
Next Generation Sequencing: An Overview

Cavan Reilly

October 28, 2019



Table of contents

Next generation sequencing

NGS and microarrays

Study design

Quality assessment

Burrows Wheeler transform



Next generation sequencing

Over the last 12 years or so there has been rapid development of
methods for next generation sequencing.

Here is the process for the Illumina technology (one of the major
producers of platforms for next generation sequencing).

The biological sample (e.g. a sample of mRNA molecules) is first
randomly fragmented into short molecules.

Then the ends of the fragments are adenylated and adaptor oligos
are attached to the ends.



Next generation sequencing

The fragments are then size selected, purified and put on a flow
cell.

An Illumina flow cell has 8 lanes and is covered with other
oligonucleotides that bind to the adaptors that have been ligated
to the fragmented nucleotide molecules from the sample.

The bound fragments are then extended to make copies and these
copies bind to the surface of the flow cell.

This is continued until there are many copies of the original
fragment resulting in a collection of hundreds of millions of
clusters.







Next generation sequencing

The reverse strands are then cleaved off and washed away and
sequencing primer is hybridized to the bound DNA.

The individual clusters are then sequenced in parallel, base by base,
by hybridizing fluorescently labeled nucleotides.

After each round of extension of the nucleotides a laser excites all
of the clusters and a read is made of the base that was just added
at each cluster.

If a very short sequence is bound to the flow cell it is possible that
the machine will sequence the adaptor sequence-this is referred to
as adaptor contamination.

There is also a measure of the quality of the read that is saved
along with the read itself.



Next generation sequencing

These quality measures are on the PHRED scale, so if there is an
estimated probability of an error of p, the PHRED based score is
−10 log10 p.

If we fragment someone’s DNA we can then sequence the
fragments, and if we can then put the fragments back together we
can then get the sequence of that person’s genome or
transcriptome.

This would allow us to determine what alleles this subject has at
every locus that displays variation among humans (e.g. SNPs).



Next generation sequencing

There are a number of popular algorithms for putting all of the
fragments back together: BWA, Maq, SOAP, ELAND and Bowtie.

We’ll discuss Bowtie in some detail later (BWA uses the same
ideas as Bowtie).

ELAND is a proprietary algorithm from Illumina and Maq and
SOAP use hash tables and are considerably slower than Bowtie.



Applications

There are many applications of this basic idea:

1. resequencing (DNA-seq)

2. gene expression (RNA-seq)

3. miRNA discovery and quantitation

4. DNA methylation studies

5. ChIP-seq studies

6. metagenomics

7. ultra-deep sequencing of viral genomes

We will focus on resequencing (and SNP calling) and gene
expression in this course.



NGS and microarrays

Currently microarrays are not used to study gene expression,
almost every researcher would use sequencing based techniques.

Compared to microarrays, RNA-seq

1. higher sensitivity

2. higher dynamic range

3. lower technical variation

4. don’t need a sequenced genome (but it helps, a lot)

5. more information about different exon uses (more than 90% of
human genes with more than 1 exon have alternative isoforms)



NGS and microarrays

In one head to head comparison, 30% more genes are found to be
differentially expressed with the same FDR (Marioni, Mason,
Mane, et al. (2008)).

These authors also found that the correlation between normalized
intensity values from a microarray and the logarithm of the counts
for the same transcript were 0.7-0.8 (this is similar to what others
have reported).

The largest differences occurred when the read count was low and
the microarray intensity was high which probably reflects
cross-hybridization in the microarray.



NGS and microarrays

Others have found slightly higher correlations, here is a figure from
a study by Su, Li, Chen, et al. (2011).



Study design

Before addressing the technical details, we will outline some
considerations regarding study design specific to NGS technology.

There are several major manufacturers of the technology necessary
to generate short reads, and they all have different platforms with
resulting differences in the data and processing methods. A few of
the major vendors are

1. Illumina, formerly known as Solexa sequencing, they now have
MiSeq and HiSeq (the Genome analyzer is the old platform)

2. Roche, which owns 454 Life Sciences, which supports GS
FLX+ system

3. Life technologies, which supports Ion-Torrent

4. Pacific Biosciences



Study design

We will focus on the Illumina technology as the University of
Minnesota has invested in this platform (the HiSeq 2000 and
MiSeq platforms is available in the UMN Genomics Center).

