by

$$\hat{\Gamma}_{LS} \hat{C}^{-1} \hat{c}(s^*)$$

where $\hat{c}(s^*)$ is the vector of cross covariances between s^* and the sites in \mathcal{J} computed with the stationary model used in constructing \hat{C}. To get the final estimated spatial covariance matrix it only remains to specify $\text{Var}(Z(s^*))$. One simple estimate that
can be used is the average of the diagonal elements of $\hat{\Gamma}_{LS}$. However, this choice may result in a final estimated covariance matrix which is not non-negative definite. Furthermore, when the construction above is applied to add multiple sites sequentially the estimated covariance between pairs of sites not in \mathcal{J} may not be invariant to the order in which those sites are added.

It is straightforward to show that when our method is applied with Loader and Switzer’s estimate for the sites in \mathcal{J} and a single stationary process ($I = 1$) then our estimate of the cross-covariances between sites in \mathcal{J} and sites not in \mathcal{J} agrees with that of Loader and Switzer. However our method does not suffer from the potential lack of both positive definiteness and order invariance that can result from their proposed extension method.

5. SYDNEY WIND PATTERNS

We apply the techniques we have developed to some data on the east-west component of Sydney wind patterns. There are 45 observing stations, 38 maintained by the Australian Bureau of Meteorology, 5 by the Sydney Water Board, and the remaining 2 by the New South Wales Department of Public Works. We do not consider the difficult problem of comparing the various networks, but assume that roughly comparable measurements are taken at all sites.

The work reported here was part of an effort to improve understanding of the behaviour of Sydney wind patterns. Of particular interest are sea breeze effects driven by differential heating of the land and ocean. The behaviour of the sea breeze varies seasonally and throughout the day, and in what follows we consider only the east-west component of 3 p.m. wind measurements for September and October 1997 (so there are 61 days of data in all). Our data consist of daily 3 p.m. measurements at the 45 stations. There are different numbers of missing observations at each of the stations. We have obtained a positive definite estimate of the spatial covariance matrix using the EM algorithm (Little and Rubin, 1987) with an initial estimate of the covariance obtained by filling in missing values with site means. We then
applied the technique of Loader and Switzer (1992) to shrink this raw estimate to a fitted stationary covariance matrix.

We fitted an exponential covariance function model

\[R(t - s) = R(0) \exp(-\theta|t - s|) \]

by estimating the variance as the average of the empirical variances across sites, giving an estimated variance of 58.04, and estimated the spatial dependence parameter \(\theta \) by an ordinary least squares fit to the correlation matrix, giving an estimated \(\theta \) of 1.115. We do not include a so-called nugget effect (see for instance, Cressie, 1993, for discussion) in our application although this could be incorporated by preliminary adjustment of \(\hat{\theta} \) if necessary. After fitting the stationary model, the shrinkage parameter for Loader and Switzer’s technique was computed as \(\lambda = 0.88 \).

The final covariance matrix was then standardized to obtain a correlation matrix. The correlation matrix used for the computations below is available from statlib (http://lib.stat.cmu.edu).

The contour plots of Figure 2 show points which have equal estimated correlation with two different fixed sites. One station was chosen to be on the coast, location 33.85°S, 151.22°E, and the other to be in the western half of the region under study, location 33.74°S, 149.88°E. The contour plots for the coastal station show some anisotropy that is thought to reflect sea breeze effects, with stations the same distance from the coast influenced to a similar extent. For the western reference station, correlation seems to decay more slowly with distance and the shape of contours of high correlation can be interpreted in terms of the local topography with locations south of the reference site having a similar elevation. Figure 3 shows a topography map for an area which includes the study region.

For comparative purposes we have also implemented the penalized weighted least squares version of the spatial deformation method reviewed in Section 4. We experienced some difficulties in choosing the smoothing parameter \(\lambda \) controlling the trade off between smoothness of the spatial deformation and fidelity to the empirical
dispersions. If λ is chosen too small, then the spatial deformation may “fold up”, taking more than one point in the G-space to the same point in D-space, whereas as $\lambda \to \infty$ we obtain a stationary model in which contours of equal dispersion are elliptical. A number of sites, which were spatially anomalous with respect to their neighbours, appeared to have a large influence on the fitted spatial deformation. These were excluded from the spatial deformation analysis.

Figure 4 shows the results of applying the Sampson-Guttorp method to our data for two different values of λ, $\lambda = 7000$ and $\lambda = 10000$. The plots on the left show the fitted isotropic dispersion functions in D-space and the empirical dispersions plotted against inter-site distance in D-space. The plots on the right show the action of the spatial deformation on a regular grid. There is a very sharp transition as λ increases between a deformation which is severely folded and a deformation in which the sites in D-space are not moved from their geographic locations. In this latter case the resulting estimated field is very nearly stationary.

6. DISCUSSION AND CONCLUSIONS.

The method we have described is appealing as a simple way of obtaining a valid non-negative definite covariance function respecting a given covariance matrix. We anticipate that it may be useful for visualizing covariance structure for large data sets. Extension of our methods to assessment of covariance for multivariate processes is formally straightforward. See the discussion in Nott, Dunsmuir, Speer and Glowacki in ‘Non-stationary Multivariate Covariance Estimation for Monitoring Data,’ which is a technical report from the Department of Statistics, University of New South Wales, who describe an application to bivariate components of wind in the Sydney region.

Another question to be addressed in future work is the application of our methods to problems of spatial prediction. It is hoped that more realistic estimates of non-stationary spatial covariance will result in improved spatial prediction methods and in improved assessments of predictive uncertainty.
ACKNOWLEDGEMENTS

This research was supported by an Australian Research Council/Bureau of Meteorology SPIRT collaborative grant. The authors thank Wendy Meiring from University of California at Santa Barbara for supplying code to implement the spatial deformation method in Section five. The staff of the New South Wales regional office of the Bureau of Meteorology are also thanked for their help in retrieving the wind data. The Editor and Referees are thanked for suggestions which have greatly improved presentation of the method.

REFERENCES

List of Figures

Figure 1: Contours of covariance function of one-dimensional non-stationary process \(Y(t) \) (top) and contours of estimated covariance function (bottom).

Figure 2: Contours of equal estimated correlation with two different fixed sites. Location 33.85\(^\circ\)S, 151.22\(^\circ\)E (top) and location 33.74\(^\circ\)S, 149.88\(^\circ\)E (bottom). The marked sites show the locations of the monitored sites.

Figure 3: Topography map of the Sydney area.

Figure 4: Estimated isotropic D-space dispersion function and spatial deformations for Sampson-Guttorp method with \(\lambda = 7000 \) (top) and \(\lambda = 10000 \) (bottom).
Figure 1: Contours of covariance function of one-dimensional non-stationary process $Y(t)$ (top) and contours of estimated covariance function (bottom).
Figure 2: Contours of equal estimated correlation with two different fixed sites. Location 33.85°S, 151.22°E (top) and location 33.74°S, 149.88°E (bottom). The marked sites show the locations of the monitored sites.
Figure 3: Topography map of the Sydney area.
Figure 4: Estimated isotropic D-space dispersion function and spatial deformations for Sampson-Gutttorp method with $\lambda = 7000$ (top) and $\lambda = 10000$ (bottom).