
RNA-Seq

Cavan Reilly

November 13, 2019

Table of contents

RNA-seq

Aligning reads to the transcriptome

TopHat

Cufflinks

RNA-seq using TopHat and Cufflinks

Tuxedo Suite 2.0

RNA-seq and count models
edgeR
DESeq

RNA-seq

As was mentioned previously, we can use next generation
sequencing to generate sequences from samples of RNA.

The transcriptome is the collection of all transcripts that can be
generated from a genome.

Current estimates indicate that 92-94% of human transcripts with
more than one exon have alternatively spliced isoforms (Wang,
Sandberg, Luo, et al. Nature, 2008).

This means that the same gene can give rise to multiple mRNA
molecules.

Some will differ because they have have different exons assembled
into an mRNA, but other possibilities include differences in use of
the transcription start site (TSS), and differences in the 5’ and 3’
untranslated regions (UTRs).

Aligning reads to the transcriptome

Differences in exon usage will result in mRNAs from the same gene
leading to different proteins, hence we speak of differential coding
DNA sequences (CDS).

One of the differences that arises due to differential 3’UTR usage
is alternative polyadenelation patterns.

These differences in 5’ and 3’ UTR usage lead to mRNA molecules
that have differential affinity for proteins that bind to the mature
mRNA molecule and we are just starting to understand how
biological processes are regulated by these subtle mechanisms.

RNA-seq

Note that there is a difference in aligning a set of reads from an
RNA sample and a DNA sample: the RNA molecules will have
undergone removal of introns hence they won’t align directly to the
genome.

If there is an annotated transcriptome for an organism you should
start out trying to use this to analyze your data.

However most investigations find evidence for transcripts that are
not currently annotated, even for well studied organisms like mice
and humans.

Duplicates

One of the differences between using next generation sequencing
for resequencing and profiling RNA levels is that with libraries
prepared from RNA, one often finds duplicate reads.

In fact it is not unusual to find that 60-80% of the reads are
duplicates.

Duplicates

In a resequencing study the chances of finding duplicates is quite
low: for example, the human haploid genome is about 3 billion bps
so the probability of observing a duplicate is about 1 in 3 billion, so
with 20-40 million reads, duplicate reads seem unlikely.

Duplicate reads can arise as a PCR artifact, hence in resequencing
studies duplicate reads should probably be treated as artifacts and
removed.

There is a SAMtools function called rmdup that can be used to do
this, but read the manual on its use: for example, it is designed for
paired end reads by default.

Library complexity

However, when we consider RNA-seq libraries, duplicates might
arise just due to low complexity of our sample.

By low complexity we mean there are not many distinct RNA
molecules.

The median length of a human transcript is 2186 nucleotides
(according to the UCSC hg19 annotation), so if one has a library
with only 1 type of transcript and generates 20 million reads from
it one is guaranteed to find duplicates.

So for analysis of RNA-seq experiments it is probably unwise to
remove duplicates.

Alignment algorithms

There are a number of algorithms that are designed to align a set
of short reads to the transcriptome, here is a short non-exhaustive
list.

1. TopHat

2. GSNAP

3. MapSplice

4. SpliceMap

5. HMMSplicer

6. HISAT2

However it is not clear at this point if any of these really dominate
the others in terms of performance.

However, TopHat and its extensions are popular, and as these build
off of Bowtie and its extensions, we will use this program in this
course.

TopHat

The basic idea behind TopHat is that if 2 segments of a read map
to different locations on the genome then they are likely mapping
to 2 different exons.

To use TopHat you need fastq files for all of our samples and the
genome sequence for the organism.

Note that sometimes the data for a single sample will be in more
than one fastq file.

While we can use Bowtie to align short reads to a genome, reads
that span an intron, or genes that span a splice junction, will not
align directly to the genome.

TopHat

If a read contains an internal segment that should map to an exon,
Bowtie will fail to map this read to its correct genomic location as
it won’t match the genome outside of this exon.

For this reason, Tophat initially splits the reads up into 25 base
units, does the read mapping, then reassembles reads.

Note: if you are using a set of reads that are shorter than 50 bases
you should instruct TopHat to break the reads into fragments that
are about half the length of your reads.

For example, if you have a set of Illumina reads that are 36 bases
you should instruct TopHat to break them into fragments of length
18 (using the --segment-length options, like
--segment-length 18), otherwise it may not detect any splice
junctions.

TopHat

TopHat starts out by mapping the reads to the genome using
Bowtie and sets aside those reads that don’t map.

It then constructs a set of disjoint covered regions (it no longer
uses the program Maq as it did at the time of the publication):
these are taken to be the initial set of exons observed in that
sample.

The program determines a consensus sequence using the reads,
however in low coverage regions it will use the reference genome to
determine the sequence.

Also, as the ends of exons are likely only mapped by reads that
span the splice junction, the disjoint regions covered by reads are
expanded (45 bases by default) using the reference sequence.

TopHat

For genes that are transcribed at low levels there could be gaps in
the exons after the assembly step, hence exons that are very close
are merged into a single exon.

Introns of length less than 70 bases are rare in mammalian
genomes, hence by default we combine exons that are separated by
less than this many bases (this can be adjusted).

The resulting set of putative exons (with their extensions from the
reference genome) we will call islands.

The 5’ end of an intron is called a donor site and the 3’ end is
called the acceptor site.

TopHat

This donor site almost always has the 2 bases GU at the end while
the acceptor site is almost always AG, but these are sometimes
GC-AG and AU-AC so current versions of TopHat also look for
these acceptor and donor sites.

TopHat uses these sequence characteristics to find potential donor
and acceptor site pairs in the island sequences (not just adjacent
ones, but nearby ones to allow for alternative splicing).

It then looks at the set of reads that were initially unmapped and
examines if any of these map to the sequence that spans the splice
junction.

To conduct this mapping TopHat uses the fact that most introns
are between 70 and 500,000 bases (the maximum differs from the
publication): these intron sizes are based on mammals, so the user
should specify values for these if using a different organism.

TopHat

It also requires that at least one read span at least 8 bases on each
side of the splice junction by default, but this value can be
adjusted.

It also only uses the first 28 bases from the 5’ end of the read to
ensure that the read is of high quality, but this too can be adjusted.

Finally the program reports a splice junction only if it occurs in
more than 15% of the depth of coverage of the flanking exons (the
15% value comes from the Wang et al. 2008, Nature paper), but
this is also adjustable as this is based on human data.

If one supplies a transcriptome to TopHat via a GTF file, the
program will first map reads to the transcriptome then try to
identify splice junctions for the unmapped reads.

TopHat

One can disable the subsequent search for splice junctions by
specifying the -T option if you have provided a transcriptome.

If you are going to use an annotated transcriptome then TopHat
will need to construct an index for this and if you are processing
multiple samples TopHat will redo exactly the same calculation for
each.

To save time, you should have TopHat do these calculations for
the first sample and save the results.

You can do this using the --transcriptome-index option. This
option expects a directory and a name to use in this directory.

TopHat

The exact syntax is like this: note that the
--transcriptome-index option must be used right after the -G
option.

tophat2 -o out sample1 -G known genes.gtf \
--transcriptome-index=transcriptome data/known \
hg19 sample1 1.fq.z

Then for processing the other samples we just tell TopHat where
these indices are and don’t specify the -G option

tophat2 -o out sample2 \
--transcriptome-index=transcriptome data/known \
hg19 sample2 1.fq.z

TopHat

To use the program first get the latest version

[user0001@boris bin]$ wget

http://ccb.jhu.edu/software/tophat/downloads/tophat-2.1.0.Linux x86 64.tar.gz

Then uncompress the binaries, enter the directory that is generated
and copy the executables to your path.

