
Annotation for Microarrays

Cavan Reilly

October 23, 2019

Table of contents

Overview

Gene Ontology
Hypergeometric tests

Biomart

Database versions of annotation packages

Overview

We’ve seen that one can use tools in R to get useful information
about the identity of genes that are represented on some
microarrays.

There are also connections to databases that have other sorts of
biological information.

This can help to interpret the results of an analysis that tests for
differential gene expression.

There are a number of online resources that can be consulted for
basic data about genomes.

Overview

A group I work with has interests in the relationship between
certain nucleotide sequences in the 3’ end of mRNAs and gene
expression.

A postdoc in the lab a number of years ago downloaded a data set
with nucleotide sequences from the 3’ end of human transcripts.

As improvements to the annotation of the human genome occur all
the time, we would like to update this data set periodically.

Overview

Websites constantly change, so even if the postdoc kept a record
of what links he followed, that would quickly be out of date.

A much better approach: write a script that accesses information
from biological databases.

This is straightforward to maintain and much more reproducible.

R has extensive capabilities to obtain and manage these sorts of
data sets.

Overview

To explore this we will compare gene expression between 2 subtypes
of ALL: the ALL1/AF4 mutation and the BCR/ABL mutation.
To start we will set up the dataset, much as we’ve seen previously

> library(ALL)
> data(ALL)
> types=c("ALL1/AF4", "BCR/ABL")
> bcell=grep("^B", as.character(ALL$BT))
> ALL_af4bcr=ALL[,intersect(bcell,
+ which(ALL$mol.biol %in% types))]
> ALL_af4bcr$mol.biol=factor(ALL_af4bcr$mol.biol)

Overview

The groups here are of different size so if we filter based on the
IQR as before the calculation of variation will be dominated by the
larger group

> table(ALL_af4bcr$mol.biol)

ALL1/AF4 BCR/ABL
10 37

Overview

To avoid this we use a more extreme measure of the spread of the
distribution: the extreme deciles.

To do this, we will define our own variance function and supply
this to the nsFilter function that we’ve already seen.

Now our filtering excludes probes that don’t have an Entrez gene
ID or data from the gene ontology project about biological process
(more on this later).

> qrange=function(x) diff(quantile(x, c(0.1,0.9)))
> library(genefilter)
> filt_af4bcr=nsFilter(ALL_af4bcr, require.entrez=T,
+ require.GOBP=T, var.func=qrange, var.cutoff=0.5)
> ALLfilt_af4bcr=filt_af4bcr$eset

Overview

We can examine the log from nsFilter to see the effect of
filtering

> filt_af4bcr$filter.log

$numDupsRemoved

[1] 2747

$numLowVar

[1] 4033

$numRemoved.ENTREZID

[1] 1151

$numNoGO.BP

[1] 643

$feature.exclude

[1] 19

Overview

Then we load some packages and conduct some tests for
differences between the 2 groups.

> library(Biobase)
> library(annotate)
Loading required package: XML
> library(hgu95av2.db)
> rt=rowttests(ALLfilt_af4bcr,"mol.biol")
> sum(p.adjust(rt$p,method="holm")<.05)
[1] 134
> sum(p.adjust(rt$p,method="BH")<.05)
[1] 587

Overview
We can obtain information about these genes using the get or
mget functions as follows

> featureNames(ALLfilt_af4bcr)[p.adjust(rt$p,
+ method="holm")<.05]
[1] "266_s_at" "35831_at" "41202_s_at" "41742_s_at"

...

> get("266_s_at",env=hgu95av2CHRLOC)
Y Y Y Y

-21152525 -21152525 -21152525 -21152525

> get("35831_at",env=hgu95av2CHRLOC)
20

-50213313

Overview

This means that the gene with Affymetrix probe id 266 s at
resides on the Y chromosome on the negative strand about 21
million basepairs from the 5’ end.

We use mget to retrieve this information for more than 1 probe set.

> mget(c("266_s_at","35831_at"),env=hgu95av2CHRLOC)
$‘266_s_at‘

Y Y Y Y
-21152525 -21152525 -21152525 -21152525

$‘35831_at‘
20

-50213313

Why would a probe set return multiple start locations?

Overview

Alternatively we can use the column and select functions to get
this information

> columns(hgu95av2.db)
> keys=head(keys(hgu95av2.db))
> select(hgu95av2.db,keys=keys,
+ columns=c("SYMBOL", "UNIGENE"))

Overview
With a few more tricks we can find out general properties of these
genes, for example on which chromosome are they located.

