Contents

Preface to the Second Edition xvi
Preface to the First Edition xviii

1 Overview of spatial data problems 1
 1.1 Introduction to spatial data and models 1
 1.1.1 Point-level models 5
 1.1.2 Areal models 5
 1.1.3 Point process models 6
 1.1.4 Software and datasets 7
 1.2 Fundamentals of cartography 8
 1.2.1 Map projections 8
 1.2.2 Calculating distances on the earth’s surface 13
 1.3 Maps and geodesics in R 16
 1.4 Exercises 20

2 Basics of point-referenced data models 23
 2.1 Elements of point-referenced modeling 23
 2.1.1 Stationarity 23
 2.1.2 Variograms 24
 2.1.3 Isotropy 25
 2.1.4 Variogram model fitting 30
 2.2 Anisotropy 31
 2.2.1 Geometric anisotropy 31
 2.2.2 Other notions of anisotropy 32
 2.3 Exploratory approaches for point-referenced data 32
 2.3.1 Basic techniques 32
 2.3.2 Assessing anisotropy 36
 2.3.2.1 Directional semivariograms and rose diagrams 37
 2.3.2.2 Empirical semivariogram contour (ESC) plots 38
 2.4 Classical spatial prediction 40
 2.4.0.3 Noiseless kriging 43
 2.5 Computer tutorials 44
 2.5.1 EDA and spatial data visualization in R 44
 2.5.2 Variogram analysis in R 46
 2.6 Exercises 50

3 ★ Some theory for point-referenced data models 53
 3.1 Formal modeling theory for spatial processes 53
 3.1.1 Some basic stochastic process theory for spatial processes 55
 3.1.2 Covariance functions and spectra 57
 3.1.2.1 More general isotropic correlation functions 60
3.1.3 Constructing valid covariance functions 60
3.1.4 Smoothness of process realizations 61
3.1.5 Directional derivative processes 63
3.2 Nonstationary spatial process models 63
 3.2.1 Deformation 64
 3.2.2 Nonstationarity through kernel mixing of process variables 65
 3.2.3 Mixing of process distributions 69
3.3 Exercises 70

4 Basics of areal data models 73
 4.1 Exploratory approaches for areal data 74
 4.1.1 Measures of spatial association 75
 4.1.2 Spatial smoothers 77
 4.2 Brook’s Lemma and Markov random fields 78
 4.3 Conditionally autoregressive (CAR) models 80
 4.3.1 The Gaussian case 81
 4.3.2 The non-Gaussian case 84
 4.4 Simultaneous autoregressive (SAR) models 85
 4.4.1 CAR versus SAR models 87
 4.4.2 STAR models 87
 4.5 Computer tutorials 88
 4.5.1 Adjacency matrices from maps using spdep 89
 4.5.2 Moran’s I and Geary’s C in spdep 90
 4.5.3 SAR and CAR model fitting using spdep in R 90
 4.6 Exercises 95