[user0001@boris bin]$ tar zxvf tophat-2.1.0.Linux x86 64.tar.gz

[user0001@boris tophat-2.1.0.Linux x86 64]$ cp tophat2 $HOME/bin/tophat2

[user0001@boris tophat-2.1.0.Linux x86 64]$ cp * $HOME/bin/

TopHat

Then you should test the installation, so get some test data.

[user0001@boris tophat-2.1.0.Linux x86 64]$ wget

http://ccb.jhu.edu/software/tophat/downloads/test data.tar.gz

Then uncompress, go into that directory and run a test

[user0001@boris tophat-2.1.0.Linux x86 64]$ tar zxvf test data.tar.gz

[user0001@boris tophat-2.1.0.Linux x86 64]$ cd test data

Then test by issuing the command (the -r 20 option indicates
that we think there are 20 bases between read pairs)

[user0001@boris test data]$ tophat2 -r 20 test ref reads 1.fq reads 2.fq

TopHat

and if it is working correctly this yields the following

[2015-11-04 11:54:03] Beginning TopHat run (v2.1.0)

[2015-11-04 11:54:03] Checking for Bowtie

Bowtie version: 2.2.6.0
[2015-11-04 11:54:03] Checking for Bowtie index files
(genome)..

Found both Bowtie1 and Bowtie2 indexes.
...

[2015-11-04 11:54:08] Run complete: 00:00:05 elapsed

Cufflinks

While TopHat is useful for aligning a set of reads to the
transcriptome, one must use some other program to generate
transcript level summaries of gene expression and test for
differences between groups.

One such program that is supported by the same group of
researchers that develop TopHat is Cufflinks.

Cufflinks uses the output from TopHat and we will see that one
can use functionality of the R package cummeRbund to examine
the output and generate reports and publication quality graphs.

It is designed for paired end reads but can be used for unpaired
reads.

Cufflinks

Cufflinks uses an expression for the likelihood of a set of paired end
reads that depends on the length of the fragments: with paired
end reads one can estimate the distribution of the lengths.

Note that there is a fundamental identifiability problem with
transcript assembly that is only mitigated by the presence of reads
that span splice junctions.

Suppose there are 2 exons and some reads map to both exons but
we are unable to identify any reads that span splice junctions.

If there are 2 exons there are 3 possible transcripts (2 with one of
each exon and a third that uses both) so if we allow for all 3
transcripts there are an infinite collection of combinations of the 3
transcript levels that are consistent with observed read counts that
hit both exons.

Cufflinks

For this reason one must enforce a constraint on the transcripts:
for example, we attempt to find the minimal set of transcripts that
explain the exon counts.

Cufflinks quantifies the level of expression of a transcript via the
number of fragments per kilobase of exon per million fragments
mapped (FPKM).

This attempts to account for the fact that longer transcripts will
generate more reads than shorter transcripts due to their length.

Cuffdiff is a program that is bundled with Cufflinks that allows one
to test for differences between experimental conditions.

Cufflinks

The log of the ratio of FPKM values are approximately normal
random variables: this allows one to define a test statistic once one
determines an approximation to the standard error of this log ratio.

This standard error depends on the number of isoforms for the
transcript: if there is a single isoform there is no uncertainty in the
expression estimate produced by the algorithm and the only source
of variability is from biological replicates.

If there are no replicates within conditions the standard error is
computed by examining the variance across the 2 conditions.

If there are not many transcripts that differ in their level of
expression this will provide a reasonable standard error, but if there
are replicates one can obtain better estimates of the variance of
the log ratio by using the negative binomial distribution.

Cufflinks

If there is only a single isoform then an approach similar to that
used in the R package DESeq is used, but if there are multiple
isoforms then uncertainty in the isoform expression estimates must
be taken into account: this is done using a generalization of the
negative binomial distribution called the beta negative binomial
distribution.

Some useful details:

While both BAM and SAM files can be used for input the program
requires that if chromosome names are present in the @SQ records
in the header of the file then the reads must be sorted in the same
order.

Make sure your chromosomes have exactly the same names in all
of your indices and GTF files.

RNA-seq using TopHat and Cufflinks

We’ve already installed and tested the latest version of TopHat, so
now let’s install Cufflinks using what is now the familiar strategy:
download the tarball, unpack it and write the executables to our
path by copying them to bin.

[user0001@boris bin]$ wget

http://cole-trapnell-lab.github.io/cufflinks/assets/downloads/cufflinks-2.2.1.Linux x86 64.tar.gz

[user0001@boris bin]$ tar zxvf cufflinks-2.2.1.Linux x86 64.tar.gz

[user0001@boris bin]$ cd cufflinks-2.2.1.Linux x86 64

[user0001@boris cufflinks-2.2.1.Linux x86 64]$ cp * $HOME/bin/

RNA-seq using TopHat and Cufflinks

Then test the installation using some test data, so download and
run.

Note that the link from the cufflinks site is broken, so download
the cufflinks test data from the course website.
[user0001@boris cufflinks-2.2.1.Linux x86 64]$ cufflinks test data.sam

and you should see

RNA-seq using TopHat and Cufflinks

You are using Cufflinks v2.2.1, which is the most
recent release.
[bam header read] EOF marker is absent.
[bam header read] invalid BAM binary header (this is
not a BAM file).
File test data.sam doesn’t appear to be a valid BAM
file, trying SAM...
...
[11:36:11] Assembling transcripts and estimating
abundances.
> Processed 1 loci. [*************************] 100%

Which indicates that this is working properly. This generates a
GTF file called transcripts.gtf which has information on transcripts
that were identified and their level of expression.

RNA-seq using TopHat and Cufflinks

As an example of using the TopHat/Cufflinks programs we will
analyze the data that was used to illustrate the protocol developed
by the authors of the programs (this is from the Nature Protocols
paper from March 2012).

The data is already loaded on the server and we’ve installed all of
the software, so we are almost ready to go.

We also need a set of Bowtie2 indexes and if we want to use an
annotated transcriptome we need a GTF file with that information.

RNA-seq using TopHat and Cufflinks

These have already been set up in the subdirectory
/export/home/courses/ph7445/data

The indexes are in the files with names that start with genome
located at
/export/home/courses/ph7445/data/Drosophila melanogaster/Ensembl/BDGP5/Sequence/Bowtie2Index

(there are 6 of these and I got them from the Illumina website).

The file Drosophila melanogaster.BDGP5.68.gtf was obtained from
ensembl.org:
ftp://ftp.ensembl.org/pub/release-73/gtf/drosophilia melanogaster.

RNA-seq using TopHat and Cufflinks

First we must use TopHat to map the reads in the fastq files to the
transcriptome.

Note that due to all of the options we are going to use we need to
break the command up into multiple lines: we do this by ending
each line with a back-slash.
[user0001@boris RNAseq]$ tophat2 -p 2 -G \
/export/home/courses/ph7445/data/Drosophila melanogaster.BDGP5.68.gtf \
-o C1 R1 thout \
/export/home/courses/ph7445/data/Drosophila melanogaster/Ensembl/BDGP5/Sequence/Bowtie2Index/genome \
/export/home/courses/ph7445/data/GSM794483 C1 R1 1.fq \

/export/home/courses/ph7445/data/GSM794483 C1 R1 2.fq

then you should see something like this

RNA-seq using TopHat and Cufflinks

[2015-11-11 14:53:01] Beginning TopHat run (v2.1.0)

[2015-11-11 14:53:01] Checking for Bowtie

Bowtie version: 2.2.6

[2015-11-11 14:53:01] Checking for Samtools

Samtools version: 1.1

[2015-11-11 14:53:01] Checking for Bowtie index files (genome)..