The MiSeq machine produces longer reads than the HiSeq 2000.

We also have some capabilities to do 454 sequencing here.

The 454 platform produces longer reads (up to 800 bp now), and
is very popular in the microbiomics literature.

This technology was discontinued in 2013.



Study design

By sequencing larger numbers of fragments one can estimate the
sequence more accurately.

The goal of using high sequence coverage is that by using more
fragments it is more likely that one fragment will cover any
random location in the genome.

Clearly one wants to cover the entire genome if the goal is to
sequence it, hence the depth of coverage is how many overlapping
fragments will cover a random location.

By deep sequencing, we mean coverage of 30X to 40X, whereas
coverage of 4X or so would be considered low coverage.



Study design

The rule for determining coverage is:

coverage = (length of reads × number of reads)/ (length of
genome)

For a given sequencing budget, there is a tradeoff between the
depth of coverage and the number of subjects one can sequence.

The objectives of the study should be considered when determining
the depth of coverage.

If the goal is to accurately sequence a tumor cell then deep
coverage is appropriate, however if the goal is to identify rare
variants, then lower coverage is acceptable.



Study design

For example, the 1000 Genomes project is using about 4X
coverage.

A reasonable rule of thumb is that one probably needs 20-30X
coverage to get false negatives less than 1% in nonrepeat regions
of a duploid genome (Li, Ruan and Durbin, 2008).

If the organism one is sequencing does not have a sequenced
genome, the calculations are considerably more complex and one
would want greater coverage in this case.

Throughout this treatment we will suppose that the organism
under investigation has a sequenced genome.



Study design

Another choice when designing your study regards the use of
mate-pairs.

With the Illumina system one can sequence both ends of a
fragment simultaneously.

This greatly improves the accuracy of the method and is highly
recommended.

If the goal is to characterize copy number variations then getting
paired end sequences is crucial.



Quality assessment

We can use the ShortRead package in R to conduct quality
assessment and get rid of data that doesn’t meet quality criteria.

To explore this we will use some data from dairy cows.

You can find a description of the data along with the actual data
in sra format at this site.

http://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP012475

While the NCBI uses the sra format to store data, the standard
format for storing data that arises from a sequencing experiment is
the fastq format.

We can convert these files to fastq files using a number of
tools-here is how to use one supported at NCBI called fastq-dump.



Quality assessment

To use this you need to download the compressed file, unpack it
and then enter the directory that holds the executable and issue
the command (more on these steps later).

sratoolkit.2.1.15-centos linux64/bin/fastq-dump SRR490771.sra

Then this will generate fastq files which hold the data.

If we open the fastq files we see they hold identifiers and
information about the reads followed by the actual reads:



Quality assessment

@SRR490756.1 HWI-EAS283:8:1:9:19 length=36
ACGAGCTGANGCGCCGCGGGAAGAGGGCCTACGGGG
+SRR490756.1 HWI-EAS283:8:1:9:19 length=36
AB7A5@A47%8@2@@296263@/.(3’=49<9<8,9
@SRR490756.2 HWI-EAS283:8:1:9:1628 length=36
CCTAATAATNTTTTCCTTTACCCTCTCCACATTAAT
+SRR490756.2 HWI-EAS283:8:1:9:1628 length=36
BCCC@CB>)%)43?BBCB@:>BBCBBBBBB=CB?BC
@SRR490756.3 HWI-EAS283:8:1:9:198 length=36
ATTGAATTTGAGTGTAAACATTCACATAAAGAGAGA
+SRR490756.3 HWI-EAS283:8:1:9:198 length=36
BBB<9ABCA<A2?5>BBB?BBB@BABB>?A*?9?<B

The string of letters and symbols encodes quality information for
each base in the sequence.