5 Basics of Bayesian inference 97
 5.1 Introduction to hierarchical modeling and Bayes’ Theorem 97
 5.1.0 Illustrations of Bayes’ Theorem 98
 5.2 Bayesian inference 100
 5.2.1 Point estimation 100
 5.2.2 Interval estimation 101
 5.2.3 Hypothesis testing and model choice 101
 5.2.3.1 Bayes factors 102
 5.2.3.2 The DIC criterion 103
 5.2.3.3 Posterior predictive loss criterion 105
 5.2.3.4 Model assessment using hold out data 106
 5.3 Bayesian computation 107
 5.3.1 The Gibbs sampler 108
 5.3.2 The Metropolis-Hastings algorithm 109
 5.3.3 Slice sampling 111
 5.3.4 Convergence diagnosis 112
 5.3.5 Variance estimation 113
 5.4 Computer tutorials 115
 5.4.1 Basic Bayesian modeling in R 115
 5.4.2 Advanced Bayesian modeling in WinBUGS 116
 5.5 Exercises 119
8.3.2 G and F functions
8.3.3 The K function
8.3.4 Empirical estimates of the intensity
8.4 Modeling point patterns; NHPP’s and Cox processes
8.4.1 Parametric specifications
8.4.2 Nonparametric specifications
8.4.3 Bayesian modeling details
8.4.3.1 The “poor man’s” version; revisiting the ecological fallacy
8.4.4 Examples
8.5 Generating point patterns
8.6 More general point pattern models
8.6.1 Cluster processes
8.6.1.1 Neyman-Scott processes
8.6.2 Shot noise processes
8.6.3 Gibbs processes
8.6.4 Further Bayesian model fitting and inference
8.6.5 Implementing fully Bayesian inference
8.6.6 An example
8.7 Marked point processes
8.7.1 Model specifications
8.7.2 Bayesian model fitting for marked point processes
8.7.3 Modeling clarification
8.7.4 Enriching intensities
8.7.4.1 Introducing non-spatial covariate information
8.7.4.2 Results of the analysis
8.8 Space-time point patterns
8.8.1 Space-time Poisson process models
8.8.2 Dynamic models for discrete time data
8.8.3 Space-time Cox process models using stochastic PDE’s
8.8.3.1 Modeling the House Construction Data for Irving, TX
8.8.3.2 Results of the data analysis
8.9 Additional topics
8.9.1 Measurement error in point patterns
8.9.1.1 Modeling details
8.9.2 Presence-only data application
8.9.2.1 Probability model for presence locations
8.9.3 Scan statistics
8.9.4 Preferential sampling
8.10 Exercises
9 Multivariate spatial modeling for point-referenced data
9.1 Joint modeling in classical multivariate Geostatistics
9.1.1 Co-kriging
9.1.2 Intrinsic Multivariate Correlation and Nested Models
9.2 Some Theory for Cross Covariance Functions
9.3 Separable models
9.4 Spatial prediction, interpolation, and regression
9.4.1 Regression in the Gaussian case
9.4.2 Avoiding the symmetry of the cross-covariance matrix
9.4.3 Regression in a probit model
9.4.4 Examples
9.4.5 Conditional modeling
11.8.1 Areally referenced temporal processes
11.8.2 Hierarchical modeling
11.9 Exercises

12 Modeling large spatial and spatiotemporal datasets
12.1 Introduction
12.2 Approximate likelihood approaches
 12.2.1 Spectral methods
 12.2.2 Lattice and conditional independence methods
 12.2.3 INLA
 12.2.4 Approximate likelihood
 12.2.5 Variational Bayes algorithm for spatial models
 12.2.6 Covariance tapering
12.3 Models for large spatial data: low rank models
 12.3.1 Kernel-based dimension reduction
 12.3.2 The Karhunen-Loève representation of Gaussian processes
12.4 Predictive process models
 12.4.1 The predictive process
 12.4.2 Properties of the predictive process
 12.4.3 Biases in low-rank models and the bias-adjusted modified predictive process
 12.4.4 Selection of knots
 12.4.5 A simulation example using the two step analysis
 12.4.6 Non-Gaussian first stage models
 12.4.7 Spatiotemporal versions
 12.4.8 Multivariate predictive process models
12.5 Modeling with the predictive process
12.6 Fitting a predictive process model in spBayes
12.7 Exercises

13 Spatial gradients and wombling
13.1 Introduction
13.2 Process smoothness revisited
13.3 Directional finite difference and derivative processes
13.4 Distribution theory for finite differences and directional gradients
13.5 Directional derivative processes in modeling
13.6 Illustration: Inference for differences and gradients
13.7 Curvilinear gradients and wombling
 13.7.1 Gradients along curves
 13.7.2 Wombling boundary
13.8 Distribution theory for curvilinear gradients
13.9 Illustration: Spatial boundaries for invasive plant species
13.10 Areal wombling
 13.10.1 Review of existing methods
 13.10.2 Joint site-edge areal wombling
 13.10.2.1 Edge smoothing and random neighborhood structure
 13.10.2.2 Two-level CAR model
 13.10.2.3 Site-edge (SE) models
 13.10.3 FDR-based areal wombling
13.11 Wombling with point process data
13.12 Concluding remarks 445

