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DNA-Seq data analysis

There are a number of approaches to the analysis of DNA-Seq
data.

Again we will only consider approaches that have been developed
for organisms with sequenced genomes.

The basic problem all of these methods must try to solve is when
to flag a variant based on disagreements between an individual’s
pile up and the reference genome.

We will cover the basic functionality available for this in SAMtools
and related tools.



BCFtools

The program bcftools can be used to identify variants.

One first downloads the latest version, unpacks it, enters the
directory that gets created then copies the executable to bin.

There is also a collection of tools bundled as htslib that can be
useful for whole genome sequencing data (in particular tabix,
htsfile and bgzip): this can be installed in an analogous fashion.

We will continue with the example we had used when we
introduced samtools.



Variant calling

There we had:

1. created an index of a fasta file

2. converted a compressed sam file to a bam file

3. created an index of the bam file

4. viewed the collection of mapped reads

However this software can do more: it can call variants and has
further capabilities when combined with bcftools, such as filtering.

We can use bcftools to flag potential variants and manipulate files
that hold data on variants.



Variant calling

This is accomplished with the mpileup function: this is used to
combine information about where a collection of reads map (from a
bam file) with information about a reference genome to determine
where there are mismatches in a sample compared to the reference.

A capability of samtools that we didn’t investigate at that time
was its ability to create vcf files.

A vcf file is a text file that has information about the genotype of
a sample at a collection of locations.



Variant calling

Going back to our previous example, here is the result of mpileup
using its native output format (the -f means we are supplying a
fasta reference file)

[user0014@boris examples]$ samtools mpileup -f ex1.fa \
> ex1.bam > tmp
[user0014@boris examples]$ head -n 5 tmp
seq1 36 G 1 ^~. =
seq1 37 T 2 .^k. =<
seq1 38 C 2 A. =<
seq1 39 C 2 .. ;8
seq1 40 A 2 .. =;



Variant calling

In this format there is a row for each genomic position and the
columns are as follows

1. chromosome

2. position on chromosome

3. reference base

4. number of reads covering the site

5. read bases

6. read qualities

7. alignment mapping qualities

Note that generally more than 1 read will cover a position, so the
last 3 items are presented for every read that covers the base.



Variant calling

Interpretation of the final 3 columns is complicated: e.g. a period
in the read base column indicates a match to the reference.

For example, at position 39 there were 2 reads that covered the
position and they matched the reference.

An easier to interpret and more widely used format is the vcf
format: here is the syntax for that (-uv means provide vcf
formatted output):

[user0014@boris bcftools-1.9]$ bcftools mpileup -f \
> ~/bin/samtools-1.9/examples/ex1.fa \
> ~/bin/samtools-1.9/examples/ex1.bam | \
> bcftools call -mv -Ob -o calls.bcf



Variant calling

Then we can examine that file and see that there is a large header
that explains the content then a row for each genomic position.

We can also get that output in a binary format

[user0014@boris bcftools-1.9]$ bcftools view calls.bcf



Variant calling

One can also filter the variant calls using methods from bcftools
using syntax like the following (here the option about QUAL filters
for quality scores).

[user0014@boris examples]$ bcftools view -i ’%QUAL>=60’ \
> calls.bcf



Reading vcf files into R

A number of packages have been developed with the goal of
providing a means of reading vcf files into R for further analysis.
These include

1. VPA

2. vcfR

3. VariantAnnotation

The package vcfR is a stable way to examine vcf files in R.

These files can be quite large and processing them with R may not
be the best approach.



Reading vcf files into R with vcfR

install.packages(’vcfR’)

pkg <- "pinfsc50"
vcf_file <- system.file("extdata",
+ "pinf_sc50.vcf.gz", package = pkg)
vcf <- read.vcfR( vcf_file, verbose = FALSE )



Reading vcf files into R with vcfR

One can load a vcf file as a chromosome level object: here this
example is using a supercontig followed by some quality filtering
and replotting.

chrom <- create.chromR(name=’Supercontig’, vcf=vcf)

plot(chrom)

chrom <- masker(chrom, min_QUAL = 1, min_DP = 300,
+ max_DP = 700, min_MQ = 59.9, max_MQ = 60.1)
plot(chrom)



Reading vcf files into R with vcfR
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Reading vcf files into R with vcfR
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Reading vcf files into R with vcfR

Now we can process the resulting dataset and examine variants:

chrom <- proc.chromR(chrom, verbose=TRUE)

plot(chrom)

chromoqc(chrom, dp.alpha=20)



Reading vcf files into R with vcfR
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Reading vcf files into R with vcfR
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GATK

For SNP identification the best practice currently seems to be
based on using the genome analysis toolkit (GATK).