> nm=names(unlist(mget(featureNames(ALLfilt_af4bcr)[p.adjust(rt$p,

+ method="holm")<.05],env=hgu95av2CHRLOC)))

> table(substr(nm,regexpr("\\.",nm)+1,200))

1 10 11 12 13 14

17 5 14 8 6 13

15 16 17 18 19 2

3 12 6 4 6 13

20 21 22 3 4 5

5 3 6 9 13 5

6 6_apd_hap1 6_cox_hap2 6_dbb_hap3 6_mann_hap4 6_mcf_hap5

19 8 10 10 10 10

6_qbl_hap6 6_ssto_hap7 7 8 9 X

10 10 22 5 10 4

Y

4

What’s on chromosome 6? MHC region.

Gene Ontology

The gene ontology (GO) project is large project that attempts to
classify genes and transcripts in terms of

1. Biological process

2. Molecular function

3. Cellular component

It does this in a hierarchical fashion, so that there are very general
categories (e.g. mitochondrion or metabolic process) and very
specific ones (e.g. oxidoreductase activity, acting on the CH-OH
group of donors, NAD or NADP as acceptor).

All GO terms have a 7 digit number preceded by the letters GO.

Gene Ontology

We can determine relationships among terms using the PARENT,
CHILDREN and OFFSPRING mappings.

> library(GO.db)

> as.list(GOMFCHILDREN["GO:0008094"])

$‘GO:0008094‘

is_a is_a is_a is_a is_a

"GO:0003918" "GO:0004003" "GO:0015616" "GO:0033170" "GO:0033676"

is_a is_a

"GO:0033680" "GO:0043142"

> as.list(GOMFOFFSPRING["GO:0008094"])

$‘GO:0008094‘

[1] "GO:0003689" "GO:0003918" "GO:0004003" "GO:0015616" "GO:0017116"

[6] "GO:0033170" "GO:0033676" "GO:0033680" "GO:0033681" "GO:0033682"

[11] "GO:0036121" "GO:0039631" "GO:0043140" "GO:0043141" "GO:0043142"

[16] "GO:1990163" "GO:1990518"

Hypergeometric tests

Given our list of genes that differ we can test if there are classes of
transcripts that are found in the list more frequently than we
expect by chance.

This has been addressed by considering 2 by 2 tables and testing
for an association using Fisher’s exact test (which uses the
hypergeometric distribution to compute the p-value).

We can use the GOstats package to do this: we must define the
universe of genes that we are examining, get their Entrez gene ID,
and get the Entrez IDs for our gene list.

Hypergeometric tests

We then create a GOHyperGParams object that holds the necessary
information and provide a p-value cutoff.

We also need to specify if we want to use conditional or
unconditional tests.

The conditional tests try to account for the massive and difficult to
account for multiple hypothesis testing that is implicit in this
analysis.

Hypergeometric tests

Here is the syntax to accomplish this

> BiocManager::install("GOstats")
> affyUniverse=featureNames(ALLfilt_af4bcr)
> uniId=hgu95av2ENTREZID[affyUniverse]
> entrezUniverse=unique(as.character(uniId))
> EGsub=featureNames(ALLfilt_af4bcr)[p.adjust(rt$p,
+ method="holm")<.05]
> EGsub1=as.character(hgu95av2ENTREZID[EGsub])
> params=new("GOHyperGParams",geneIds=EGsub1,
+ universeGeneIds=entrezUniverse,annotation=
+ "hgu95av2",ontology="BP", pvalueCutoff=0.001,
+ conditional=F, testDirection="over")
> mfhyper=hyperGTest(params)

Hypergeometric tests

We can visualize the results by looking at a histogram of results
and generate an html report.

> hist(pvalues(mfhyper), col="mistyrose",
+ xlab=expression(italic(p)-values), main="")
> htmlReport(mfhyper,"ALL_GO_BP_summary.html")

Hypergeometric tests

p − values

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Figure: The p-value distribution for the hypergeometric tests ALL data
set.

Hypergeometric tests

Unfortunately the links in the report don’t work as is, but this is
easy to fix in principle.