14 Spatial survival models 447
14.1 Parametric models 448
 14.1.1 Univariate spatial frailty modeling 448
 14.1.1.1 Bayesian implementation 449
 14.1.2 Spatial frailty versus logistic regression models 453
14.2 Semiparametric models 454
 14.2.1 Beta mixture approach 455
 14.2.2 Counting process approach 456
14.3 Spatiotemporal models 457
 14.3.0.1 Results for the full model 459
 14.3.0.2 Bayesian model choice 460
14.4 Multivariate models 461
 14.4.0.3 Static spatial survival data with multiple causes of death 462
 14.4.0.4 MCAR specification, simplification, and computing 462
 14.4.0.5 Spatiotemporal survival data 463
14.5 Spatial cure rate models 467
 14.5.1 Models for right- and interval-censored data 468
 14.5.1.1 Right-censored data 468
 14.5.1.2 Interval-censored data 470
 14.5.2 Spatial frailties in cure rate models 471
 14.5.3 Model comparison 471
14.6 Exercises 475

15 Special topics in spatial process modeling 479
15.1 Data assimilation 479
 15.1.1 Algorithmic and pseudo-statistical approaches in weather prediction 479
 15.1.2 Fusion modeling using stochastic integration 480
 15.1.3 The downscaler 482
 15.1.4 Spatio-temporal versions 484
 15.1.5 An Illustration 485
15.2 Space-time modeling for extremes 486
 15.2.1 Possibilities for modeling maxima 487
 15.2.2 Review of Extreme Value Theory 488
 15.2.3 A Continuous spatial process model 489
 15.2.4 Using copulas 490
 15.2.5 Hierarchical modeling for spatial extreme values 491
15.3 Spatial CDFs 492
 15.3.1 Basic definitions and motivating data sets 492
 15.3.2 Derived-process spatial CDFs 495
 15.3.2.1 Point- versus block-level spatial CDFs 495
 15.3.2.2 Covariate weighted SCDFs for misaligned data 496
 15.3.3 Randomly weighted SCDFs 497

Appendices 501
A Spatial computing methods 503
 A.1 Fast Fourier transforms 503
 A.2 Slice Gibbs sampling for spatial process model fitting 504
 A.2.1 Constant mean process with nugget 507
 A.2.2 Mean structure process with no pure error component 508
A.2.3 Mean structure process with nugget 509
A.3 Structured MCMC sampling for areal model fitting 509
A.3.0.1 SMCMC algorithm basics 510
A.3.1 Applying structured MCMC to areal data 510
A.3.2 Algorithmic schemes 512
A.4 spBayes: Under the hood. 513

B Answers to selected exercises 515
Bibliography 529
Index 559
Preface to the Second Edition

In the ten years that have passed since the first edition of this book, we believe the statistical landscape has changed substantially, even more so for analyzing space and space-time data. Apart from the remarkable growth in data collection, with datasets now of enormous size, the fields of statistics and biostatistics are also witnessing a change toward examination of observational data, rather than restricting to carefully-collected experimentally designed data. We are witnessing an increased examination of complex systems using such data, requiring synthesis of multiple sources of information (empirical, theoretical, physical, etc.), necessitating the development of multi-level models. We are seeing repeated exemplification of the hierarchical framework \([\text{data}] | \text{process}, \text{parameters} | \text{process}, \text{parameters} | \text{parameters} \). The role of the statistician is evolving in this landscape to that of an integral participant in team-based research: a participant in the framing of the questions to be investigated, the determination of data needs to investigate these questions, the development of models to examine these questions, the development of strategies to fit these models, and the analysis and summarization of the resultant inference under these specifications. It is an exciting new world for modern statistics, and spatial analysis is a particularly important player in this new world due to the increased appreciation of the information carried in spatial locations, perhaps across temporal scales, in learning about these complex processes. Applications abound, particularly in the environmental sciences but also in public health, real estate, and many other fields.