[2015-11-11 14:53:01] Checking for reference FASTA file

[2015-11-11 14:53:01] Generating SAM header for

/export/home/courses/ph7445/data/Drosophila melanogaster/Ensembl/BDGP5/Sequence/Bowtie2Index/genome

...

RNA-seq using TopHat and Cufflinks

Here is an explanation of the options that have been specified

I -p specifies the number of processors to use

I -G is used to give the location of the GTF file

I -o is used to give the desired location for the output

I last one gives the locations of the fastq files.

One then needs to issue similar commands for all of the other
samples: for these you just change the name of the output
directory and the name of the fastq files.

RNA-seq using TopHat and Cufflinks

For example, to process replicate 2 of condition 1 you would issue
the command
[user0001@boris RNAseq]$ tophat2 -p 2 -G \
/export/home/courses/ph7445/data/Drosophila melanogaster.BDGP5.68.gtf \
-o C1 R2 thout \
/export/home/courses/ph7445/data/Drosophila melanogaster/Ensembl/BDGP5/Sequence/Bowtie2Index/genome \
/export/home/courses/ph7445/data/GSM794484 C1 R2 1.fq \

/export/home/courses/ph7445/data/GSM794484 C1 R2 2.fq

Then you would do this for all 3 replicates in both conditions.

RNA-seq using TopHat and Cufflinks

You will notice that the program first looks for a FASTA file
holding the genome of D. melanogaster and if it can’t find it
reconstitutes the file from the Bowtie index (here we have obtained
this along with the Bowtie indices).

As it can do this very quickly this isn’t much of a concern but we
will need it latter on and it is easy to generate: just issue this
command.

[user0001@boris RNAseq]$ bowtie2-inspect

/export/home/courses/ph7445/data/Drosophila melanogaster/Ensembl/BDGP5/Sequence/Bowtie2Index/genome

> d melanogaster.fa

You should then reference this directory when you specify where
your index files are located.

RNA-seq using TopHat and Cufflinks

Then we process all of the resulting BAM files using cufflinks as
follows.

[user0001@boris RNAseq]$ cufflinks -p 2 -o C1 R1 clout
C1 R1 thout/accepted hits.bam

Again -p controls the number of processors and -o gives the
output directory.

Rather than typing all of these commands at the command line, it
is generally better to create a shell script that has these
instructions and is then run as a single job.

A shell script is a plain text file with linux commands, one per line.

RNA-seq using TopHat and Cufflinks

One of these is already set up-it is called
rnaseqDrosophilia.sh-so let’s take a look.

These files customarily end with the extension .sh and one
executes the commands in such a script with the following syntax:

[user0001@boris RNAseq]$ sh rnaseqDrosophilia.sh

When processing many files one can use R to create these files
(using for loops, paste and write)-this is much less error prone, you
have a record of what you did and it is more time efficient for you.

A complicated script

Here is an example of code that generates a script for an RNA-seq
analysis.
fls=list.files()

fls=fls[nchar(fls)>50]

chstr1=matrix(NA,3,11)

i1=1

dataDir="/run/media/cavan/MyBook/debesData/"

gtfDir="/home/cavan/Documents/NGS/"

for(i in seq(1,22,by=2)){
bsnm=substr(fls[i],1,nchar(fls[i])-21)

chstr1[1,i1]=paste("java -jar trimmomatic-0.33.jar PE -phred33 ",

dataDir,fls[i]," ",dataDir,fls[i+1]," ",dataDir,bsnm," R1 trim paired.fastq ",

dataDir,bsnm," R1 trim unpaired.fastq ",dataDir,bsnm," R2 trim paired.fastq ",

dataDir,bsnm," R2 trim unpaired.fastq ILLUMINACLIP:adapters/TruSeq3-PE.fa:

2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36",sep="")

chstr1[2,i1]=paste("tophat2 -p 8 -G ",gtfDir,"Homo sapiens.GRCh38.82.gtf -o ",

dataDir,bsnm," th ",gtfDir,"Homo sapiens.GRCh38.dna ",dataDir,bsnm,

" R1 trim paired.fastq ",dataDir,bsnm," R2 trim paired.fastq",sep="")

chstr1[3,i1]=paste("cufflinks -p 8 -g ",gtfDir,"Homo sapiens.GRCh38.82.gtf -o ",

dataDir,bsnm," cl ",dataDir,bsnm," th/accepted hits.bam",sep="")

i1=i1+1

}

write.table(chstr1,"newDataProcessing.sh",quote=F,row.name=F,col.name=F)

RNA-seq using TopHat and Cufflinks

The next step is to run cuffmerge to merge all of the transcriptome
data into a common set of transcripts.

To do this you need to create a text file that has the locations of
all of the GTF files that were created running cufflinks.

RNA-seq using TopHat and Cufflinks

Given our conventions for naming the output files from the
cufflinks runs this file just has the contents

./C1 R1 clout/transcripts.gtf

./C1 R2 clout/transcripts.gtf

./C1 R3 clout/transcripts.gtf

./C2 R1 clout/transcripts.gtf

./C2 R2 clout/transcripts.gtf

./C2 R3 clout/transcripts.gtf

let’s call that file assemblies.txt, then one runs cuffmerge as follows

RNA-seq using TopHat and Cufflinks

[user0001@boris RNAseq]$ cuffmerge -p 2 \
-g /export/home/courses/ph7445/data/Drosophila melanogaster.BDGP5.68.gtf \
-s d melanogaster.fa \

assemblies.txt

This command generates a directory called merged asm that
contains several GTF files and files that hold the FPKM estimates.

RNA-seq using TopHat and Cufflinks

Finally you issue the cuffdiff command to test for differential
expression
[user0001@boris RNAseq]$ cuffdiff -o diff out \
-b d melanogaster.fa -p 2 -L \
C1,C2 merged asm/merged.gtf C1 R1 thout/accepted hits.bam,\
C1 R2 thout/accepted hits.bam,C1 R3 thout/accepted hits.bam \
C2 R1 thout/accepted hits.bam,C2 R2 thout/accepted hits.bam,\

C2 R3 thout/accepted hits.bam

RNA-seq using TopHat and Cufflinks

As this demonstrates, we need to instruct the program where the
FASTA file is, the output directory and the number of processors
as before, but now we must also include information on

I the labels to use -L C1,C2 to denote the conditions

I the location of the merged GTF file

I the locations of all of the BAM files generated by TopHat

RNA-seq using TopHat and Cufflinks

Then this will generate the following output

You are using Cufflinks v2.1.1, which is the most recent release.

[17:17:55] Loading reference annotation and sequence.

Warning: couldn’t find fasta record for ’2LHet’!

This contig will not be bias corrected.

Warning: couldn’t find fasta record for ’2RHet’!

This contig will not be bias corrected.

...

[17:17:31] Testing for differential expression and regulation in locus.

> Processed 11618 loci.