This toolkit consists of a collection of java programs that
implement a multistep analysis.

There are 3 phases to the analysis process.



GATK

In the first phase, raw reads are mapped to generate SAM files and
an accurate base error model is used to improve on the vendor’s
base quality calls (which are not very accurate).

In phase 2, the SAM/BAM files are analyzed to discover SNPs,
short indels and copy number variants.

Finally, in phase 3 additional information, such as pedigree
structure, known sites of variation and linkage disequilibrium, is
brought to bear on the detected variants.

Detailed instructions can be found in the following publication (on
the reading list)

Van der Auwera GA, Carneiro M, Hartl C, Poplin R, del Angel G,
et al. (2013), “From FastQ Data to High-Confidence Variant Calls:
The Genome Analysis Toolkit Best Practices Pipeline”, CURRENT
PROTOCOLS IN BIOINFORMATICS 43:11.10.1-11.10.33.



Genome STRiP and copy number variation

There is substantial evidence from multiple sources that there is
extensive variation in terms of deletions and insertions.

Such deletions and insertions imply that certain individuals are
missing (or have extra copies of) certain portions of the genome.

This leads to copy number variation (CNV).

With next generation sequencing we can detect this from paired
end reads that span too large of a genomic segment and from local
variation in read depth.



Genome STRiP and copy number variation

The GATK has a workflow for detecting copy number variations:
genome STRiP (for genome structure in populations).

To use this set of tools you need a FASTA file containing the
reference sequence used for alignment and the BAM files that are
the result of the alignment.

The FASTA file must be indexed using the faidx tool in
SAMtools.



Genome STRiP and copy number variation

You also need to install the alignment program BWA and a set of
programs called Picard.

The result is a file in the vcf format that has variant calls for each
subject.

You also need data from at least 20 to 30 subjects, however if your
sample size is too small you can use data from the 1000 Genomes
project as your background population.



Microbiomics

One application of DNA-Seq technology is to determine the
proportion of microbes in a sample.

We can do this as it has been discovered that all bacterial species
have a component of the ribosome (the 16S ribosomal RNA) that
is similar across species but differs by a sufficient amount at
certain hypervariable locations to allow identification of at least
the genus of a bacterial species.

We note that there are array based tools that allow one to do this
too, e.g. the human oral microbe identification microarray
(HOMIM).

For example we may want to determine what bacterial species are
present in some sample, for example, in someone’s mouth.



Microbiomics

The primary limitation of this method is that some common
species have very similar sequences, for example here is part of an
alignment of 2 Streptococcal species (S. anginosus and S.
intermedius) that shows 97% sequence similarity:

Length=1558

Sort alignments for this subject sequence by:

E value Score Percent identity

Query start position Subject start position

Score = 2571 bits (2850), Expect = 0.0

Identities = 1502/1555 (97%), Gaps = 0/1555 (0%)

Strand=Plus/Plus

Query 19 TTTGATCCTGGTTCAGGACGAACGCTGGCGGCGTGCCTAATACATGCAAGTAGGACGCAC 78

||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||

Sbjct 1 TTTGATCCTGGTTCAGGACGAACGCTGGCGGCGTGCCTAATACATGCAAGTAGAACGCAC 60

Query 79 AGTTTATACCGTAGCTTGCTACACCATAGACTGTGAGTTGCGAACGGGTGAGTAACGCGT 138

|| | ||||||| || ||||||| || ||||||||||||||||||||||||||||||

Sbjct 61 AGGATGCACCGTAGTTTACTACACCGTATTCTGTGAGTTGCGAACGGGTGAGTAACGCGT 120

...



Microbiomics

With the HOMIM system one obtains a value between 0 and 5
that indicates the quantity of a combination of species.

So a simple application would be to test for differences in microbe
levels between 2 patient groups.

Given the semi-quantitative nature of this data I have used
permutation tests to test for differences-this isn’t too
computationally intensive as there are only a several hundred
bacteria represented on the microarray.

What is tricky is that any given probe typically interrogates
multiple species, so going from a set of differentially expressed
probes to a collection of differentially expressed species is difficult.



Microbiomics

A far more popular way to address the question of differential
microbe levels is to use next generation sequencing.

So, one obtains a sample, sequences short reads then aligns these
reads to the 16S rRNA DNA sequence of many bacteria to
determine which it matches the best.