Quality assessment

Then we define the directory where the data is and read in all of
the filenames that are there

> library(ShortRead)
> dataDir <- "/home/cavan/Documents/NGS/bovineRNA-seq"
> fastqDir <- file.path(dataDir, "fastq")
> fls <- list.files(fastqDir, "fastq$", full=TRUE)
> names(fls) <- sub(".fastq", "", basename(fls))



Quality assessment

Then we apply the quality assessment function, qa, to each of the
files after we read it into R using the readFastq function

> qas <- lapply(seq along(fls), function(i, fls)
+ qa(readFastq(fls[i]), names(fls)[i]), fls)

This can take a long time as it has to read all of these files into R,
but note that we do not attempt to read the contents of the files
into the R session simultaneously (a couple of objects generated by
the call to readFastq stored inside R will really bog it down).

Then we rbind the quality assessments together and save to an
external location.

> qa <- do.call(rbind, qas)

> save(qa, file=file.path("/home/cavan/Documents/NGS/bovineRNA-seq","qa.rda"))

> report(qa, dest="/home/cavan/Documents/NGS/bovineRNA-seq/reportDir")

[1] "/home/cavan/Documents/NGS/bovineRNA-seq/reportDir/index.html"



Quality assessment

This generates a directory called reportDir and this directory will
hold images and an html file that you can open with a browser to
inspect the quality report.

So we now use the browser to do this-we see the data from run 12
is of considerably higher quality than the others but nothing is too
bad.

One can implement soft trimming of the sequences to get rid of
basecalls that are of poor quality.

A function to do this is as follows (thanks to Jeremy Leipzig who
posted this on his blog).

Note that this can require a lot of computational resources for
each fastq file.



Quality assessment

# softTrim

# trim first position lower than minQuality and all subsequent positions

# omit sequences that after trimming are shorter than minLength

# left trim to firstBase, (1 implies no left trim)

# input: ShortReadQ reads

# integer minQuality

# integer firstBase

# integer minLength

# output: ShortReadQ trimmed reads

library("ShortRead")

softTrim <- function(reads, minQuality, firstBase=1, minLength=5){
qualMat <- as(FastqQuality(quality(quality(reads))),’matrix’)

qualList <-split(qualMat, row(qualMat))

ends <- as.integer(lapply(qualList, function(x){which(x <

minQuality)[1]-1}))
# length=end-start+1, so set start to no more than length+1 to avoid

# negative-length

starts <-as.integer(lapply(ends,function(x){min(x+1,firstBase)}))
# use whatever QualityScore subclass is sent

newQ <-ShortReadQ(sread=subseq(sread(reads),start=starts,end=ends),

quality=new(Class=class(quality(reads)),

quality=subseq(quality(quality(reads)),

start=starts,end=ends)),id=id(reads))



Quality assessment

# apply minLength using srFilter

lengthCutoff <- srFilter(function(x) { width(x)>=minLength},
name="length cutoff")

newQ[lengthCutoff(newQ)]

}

To use:

> library("ShortRead")
> source("softTrimFunction.R")
> reads <- readFastq("myreads.fq")
> trimmedReads <- softTrim(reads=reads,minQuality=5,firstBase=4,minLength=3)

> writeFastq(trimmedReads,file="trimmed.fq")



Quality assessment

When you have mate pair reads things can be more complicated
depending on goal.

Some downstream analyses require that the mate pairs are the
same length-above procedure can’t guarantee that.

Typically use command line tools to do this, e.g. Trimmomatic is
popular.



Bowtie background

The keys to understanding how the algorithm implemented by
Bowtie are the Burrows Wheeler transform (BWT) and the FM
index.

1. the FM index: see Ferragina, P. and Manzini, G. (2000),
“Opportunistic data structures with applications”

2. the Burrows Wheeler transform (BWT): see Burrows, M. and
Wheeler, D.J. (1994), “A Block-sorting lossless data
compression algorithm”.

The Burrows Wheeler transform is an invertible transformation of a
string (i.e. a sequence of letters).



Computing the BWT

To compute this transform, one

1. determines all rotations of the string

2. sorts the rotations lexicographically to generate an array M

3. saves the last letter of each sorted string in addition to the
row of M that corresponds to the original string.
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