[*************************] 100%

Performed 14929 isoform-level transcription difference tests

Performed 10380 tss-level transcription difference tests

Performed 8078 gene-level transcription difference tests

Performed 11234 CDS-level transcription difference tests

Performed 2605 splicing tests

Performed 1595 promoter preference tests

Performing 1893 relative CDS output tests

...

Writing CDS-level read group tracking

Writing read group info

Writing run info

New protocols for using Cufflinks

While the approach just describes works fine, the program has
recently changed to allow for direct output of feature summaries
and to facilitate the analysis of many samples.

This is accomplished via 2 new programs: cuffquant and cuffnorm.

The program cuffquant estimates gene expression from a single
bam file and produces a CXB file.

These CXB files are then submitted to cuffdiff, which makes
cuffdiff run faster.

New protocols for using Cufflinks

The CXB files can then be submitted to cuffnorm.

The program cuffnorm just produces a table of gene expression
values: it does no testing for differential expression.

This is useful if you just want to make some plots (e.g. heatmaps)
or use some other method for testing for differential expression.

This is useful when your experiment entails more than just a 2
sample comparison.

New protocols for using Cufflinks

The output from cuffnorm can either be a gene tracking table that
can be read by cummeRbund or just a tab delimited file.

To run cuffquant one gives an ouput dirrectory name and supplies
a gtf file and a bam file

[user0001@boris RNAseq]$ cuffquant -o C1 R1 quant out -b genome.fa -p 2

merged asm/merged.gtf C1 R1 thout/accepted hits.bam

which gives the following output

You are using Cufflinks v2.2.1, which is the most
recent release.
[13:16:41] Loading reference annotation and sequence.
Warning: couldn’t find fasta record for ’2LHet’!
This contig will not be bias corrected.
...

New protocols for using Cufflinks

then run cuffdiff on this

[user0001@boris RNAseq]$ cuffdiff -o diff out \
-b genome.fa -p 2 -L \
C1,C2 merged asm/merged.gtf C1 R1 quant out/abundances.cxb,\
C1 R2 quant out/abundances.cxb,C1 R3 quant out/abundances.cxb \
C2 R1 quant out/abundances.cxb,C2 R2 quant out/abundances.cxb,\
C2 R3 quant out/abundances.cxb

which gives output like

New protocols for using Cufflinks

You are using Cufflinks v2.2.1, which is the most recent release.

[15:53:31] Loading reference annotation and sequence.

Warning: couldn’t find fasta record for ’2LHet’!

This contig will not be bias corrected.

Warning: couldn’t find fasta record for ’2RHet’!

...

> Processed 11619 loci. [*************************] 100%

Performed 14900 isoform-level transcription difference tests

Performed 10382 tss-level transcription difference tests

Performed 8078 gene-level transcription difference tests

Performed 11232 CDS-level transcription difference tests

Performed 2606 splicing tests

Performed 1595 promoter preference tests

Performing 1895 relative CDS output tests

Writing isoform-level FPKM tracking

Writing TSS group-level FPKM tracking

...

Writing run info

RNA-seq using cummeRbund

We can then examine the output using the R package
cummeRbund, so start up R by typing R at the linux command
prompt.

Then install the package from bioconductor as usual, and when
asked about a personal library just type a y and hit return.

> source("http://www.bioconductor.org/biocLite.R")
Bioconductor version 2.14 (BiocInstaller 1.14.2),
?biocLite for help
> biocLite("cummeRbind")
Would you like to use a personal library instead?
(y/n) y
Would you like to create a personal library
/R/x86 64-unknown-linux-gnu-library/3.1

to install packages into? (y/n) y

RNA-seq using cummeRbund

then as usual use biocLite

> biocLite("cummeRbund")

this has failed for me previously (this year too), in that event issue
this command

> biocLite("BiocUpgrade")

and then the installation was fine, so now load the library and read
in the output from cufflinks

> library(cummeRbund)
> cuff data <- readCufflinks(’diff out’)
Creating database diff out/cuffData.db
Reading Run Info File diff out/run.info
Writing runInfo Table
...

RNA-seq using cummeRbund

Then we can examine the object to see what sorts of tests we can
examine.
> cuff data

CuffData instance with:

2 samples

14700 genes

27813 isoforms

18216 TSS

19291 CDS

14700 promoters

18216 splicing

13364 relCDS

RNA-seq using cummeRbund

And we can test for differences in gene expression using
straightforward commands as follows.

> gene diff <- diffData(genes(cuff data))
> sig gene diff <- subset(gene diff,
+ significant==’yes’)
> nrow(sig gene diff)
[1] 271

RNA-seq using cummeRbund

We can make some exploratory plots as follows
> pdf("explorPlt1.pdf")
> csDensity(genes(cuff data))
> dev.off()
> pdf("explorPlt2.pdf")
> csScatter(genes(cuff data), ’C1’, ’C2’)
> dev.off()
> pdf("explorPlt3.pdf")
> csVolcano(genes(cuff data), ’C1’, ’C2’)
> dev.off()
> mygene <- getGene(cuff data, ’regucalcin’)
> pdf("explorPlt4.pdf")
> expressionBarplot(mygene)
> dev.off()
> pdf("explorPlt5.pdf")
> expressionBarplot(isoforms(mygene))
> dev.off()

0.0

0.2

0.4

−2 0 2 4
log10(fpkm)

de
ns

ity

condition

C1

C2

genes

10

1000

10 1000
C1

C
2

genes

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●
●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ● ●●

●

● ●●●●

●

●● ●●●●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●
●
●
●

●

● ●

●

●

● ●
●

●

●

●

●

● ●●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●

●

●● ● ●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●

●

●

● ●● ●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●●●●●

●

●

●

●
●

●●●● ●●●

●

●

●●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●

●

●

●

●●
●

●

●●●●●●●●●●●

●

●●●

●●

● ●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●

●

●
●

●

●

●

●

● ●●●●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●● ●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●
●

●●

●

●●

●

●

●

●

●●●

●

●● ●●●●●●●
●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●●

●

●

●● ●●

●

● ●●

●

●●

●

●

●● ●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●
●

●

●●●

●

●

●

●

●

●

●

● ●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●●●●●● ●●● ●

●
●

●

●
●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●
●

●

●

●

●●

●

●

●●●●

●

●●●●●

●

●

●

●●●●

●

●

●

●●●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●

●

●

●● ●●●● ●

●

●
●

●

●

●● ●●●

●

●

●

●● ●●●

●

●

●
●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●● ●●

●
●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●
●
●● ●●●●●●●●●●●

●●

●

●●●●●● ●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●
●

●

●● ●●●●●

●

●●●●●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●●

●

●

●

●

●●

●

●●●●●●●

●

●●●●●● ●

●

●●●
●

●●

●

●●

●

●

●

●●●●

●
● ●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●● ●

●

●

●

●

●
●

●

●

●

●● ●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

● ●●●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●● ●●●

●

●

●

●

●

●
●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●
●●● ●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●● ●●●●●●● ●●●●●●

●

●

● ●●●●●●●

●

●●

●

●

●

●● ●●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●● ●●●●

●

●

●●● ●
●

●

●

●

●●●●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●

●
●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●●●●●

●

●

●

●●

●

●●● ●●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●● ●

●

● ●●●●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●●●●

●

●●●

●

●

●●●●●

●

●

●

●

●●●
●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●●

●

●

●

● ● ●●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●
●●

●

● ●●
●
●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●●●●●● ●●●●
●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●
●