Rather than using Illumina’s sequencing technology,
pyrosequencing (or 454 sequencing) is typically used in these
investigations.

This technology gives longer reads than Illumina’s method: 800
bases are typical currently (and this appears to be increasing over
time, as does Illumina’s).



Microbiomics

Many early publications took used the ribosomal database project
for alignment of the sequences they generate.

Cole JR, Wang Q, Cardenas E et al. (2008), “The ribosomal
database project: improved alignments and new tools for rRNA
analysis”, Nucleic Acids Research, 37, D141-D145.

Currently DADA2 is a popular R package for conducting this
analysis (although it uses results from this project).

This resource can then be used to generate a table of counts for
each sample and each bacterial species detected.

We can then use edgeR or DESeq to test for differences between
groups (and control for covariates).



Microbiomics

As an example, we will consider a data set I came across where the
researchers were interested in bacterial populations in the lungs of
COPD patients (thanks to Alexa Pragman, and the Isaacson and
Wendt labs).

COPD is chronic obstructive pulmonary disease and is very
common medical problem throughout the world (its main cause is
smoking).

As frequent infections are a common symptom, the researchers
were interested in comparing the lung microbiome of COPD
subjects (classified as either moderate or severe) to healthy
controls.

They used the resources of the ribosomal database project to
generate a table of counts.



Microbiomics

First read in the count data and set up the group indicators.

> bactCnt <- read.table("http://www.biostat.umn.edu/ cavanr/bovineCounts.txt")

> dis <- factor(substring(colnames(bactCnt),1,3))
> dim(bactCnt)
[1] 142 32

Then initialize using the DGElist command.

> bactDEL<- DGEList(counts=bactCnt, group=dis)
Calculating library sizes from column totals.



Microbiomics

Then set up the design matrix as we’ve seen before, and estimate
the dispersions.

> design <- model.matrix(~dis)
> bactDEL <- estimateGLMTrendedDisp(bactDEL, design)

So now proceed to get the genus level dispersions.

> bactDEL <- estimateGLMTagwiseDisp(bactDEL, design)
> fit <- glmFit(bactDEL, design)
> lrt <- glmLRT(fit, coef=2)



Microbiomics

Then we can examine the top hits in terms of differences between
the moderate COPD patients and the controls.

Coefficient: disMOD

logFC logCPM LR PValue FDR

Brevibacillus -13.722702 14.810695 15.104481 0.0001017215 0.008070975

Oribacterium 9.701643 12.662380 14.464858 0.0001427989 0.008070975

Selenomonas 13.285029 12.824495 13.872045 0.0001956876 0.008070975

Atopobium 12.660858 11.703525 13.563390 0.0002306402 0.008070975

Prevotella 9.233926 13.455132 13.022587 0.0003077563 0.008070975

Actinomyces 7.734458 17.424870 12.830431 0.0003410271 0.008070975

Campylobacter 9.830081 9.116819 11.820702 0.0005857576 0.011882510

Centipeda 12.895376 12.722930 11.205179 0.0008156937 0.014478564

Bifidobacterium 11.624636 10.634536 9.787951 0.0017565909 0.025533975

Solobacterium 9.633208 9.067843 9.744943 0.0017981673 0.025533975



Microbiomics

Since some genera are represented by a single count in a single
subject, we may want to consider doing some filtering.

Here is a summary of the total counts for all genera in this data set.

> apply(bactCnt,1,sum)

Saccharomonospora Ornithinimicrobium Micrococcus Cryptosporangium

1 1 1 1

Kineococcus Dolosigranulum Syntrophomonas Fastidiosipila

1 1 1 1

...

Enterococcus Pseudoramibacter Clostridium Modestobacter

9 9 9 10

Cryptobacterium Tannerella Dysgonomonas Sphingomonas

10 10 10 10

...

Streptococcus Corynebacterium Propionibacterium Actinomyces

26394 30727 75877 82189



Microbiomics

So let’s require that there are at least 10 counts total.

> bactCntF <- bactCnt[apply(bactCnt,1,sum) >= 10,]
> bactDEL1 <- DGEList(counts=bactCntF, group=dis)
> bactDEL1 <- estimateGLMTrendedDisp(bactDEL1,
+ design)

So proceeding as before.

bactDEL1 <- estimateGLMTagwiseDisp(bactDEL1, design)

Now we’ll look at design matrix to determine what the parameters
represent.