We believe this new edition moves forward in this spirit. The first edition was intended as a research monograph, presenting a state-of-the-art treatment of hierarchical modeling for spatial data. It has been a delightful success, far exceeding our expectations in terms of sales and reception by the community. However, reflecting the decade that has passed, we have made consequential changes from the first edition. Not surprisingly, the new volume is more than 50% bigger, reflecting the major growth in spatial statistics as a research area and as an area of application.

Rather than describing the contents, chapter by chapter, we note the following major changes. First, we have added a much needed chapter on spatial point patterns. This is a subfield that is finding increased importance but, in terms of application, has lagged behind the use of point-referenced and areal unit data. We offer roughly 80 new pages here, developed primarily from a modeling perspective, introducing as much current hierarchical and Bayesian flavor as we could. Second, reflecting the ubiquitous increases in the sizes of datasets, we have developed a “big data” chapter. Here, we focus on the predictive process in its various forms, as an attractive tool for handling reasonably large datasets. Third, near the end of the book we have added a new chapter on spatial and spatiotemporal gradient modeling, with associated developments by us and others in spatial boundary analysis and wombling. As elsewhere in the book, we divide our descriptions here into those appropriate for point-referenced data (where underlying spatial processes guarantee the existence of spatial derivatives) and areal data (where processes are not possible but boundaries can still be determined based on alternate ways of hierarchically smoothing the areal map. Fourth, since geostatistical (point-referenced) modeling is still the most prevalent setting for spatial analysis, we have chosen to present this material in two separate chapters. The first (Chapter 2) is a basic introduction, presented for the reader who is more focused on the
pactical side of things. In addition, we have developed a more theoretical chapter (Chapter 3) which provides much more insight into the scope of issues that arise in the geostatistical setting and how we deal with them formally. The presentation of this material is still gentle compared with that in many stochastic processes texts, and we hope it provides valuable model-building insight. At the same time, we recognize that Chapter 3 may be somewhat advanced for more introductory courses, so we mark it as a starred chapter. In addition to these four new chapters, we have greatly revised and expanded the multivariate and spatio-temporal chapters, again in response to the growth of work in these areas. We have also added two new special topics sections, one on data fusion/assimilation, and one on spatial analysis for data on extremes. We have roughly doubled the number of exercises in the book, and also include many more color figures, now integrated appropriately into the text. Finally, we have updated the computational aspects of the book. Specially, we work with the newest version of WinBUGS, the new flexible spBayes software, and we introduce other suitable R packages as needed, especially for exploratory data analysis.

In addition to those to whom we expressed our gratitude in the preface to the first edition, we now extend this list to record (in alphabetical order) the following colleagues, current and former post doctoral researchers and students: Dipankar Bandyopadhyay, Veronica Berrocal, Avihek Chakraborty, Jim Clark, Jason (Jun) Duan, David Dunson, Andrew Finley, Souparna Ghosh, Simone Gray, Rajarshi Guhaniyogi, Michele Guindani, Xiaoping Jin, Giovanna Jona Lasinio, Matt Heaton, Dave Holland, Thanasis Kottas, Andrew Latimer, Tommy Leininger, Pei Li, Shengde Liang, Haolan Lu, Kristian Lum, Haijun Ma, Marshall McBean, Marie Lynn Miranda, Joao Vitor Monteiro, XuanLong Nguyen, Lucia Paci, Sonia Petrone, Gavino Puggioni, Harrison Quick, Cavan Reilly, Qian Ren, Abel Rodriguez, Huiyan Sang, Sujit Sahu, Maria Terres, Beth Virnig, Fangpo Wang, Adam Wilson, Gangqiang Xia, and Kai Zhu. In addition, we much appreciate the continuing support of CRC/Chapman and Hall in helping to bring this new edition to fruition, in particular the encouragement of the steadfast and indefatigable Rob Calver.

SUDIPTO BANERJEE
Minneapolis, Minnesota
BRADLEY P. CARLIN
Durham, North Carolina
ALAN E. GELFAND
July 2013