●

●
●●●●●

●

●●●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

● ●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●●●●●●●●●●
●●

●

●

●

●

●

●●●●●

●

●● ●●●●

●

●
●

●

●

●

●

●●
●

● ●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●
●
●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●●
●

●

●● ● ●●●

●

●

●

●

●●●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●●●●

●

●

●

●

●

●

●

●
●●

●

●●●●●
●

●

●●●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●
●●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●●

●

●

●●

●

●●●●●●●●●●● ●● ●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●●●●

●
●

●

●

● ●

●

●●

●

●

● ●●●●●●●●

●

●

● ●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

●●

●

●

●

●●

●

●● ●

●

● ●

●

●

●

●
●

●

●●●●●●●●

●

●

●●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●●●

●

●

●

●●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●●● ●●●●● ●

●
●

●

●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●●

●

●●

●

●●●

●
●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

● ●●●●●●●

●

● ● ●

●

●

●

●

●●●

●

●

●●●●● ●●●●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

● ●●

●

●

●●●

●

●●●●●●●●●

●

●

●

●

●

●

●●●

●

●●

●

● ●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

● ●

●

●

●
●

●

●

●

●

●●●●●●●●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●
●
●●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●
●●●

●

● ●●●● ●●

●

●●
●

●

●

●

●●●●●
●

●

● ●●●●

●

●
●
●●●

●

●

●

●

●●●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●

● ●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●
●

●

●●●

●

●

●

●

●●

● ●●●

●

●

●●● ●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●●●●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●●●●

●
●

●

●
●●

●

●

● ●●●●

●

●●
● ●

●

●

●

●●●●●●

●

●

●

● ●

●

●

●

●

●

●●●● ●●●●●●●

●

● ●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●●●●●●●● ●●
●
●

●

●

●

●

●

●

●●

●

●

●●●●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●● ●

●

●

●

●

●

●● ●●●●●● ●●●●●
●

●

●

●

●●●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●● ● ●

●

●

●

●

● ●

●

●●●●●

●
●

●
●●

●

●

●

●

●●

●
●

●

●●●

●

●●●

●

●●●●●●●●●●● ●●

●

●

●

●
●

●

●●●●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

● ●●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●●

●
●

●●●●●●●● ●●●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●
●
●

●

●

●

●

●●●
●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●●

●

●

●

●●●●●●●●● ●●●●
●
● ●

●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●●●●●●

●●

●
●

●

●

●

●●●●●●●

●

●●

●

● ●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

● ●●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●●●●●●●● ●●●● ●

●

●●●●●

●

●●●●●

●
●

●

●

●

●

●

●
●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●●● ●●●●●●●●●●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●●

●

●●

●

●

●

●

●

●●

●
●
●

●●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●●●●●●●●●●

●

●●●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●● ● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●● ●● ●●●●●●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●● ●●● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●● ●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●● ●

●

●

●

●●

●

●

●●●●●●●●

●
●

●

●

●●●●

●

●

●●● ●● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

● ●●●●● ●●●●●●●●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●●
●

●

●

●

●

● ●●●

●

●

●●●●

●
●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●●●●●●●●●
●
● ●● ●●●●●●●● ●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●
●

●

●●●

●

●

●●●

●
●

●●●●●●● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●●●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

● ●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●● ●●●

●
●

●

●●●

●

●

●●

●

●

●

●●●●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●●

●

● ●●●●

●

●

●

●

●

●

●●● ●●●●●●●●●●● ●●● ●●●●●●●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●
●
●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●

●

●
●●●●●●●●●●

●

●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●● ● ●

●

●

●

●

●

●

●

●

●
●

● ●●●●●●●●●● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●●●●● ●

●

●

●

●

● ●●●● ●●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●● ●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

● ●●●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●●

●

●●●●●●

●

● ●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●● ●

●

●

●

●

●● ●● ● ●

●

●

●

●

●

●●

●

●●●●●●●● ●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●●●●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

● ●

●

●●

●

●

●●●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●●● ●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●● ●●

●

●● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●

●
●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●●●●●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●●

●●

●

●
●

●●●

●

●●●

●

●●●●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●●●●● ●●●●●●●● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●● ●●●●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●●●●●●●

●

●●●●● ●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●● ●●●●

●

●●

●●

●●

●

●

●

●●●●●

●
●

●
●

●●●●●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●● ●●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●
●
●
●

●

●●●●●

●

●
●●●●●●●●●●●●●●●●●●● ●●●●●●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

● ●

●

●

●●●

●●
●

●●

● ●

●

●●

●

●

●●●

●

●●
●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
● ●

●

●

●●

●

●

● ●●
●
●

●

●●

●

●

●

●

●● ●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●●
●

●●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●●● ●

●

●

●
●

●●●

●

●

●
●

● ●

●

●

●

● ●●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●●●
●

●

● ●

●

●
●
●●

●●

●

●

●

●

●

●

●

●●●● ●
●

●

●● ●

●

●

●

●

●●●● ●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●

●

●●●●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●●

●

●●

●●●●●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●●

●
●

● ●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●●●● ●

●

●●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●

●

●

●

●●●●●●● ●●

●

● ●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●

●

●●

●

●●●●●●●●●●●●●

●
●

●

●

●

●

●●●●● ●●
●

●

●

●

●
●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●● ●●● ● ●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

● ●
●
●●●●
●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●● ●●

●

●

●●●●●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●●● ●

●

●

●

●●●●●●●● ●●●●●●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●●●●●● ●

●
●

●

●

●●●● ●● ●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●●●●●
●

●

●●

●

●

●

●● ●●●●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●

●

●●●●●●●●●● ●

●

●

●

●●●●●●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●●●●●

●

●

●

● ●●●

●

●

●

● ●●●

●

●●●●●●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●●

●

●●● ●●●●●●

●

●

●

●

●

●●
●

●

●

●

●● ●●

●

●●●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●● ●

●

●

●
●

●

●●

●●

●

●
●

●●

●

●
●

●

● ●●●●

●

●

●●

● ●●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●●●

●

●

●● ●●●●●

●

●
●●● ●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●●●●●

●

●

●

●●

●

●

●●
●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●
●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●

●●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●

●●●

●

●● ●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●● ●●●●●●●●●●● ●●●

●

●

●

●

●

●

●

●●●●● ●

●

●

●

●

● ●●

●

●

● ●●●●●●●●●●● ●●● ●

●

●●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●
●

●

●

●

● ●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●
●

● ●●●●●●●●●●

●

●
●

●

●●● ●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●●
●●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ●●●●●

●

●

●
● ●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

● ●●

●

●

●●● ●

●

●●●
●
●●●

●

●●

●

●

●●●

●

●

●

●

●●●

●

●● ●

●

●

●

● ●●●●●

●

●
●

●

●

●●
●
●●●

●

●

●

● ●

●

●

●

●

●

● ●●●●

●

●●●

●

●
●

●

●● ●●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●●● ●●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●
●

●

●●● ●●

●

●

●

●

●●

●

●

●

●●

●

●●

●● ●●●

●

●●

●

●

●

●●

●

●

●●●●●●●●●●●

●

●

●●●●

●

●●●●

●

●●●

●

●●●●●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●● ●

● ●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●
●
●●●●

●●

●

●●● ●●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●
●●

●

●

●

●●●● ●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●●●●●●● ●●●●

●

●

●

●●● ●●●● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●● ●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●●●●●●●● ●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●●●●●●●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●●●●●●●●●●●