Microbiomics

> design
(Intercept) disMOD disSVR

1 1 0 0
2 1 0 0
3 1 0 0

...
12 1 1 0
13 1 1 0
14 1 1 0
...
30 1 0 1
31 1 0 1
32 1 0 1

so coefficient 2 in the model corresponds to a difference between
the moderates and the controls while coefficient 3 tests for a
difference between severe and controls.



Microbiomics

So now we fit the GLM and conduct tests for the 2 coefficients.

By specifying the coefficient we can get genera that differ between
the controls and the moderates and the controls and the severe
patients.

> fit1 <- glmFit(bactDEL1, design)
> lrt1.2 <- glmLRT(fit1, coef=2)
> lrt1.3 <- glmLRT(fit1, coef=3)

and we can examine the results sorted by p-values, first the
moderates versus the controls



Microbiomics

> topTags(lrt1.2)

Coefficient: disMOD

logFC logCPM LR PValue FDR

Brevibacillus -13.721455 14.810756 14.872653 0.0001150184 0.004840491

Oribacterium 9.701546 12.662820 14.420692 0.0001461872 0.004840491

Selenomonas 13.285275 12.825141 13.862729 0.0001966601 0.004840491

Atopobium 12.661042 11.704238 13.548598 0.0002324650 0.004840491

Prevotella 9.233108 13.455509 12.943439 0.0003210447 0.004840491

Actinomyces 7.734822 17.425438 12.870362 0.0003338270 0.004840491

Campylobacter 9.830233 9.117536 11.790320 0.0005953950 0.007399910

Centipeda 12.895653 12.723502 11.201568 0.0008172823 0.008887945

Bifidobacterium 11.624857 10.635275 9.779017 0.0017651462 0.016029713

Solobacterium 9.633091 9.068224 9.700184 0.0018424958 0.016029713



Microbiomics
and here are the genera that differ between the severe cases and
controls

> topTags(lrt1.3)

Coefficient: disSVR

logFC logCPM LR PValue FDR

Neisseria 15.393096 13.579971 17.929674 2.292192e-05 0.001810056

Oribacterium 11.144734 12.662820 16.796477 4.161048e-05 0.001810056

Selenomonas 13.032916 12.825141 13.203214 2.794694e-04 0.008104614

Centipeda 13.393287 12.723502 11.483554 7.021475e-04 0.015271707

Prevotella 8.419435 13.455509 11.056891 8.835820e-04 0.015374326

Veillonella 9.046095 11.290540 10.626291 1.114911e-03 0.016166215

Rothia 7.853258 15.426206 9.626303 1.918103e-03 0.019610812

Eubacterium 10.450272 9.359486 9.541963 2.008269e-03 0.019610812

Parvimonas 12.576958 10.787986 9.471517 2.086867e-03 0.019610812

Paenibacillus 16.763945 14.931613 9.295272 2.297460e-03 0.019610812

Note that Prevotella is in both lists: this genus has been found in
samples from patients with respiratory infections and is found in
the mouths of patients with periodontal disease.

Some of the others (e.g. Neisseria) are known as very bad bacterial
strains.



Microbiomics

And we can further examine the results by accessing this table, for
example we may want to control the FDR while accounting for
dependence among the tests rather than just using Benjamini
Hochberg (which is what is reported in the table):

> padj1=p.adjust(lrt1.2$table$PValue, "BY")
> summary(padj1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02444 0.22060 0.60170 0.61180 1.00000 1.00000
> sum(padj1<.1)
[1] 10



Microbiomics

We can use a similar approach to test for differences between the
control group and the severe group.

> padj2=p.adjust(lrt1.3$table$PValue, "BY")
> summary(padj2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.009139 0.232100 0.546100 0.604400 1.000000 1.000000
> sum(padj2<.1)
[1] 12



Microbiomics

We can then examine the genera we are identifying with this very
conservative approach.

> rownames(bactCntF)[padj1<.1]

[1] "Solobacterium" "Campylobacter" "Bifidobacterium" "Atopobium"

[5] "Oribacterium" "Centipeda" "Selenomonas" "Prevotella"

[9] "Brevibacillus" "Actinomyces"

> rownames(bactCntF)[padj2<.1]

[1] "Eubacterium" "Campylobacter" "Fusobacterium" "Parvimonas"

[5] "Veillonella" "Oribacterium" "Centipeda" "Selenomonas"

[9] "Neisseria" "Prevotella" "Paenibacillus" "Rothia"

> intersect(rownames(bactCntF)[padj1<.1], rownames(bactCntF)[padj2<.1])

[1] "Campylobacter" "Oribacterium" "Centipeda" "Selenomonas"

[5] "Prevotella"
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