●

●

●

●
●

●●●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●● ●

●

●● ●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

● ●●

●

●●

●

●●●
●●
●

●

●

●● ●●

●

● ●●● ●

●

●

●

●●●
●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●
●

●

●●● ●

●

● ●●●

●

●● ● ●

●

● ●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

● ●

●

●●●

●●
●●●●●●●●

●

●●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●●●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●
●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●●●●●●●

●

●●

●

●

●
●●●
●
●

●

●

●
●

●

●
●●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●
●●●●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●●

●

●

●●●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●●

●
●

●

●

●● ●

●

●

●

●●

●

●

●
●●●●●

●

●

●

●●●● ●●

●

●

●

●
●

●

● ● ●

●

●●

●

●

●

●●●

●

●

●

●

●

●● ●●

●

●

●

●●

●● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●● ●

●

●
●●●●

●

●● ●●●●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

● ●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●●●●●●●●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●● ●
●
●●●●●●● ●●●●●

●

●

●

●

●
●

●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●
●
●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●●

●●

●

●

●

● ●●● ● ●

●

●

●

●●

●

●●
●●
●

●

●

●

●

●

●

●

●●●●●●●●●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●
●● ● ●

●

●●●●

●

●

●●●●

●

●

●

●

●

●●●

●

●●

●

●
●
●

●
●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●● ●

●

●

●● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●
●

●
●

●

●

●

●

●
●●●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●● ●

●

●

● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●● ●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●●●●

●

●
●●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●

●

●●●●●

●

●

●

●

●
●●

●

●●

●

●●●●

●

●

●●●●● ●

●●

●●●● ●●●●
●
●●●●● ●●●

●

●
●

● ●●●●● ●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●
●●●●●●

●

●

●

●
●

●

●

● ●●

●●

●●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●●●●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●● ●

●

●

●

●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●●● ●●● ●●

●

●

●

●

●

●●●●
●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●●●●●

●

●● ●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●●
●
●●●

●

●

●

●

●

●

●

●

● ●●●●●

●

●●● ●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●●●●●

●

●

●

●●●●

●●

●
●●

●

●

●

●
●

●

●●●
●

●

●

●

●
●●

●
●

●● ●

●

●

●

●

●

●

●

●
●●

●

●●●●●●●●●●
●

● ●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●●●●●●●● ●●●●● ●●●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●●

●

●
●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●●● ●●●●● ●
●

●

●●● ●

●

●●●

●

●

●

●
●●

●

● ●

●

●● ●●●●

●

●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●●●●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●●●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●●● ●●●

●

●

●
●

●●
●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●●● ●

●

●
●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●●

●

● ●●●●

●

●

●

●

●

●●

●

●

●●●● ● ●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●●●● ●●●●

●

●

●●●●●

●

●

●
●

●

●

●●●

●

●

●●●
●●

●

●
●

●

●●●

●●

●●●● ●

●
●

●
●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●● ●●● ●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●●●●● ●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●
●●

●

● ●

●

●●●●

●

●●● ●

●

●● ●

●

●

●

●

●

●●●● ●●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

● ●●●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●●●●●●

●

●

●

●

●

●

●
●

●● ●● ●

●

●

●● ●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●●

●●

●●

●
●

● ●

●

●●●●●●● ●●●●●

●

●

●
●

●

●

●●●●● ●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
● ●

●

●
●

●

●

●● ●●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●●●●●

●

●●●

●

●

● ●

●

●●●●●● ●

●

●

●●
●

●

●

●
●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●● ●●●●

●

●●●

●

●

●

●

●●

●●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●● ●
●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●●●● ●●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●● ●●● ●●

●●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●●●●

●

●
●

●

●

●

●●●●● ●●
●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●
●●

●

●

●●

●

●●

●

●

●●●

●

●

●

●
●
●● ●●●

●

●

●● ●

●

●

●

●

● ●●●●●●

●

●

●

●

●

● ●●●●

●

●

●

●
●●

●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●

●

● ●●●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●●●

●

●●●● ●●●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●●●●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●●●

● ●

●

●

●

●

● ●●●●● ●

●

●●

●

●

●●

●●●

●

●

●

●

●

●●●●●

●
●●
●

● ●

●

● ●

●●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●●

●

●●● ●

●

●●●●● ●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●●●●●

●

●
●
●

●

●

●
●

●

●

●

●
●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●● ●●

●

●●●●● ●

●

●

●

●

●●●●● ●

●

●

●

●●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●
●●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●●
●●

●

●

●

●

●
●●●●●●●●

●

●

● ●● ●

●

●
●●●● ●●

●

●

●●

●● ●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●● ●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●

●●

●

●
●

●

●

●

●
●●●●●●●

●

●● ●

●

●

●

●

●

●

●

●

●
●

● ●●●●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●

●

●●●●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●●●●●●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

● ●●● ●

●

●

●
●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●●●●●●●●

●

●●● ●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

● ●●

●
●

●

●

●

●

●

●●●●●●●●●

●

●

●●●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●● ●

●

●●●

●

●●●●●

●

●●

●
●

●

●

●●●

●

●●

●

●

●

●

●●●0

1

2

3

4

−20 −10 0 10 20
log2(fold change)

−
lo

g 1
0(

p
va

lu
e)

significant
● no

genes: C2/C1

OK OK

XLOC_012967

0

1000

2000

3000

C
1

C
2

sample_name

F
P

K
M

regucalcin

OK OK OK OK

OK OK OK OK

TCONS_00024611 TCONS_00024612

TCONS_00024613 TCONS_00024614

0

1000

2000

0

1000

2000

C
1

C
2

C
1

C
2

sample_name

F
P

K
M

regucalcin

RNA-seq using cummeRbund

But one can go beyond just testing for differences in gene
expression. We can also do tests for differences in isoform, TSS,
and CDS usage as follows.

> isoform diff <- diffData(isoforms(cuff data), ’C1’, ’C2’)
> sig isoform diff <- subset(isoform diff,
+ significant==’yes’)
> nrow(sig isoform diff)
[1] 295
> tss diff <- diffData(TSS(cuff data), ’C1’, ’C2’)
> sig tss diff <- subset(tss diff, significant==’yes’)
> nrow(sig tss diff)
[1] 281
> cds diff <- diffData(CDS(cuff data), ’C1’, ’C2’)
> sig cds diff <- subset(cds diff, significant==’yes’)
> nrow(sig cds diff)
[1] 276

RNA-seq using cummeRbund

Note that the values returned by diffData are data.frames so we
can examine and manipulate individual elements for further
investigation.

> colnames(tss diff)

[1] "TSS group id" "TSS group id" "sample 1" "sample 2"

[5] "status" "value 1" "value 2" "log2 fold change"

[9] "test stat" "p value" "q value" "significant"

so we can just do

> table(tss diff[,12])
no yes

17935 281

RNA-seq using cummeRbund
Promoters, splicing and relative CDS are treated a little differently:
one uses the distValues function as follows (this also returns a data
frame so we can manipulate the results).

> promoter diff <- distValues(promoters(cuff data))
> sig promoter diff <- subset(promoter diff,
+ significant==’yes’)
> nrow(sig promoter diff)
[1] 137
> splicing diff <- distValues(splicing(cuff data))
> sig splicing diff <- subset(splicing diff,
+ significant==’yes’)
> nrow(sig splicing diff)
[1] 163
> relCDS diff <- distValues(relCDS(cuff data))
> sig relCDS diff <- subset(relCDS diff,
+ significant==’yes’)
> nrow(sig relCDS diff)
[1] 150

Tuxedo Suite 2.0

There is ongoing development of all of these tools: instead of
Bowtie, TopHat, Cufflinks and CummeRbund...

there is a more current set of tools called HISAT2, StringTie and
ballgown.

HISAT2 works almost exactly like Bowtie: there are 3 wrapper
functions that allow

1. index construction

2. deduction of the sequence from a set of indices

3. alignment

HISAT2

$ hisat2 -p 8 --dta -x chrX_data/indexes/chrX_tran -1 chrX_data/samples/ERR188104_chrX_1.fastq.gz -2 \\

chrX_data/samples/ERR188104_chrX_2.fastq.gz -S ERR188104_chrX.sam

1292343 reads; of these:

1292343 (100.00%) were paired; of these:

105837 (8.19%) aligned concordantly 0 times

1171022 (90.61%) aligned concordantly exactly 1 time

15484 (1.20%) aligned concordantly >1 times

105837 pairs aligned concordantly 0 times; of these:

3907 (3.69%) aligned discordantly 1 time

101930 pairs aligned 0 times concordantly or discordantly; of these:

203860 mates make up the pairs; of these:

103193 (50.62%) aligned 0 times

98300 (48.22%) aligned exactly 1 time

2367 (1.16%) aligned >1 times

96.01% overall alignment rate

RNA-seq with Tuxedo 2.0

To use the new algorithm, you first align reads to an index using
hisat2 as on the last slide.

Then you use samtools to sort by position and convert to bam files.

$ samtools sort -@ 8 -o ERR188044_chrX.bam ERR188044_chrX.sam

Then you use StringTie to assemble the transcripts

$ stringtie -p 8 -G chrX_data/genes/chrX.gtf -o ERR188044_chrX.gtf l ERR188044_chrX.bam -l ERR188044

RNA-seq with Tuxedo 2.0

Then you create a text file that has the names of all of your gtf
files. Here we call this mergelist.txt and this file has the following
text:

ERR188044_chrX.gtf
ERR188104_chrX.gtf
ERR188234_chrX.gtf
ERR188245_chrX.gtf
ERR188257_chrX.gtf
ERR188273_chrX.gtf
ERR188337_chrX.gtf
ERR188383_chrX.gtf
ERR188401_chrX.gtf
ERR188428_chrX.gtf
ERR188454_chrX.gtf
ERR204916_chrX.gtf

RNA-seq with Tuxedo 2.0

Then you merge the results from all of the assemblies

$ stringtie --merge -p 8 -G chrX_data/genes/chrX.gtf \\
-o stringtie_merged.gtf chrX_data/mergelist.txt

RNA-seq with Tuxedo 2.0
Then you can compare to reference (this is optional and requires
the program gffcompare, which is basically cuffcompare from the
first Tuxedo protocol)

$ gffcompare -r chrX_data/genes/chrX.gtf -G -o merged \\
stringtie_merged.gtf

then estimate expression levels for each sample

$ stringtie -p 8 -G stringtie_merged.gtf -o \\
ballgown/ERR188044/ERR188044_chrX.gtf \\
ERR188044_chrX.bam -e -B

Then one can use ballgown or just read into R oneself.

RNA-seq with Tuxedo 2.0

The results are found in the gtf file that is produced after using
StringTie with the merged.gtf file

Here is a function that can be used to read the results into R:

> getTx <- function(smpNm){

+ flnm=paste0("ballgown/",smpNm,"/",smpNm,"_chrX.gtf")

+ fl=read.delim(flnm,skip=2,header=F)

+ tx=fl[fl[,3]=="transcript",]

+ txid=substr(tx[,9],regexpr("transcript_id ",tx[,9]),regexpr("; cov",tx[,9])-1)

+ fpkm=as.numeric(substr(tx[,9],regexpr("FPKM ",tx[,9])+5,regexpr("; TPM",tx[,9])-1))

+ gprst=regexpr("gene_name",txid)>0

+ gname=ifelse(gprst,substr(txid,regexpr("gene_name",txid)+10,10000), substr(txid,15,10000))

+ data.frame(gname=gname,fpkm=fpkm,txid=txid)

+}

RNA-seq with Tuxedo 2.0

One could use that then as follows:

> fls=list.files()
> smpNms=substr(fls[grep("bam",fls)],1,9)
> txData=vector("list",length(smpNms))
> for(i in 1:length(smpNms)) txData[[i]]=getTx(smpNms[i])

RNA-seq with Tuxedo 2.0

Then you would check that all samples have same set of
transcripts and then merge as follows

> datmat=matrix(NA,dim(txData[[1]])[1],length(smpNms))

> txid=sort(as.character(txData[[1]][,3]))

> for(i in 1:length(smpNms)){

+ datmat[,i]=txData[[i]][order(as.character(txData[[i]][,3])),2]

+ }

Then one has a data matrix of gene expression values and one can
proceed as one wishes.

Negative binomial distribution

The Poisson distribution is commonly used as a probability model
for data that arises as counts (i.e. the number of occurrences of
some event).

For this reason, early RNA-Seq papers used this as a model for the
number of reads mapping to some genomic feature (e.g. an exon).

However one feature of the Poisson distribution is that the mean is
equal to the variance and frequently the observed variance exceeds
the mean: we call this overdispersion.

If one assumes that the means of the count data follow a gamma
distribution (which is a particular probability distribution) then if
you average over the gamma distribution the distribution of the
counts follows a negative binomial distribution.

Negative binomial distribution

We can do this in R with simulation:

> c1 <- rpois(100, 2)
> table(c1)
c1
0 1 2 3 4 5 9

12 26 22 29 9 1 1

and if we look at the mean and variance:

> mean(c1)
[1] 2.07
> var(c1)
[1] 1.984949

Negative binomial distribution

Now simulate data for 100 exons so that first 50 have mean 2 and
the last 50 have mean 6 and examine

> for(i in 1:50) exCnt[i]=rpois(1, 2)
> for(i in 51:100) exCnt[i]=rpois(1, 6)

then the mean and variance are still about equal if you look within
exon groups with the same parameters

> mean(exCnt[1:50])
[1] 2.3
> var(exCnt[1:50])
[1] 1.846939
> mean(exCnt[51:100])
[1] 6.14
> var(exCnt[51:100])
[1] 7.265714

Count based methods

but

> mean(exCnt)
[1] 4.22
> var(exCnt)
[1] 8.23394

the variance is larger than the mean.

RNA-seq data analysis

Now, rather than just using 2 distinct values for the means suppose
that they are generated from a gamma distribution, then use these
simulated means to simulate data using the Poisson distribution

> mSim <- rgamma(100,5,3)
> exCnt <- rpois(100, mSim)
> mean(exCnt)
[1] 1.87
> var(exCnt)
[1] 2.599091

So here, the distribution of exCnt is negative binomial.

RNA-seq data analysis

There are 2 popular packages (called edgeR and DESeq) that
assume that one has data in the form of counts of the number of
times a read mapped to a genomic feature (e.g. a gene or a
transcript).

The counts are then modeled as being independently distributed
according to the negative binomial distribution.

The negative binomial distribution has 2 parameters: one
determines the mean and the other, called a dispersion, determines
how much bigger the variance is than the mean.

Both packages first estimate the size of the library (in slightly
different ways) then use a regularized estimate of the dispersion
(like variance estimation in microarray analysis).

RNA-seq data analysis

The differences are:

1. the packages use different methods for estimating the library
sizes (i.e. the sequencing depth in the different samples)

2. the DESeq package assumes that the dispersions are related
to the means and uses this relationship to estimate the feature
level dispersions.

3. the DESeq package uses a computationally faster and simpler
method for estimating the dispersion parameters (but relies on
an approximation that the sum of 2 negative binomial random
variables is itself distributed according to the negative
binomial distribution)

4. the DESeq package provides a set of graphics functions for
model diagnostics

RNA-seq data analysis

The authors of the DESeq package claim that the second property
is what makes their method superior because it allows their
algorithm to have equal power over the entire range of dispersions.

This makes edgeR conservative for highly expressed genes and
anticonservative for genes expressed at low levels.

A mathematical proof of this claim isn’t presented, but this is seen
when analyzing data and in simulations.

RNA-seq data analysis

We can also get data that has been aligned and for which feature
counts are available from GEO.

As an example, we will use data from the experiment in which 2
groups of cows were under different levels of stress and liver
biopsies were obtained near the time of calving (we saw this when
discussing quality assessment).

The table of counts is on the server, so we can just read in the
data.

> bovCnts <- read.table("/export/home/courses/ph7445/data/bovineCounts.txt")

> dim(bovCnts)
[1] 21996 11

Now set up an indicator for group membership.

grp <- factor(c(rep(1,5),rep(2,6)))

RNA-seq data analysis

We will next apply a filter to the data and exclude transcripts
where the minimum count across all subjects is less than 5

> f1 <- apply(bovCnts,1,min)
> sum(f1>4)
[1] 10990
> bovCntsF <- bovCnts[f1 > 4 ,]
> dim(bovCntsF)
[1] 10990 11

Now we will use the edgeR package to test for differential
expression.

RNA-seq with edgeR

After installing and loading the edgeR package from Bioconductor
we first initialize our DGE list, then estimate the mean dispersion
parameter and then use this to get the individual dispersions.

> delist <- DGEList(counts=bovCntsF, group=grp)
Calculating library sizes from column totals.
> delist <- estimateCommonDisp(delist)
> delist <- estimateTagwiseDisp(delist)

Then we conduct the exact test that is similar to Fisher’s exact
test.

> et <- exactTest(delist)

RNA-seq data analysis

Then we examine the result

> head(et$table)
logFC logCPM PValue

2 0.06505177 5.056512 0.779727454
4 0.70017935 2.995358 0.037290862
5 0.32148049 6.605787 0.049108650
6 0.43768318 8.275121 0.002175286
7 -0.30086851 3.758206 0.345883682
8 -0.08476951 3.576230 0.813614805

RNA-seq data analysis

Then we use the Benjamini Hochberg method to correct for
multiple hypothesis testing.

> padj <- p.adjust(et$table[,3], method="BH")
> sum(padj<0.05)
[1] 130

So we are detecting 130 differences in transcript levels while
controlling the FDR at 5%.

For this example there doesn’t appear to be any connection
between the estimated level of gene expression (in terms of the
average log2 of the counts per million) and the p-values.

> cor(et$table[,2], et$table[,3])
[1] -0.02783438

RNA-seq data analysis

We can also use the DEseq package in a similar fashion: initialize
the count data set, estimate library sizes, estimate dispersions and
then conduct a test.

There is a newer version (called DESeq2) that differs in some
internal details, uses different statistical tests and does some
outlier remediation.

> cds <- newCountDataSet(bovCntsF, grp)
> cds <- estimateSizeFactors(cds)
> cds <- estimateDispersions(cds)
> res <- nbinomTest(cds, "1", "2")

RNA-seq data analysis

Next we examine res

> head(res)

id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval

1 2 104.14912 102.96024 105.13985 1.0211695 0.03022234 0.92734232

2 4 22.14239 16.58914 26.77009 1.6137116 0.69038273 0.08921768

3 5 305.48155 271.18398 334.06285 1.2318679 0.30084759 0.19480965

4 6 976.65013 828.93664 1099.74470 1.3266933 0.40783491 0.02163098

5 7 41.14755 46.32049 36.83677 0.7952586 -0.33050401 0.35883953

6 8 36.31335 37.45815 35.35935 0.9439694 -0.08318802 0.69298641

padj

1 1.0000000

2 1.0000000

3 1.0000000

4 0.8406186

5 1.0000000

6 1.0000000

RNA-seq data analysis

Then we can examine the adjusted p-values (these use the
Benjamini Hochberg adjustment) and see that there are fewer
differences when we use this method compared to edgeR.

> sum(res[,8]<.05)
[1] 42

In fact, almost every transcript identified by DESeq was also
detected to differ using edgeR.

> table(res[,8]<.05, padj<0.05)
FALSE TRUE

FALSE 10859 89
TRUE 1 41

We can also make a plot to investigate how the dispersions depend
on the mean (which is the crucial difference between DESeq and
edgeR).

RNA-seq data analysis

To this end create the following function,

plotDispEst <- function(cds){
plot(rowMeans(counts(cds, normalized=TRUE)),
fitInfo(cds)$perGeneDispEsts, pch=’.’, log="xy")

xg <- 10^seq(-.5, 5, length.out=300)
lines(xg, fitInfo(cds)$dispFun(xg), col="red")

}

RNA-seq data analysis

and use it as follows

> pdf("DESeqPlot.pdf")
> plotDispEst(cds)
Warning message:
In xy.coords(x, y, xlabel, ylabel, log) :
474 y values <= 0 omitted from logarithmic plot

> dev.off()

Then we see for this data set there is not a very strong relationship
between the means and the estimated dispersions.

10 20 50 100 200 500 1000 2000 5000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

rowMeans(counts(cds, normalized = TRUE))

fit
In

fo
(c

ds
)$

pe
rG

en
eD

is
pE

st
s

RNA-seq data analysis

We can also examine the association between the estimated fold
changes produced by the 2 methods (they are highly correlated).

> cor(2^et$table[,1], res[,5])
[1] 0.9978404
> edgeRFC <- et$table[,1]
> edgeRp.value <- et$table[,3]
> DESeqFC <- res[,6]
> pdf("edgeRvsDESeq.pdf")
> qplot(edgeRFC, DESeqFC, colour= -log(edgeRp.value,10))
> dev.off()

●

●

●

●

●

●

●

●

●
●

●
●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●●●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●●

●

●●
●

●●

●●

●
●

●
●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●
●
●

●●●

●

●
●●

●

●

●

●

●●●
●

●●
●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●
●●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●●

●
●
●

●

●●

●●

●

●
●

●

●●

●

●
●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●
●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●●

●●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●
●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●●●●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●●

●

●
●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●●

●●
●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●
●

●

●
●

●

●●●●

●

●●●
●

●
●

●

●

●●
●

●

●●

●●●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●●
●

●
●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●●

●

●●

●
●

●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●●●●●

●

●
●

●

●●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●
●●

●

●

●●●

●
●

●

●●

●●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●
●

●●●

●●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●
●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●
●
●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

●●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●●
●

●

●●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●
●●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●
●

●

●
●

●

●

●
●

●●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●
●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
●

●

−2

−1

0

1

2

−2 −1 0 1 2
edgeRFC

D
E

S
eq

F
C

0

4

8

12

16
−log(edgeRp.value, 10)

	RNA-seq
	Aligning reads to the transcriptome
	TopHat
	Cufflinks
	RNA-seq using TopHat and Cufflinks
	Tuxedo Suite 2.0
	RNA-seq and count models
	edgeR
	DESeq