The problem is that GO changed the url: we need to replace

http://www.godatabase.org/cgi-bin/amigo/go.cgi?view=details&search_constraint=terms&depth=0&query=

with

http:amigo.geneontology.org/amigo/term/

Hypergeometric tests

which can be accomplished with code that uses tricks like the
following (excusing the line break in sub: you can let commands
wrap around the terminal window).

rpt=scan("ALL_GO_BP_summary.html",what="",sep="\n")

rpt1=rep(NA,length(rpt))

for(i in 1:length(rpt)) rpt1[i]=gsub(’\\\"’,"’",rpt[i])

rpt2=rep(NA,length(rpt))

for(i in 1:length(rpt))

rpt2[i]=sub("http://www.godatabase.org/cgi-bin/amigo/go.cgi\\?view=details\\&search_constraint=terms\\

&depth=0\\&query=",

+ "http:amigo.geneontology.org/amigo/term/",rpt1[i])

write(rpt2,"ALL_GO_BP_summary1.html")

Biomart

Biomart is an online resource for obtaining a wide variety of data
of interest to molecular biologists.

There is a convenient R interface that lets one get this data
through R.

This is better than having to download over a browser as it can be
documented, however if you work with others who are downloading
from the site you could have different data sets.

The R package biomaRt allows for this functionality.

Biomart

Here is the usage: first you select a mart, then a data set.

> head(listMarts())
biomart version

1 ENSEMBL_MART_ENSEMBL Ensembl Genes 86
2 ENSEMBL_MART_MOUSE Mouse strains 86
3 ENSEMBL_MART_SNP Ensembl Variation 86
4 ENSEMBL_MART_FUNCGEN Ensembl Regulation 86
5 ENSEMBL_MART_VEGA Vega 66
> mart=useMart("ensembl")

Biomart

> head(listDatasets(mart))

dataset description

1 oanatinus_gene_ensembl Ornithorhynchus anatinus genes (OANA5)

2 cporcellus_gene_ensembl Cavia porcellus genes (cavPor3)

3 gaculeatus_gene_ensembl Gasterosteus aculeatus genes (BROADS1)

4 itridecemlineatus_gene_ensembl Ictidomys tridecemlineatus genes (spetri2)

5 lafricana_gene_ensembl Loxodonta africana genes (loxAfr3)

6 choffmanni_gene_ensembl Choloepus hoffmanni genes (choHof1)

version

1 OANA5

2 cavPor3

3 BROADS1

4 spetri2

5 loxAfr3

6 choHof1

Biomart

Then we select a data set (organism specific molecular biology
data)

> ensembl=useDataset("hsapiens_gene_ensembl", mart=mart)

Once we’ve selected a dataset then we can see what is available for
specific tasks, here we look for Affymetrix annotations.

Biomart

> listFilters(ensembl)[grep("Affy",listFilters(ensembl)[,2]),2]

[1] "with Affymetrix Microarray huex 1 0 st v2 probeset ID(s)"

[2] "with Affymetrix Microarray hc g110 probeset ID(s)"

[3] "with Affymetrix Microarray hg Focus probeset ID(s)"

[4] "with Affymetrix Microarray u133 x3p probeset ID(s)"

[5] "with Affymetrix Microarray hg u133a probeset ID(s)"

[6] "with Affymetrix Microarray hg u133a 2 probeset ID(s)"

[7] "with Affymetrix Microarray hg u133 plus 2 probeset ID(s)"

[8] "with Affymetrix Microarray hg u133b probeset ID(s)"

[9] "with Affymetrix Microarray hg u95a probeset ID(s)"

[10] "with Affymetrix Microarray hg u95av2 ID(s) probeset"

...

Biomart

You can also look at what’s available based on the attributes:

> listAttributes(ensembl)[grep("Tasmanian devil",
+ listAttributes(ensembl)[,2]),]

Biomart

You can retrieve information using the getBM function.

Here is how we could get the ensembl gene IDs and the GO IDs for
our genes that appear to differ.

> hguIDs=getBM(attributes=c("ensembl_gene_id","go_id"),
+ filters="affy_hg_u95av2",values=EGsub,mart=ensembl)
> dim(hguIDs)
[1] 3004 2

Database versions of annotation packages

To extend the functionality and increase the speed of annotation
queries, Bioconductor now uses connections to external SQLite
databases to access annotation information.

All existing annotation packages have a database version, and the
only difference in the names is that the database versions have a
db at the end:

hgu95av2 is replaced by hgu95av2.db.

To use these packages, you first establish a connection to the
database, then run queries.

Database versions of annotation packages

Here is the syntax

> library(hgu133a.db)
> dbc=hgu133a_dbconn()
> get("201473_at",hgu133aSYMBOL)
[1] "JUNB"
> as.character(hgu133aSYMBOL["201473_at"])
201473_at

"JUNB"
> hgu133aSYMBOL[["201473_at"]]
[1] "JUNB"

Database versions of annotation packages

Here is how to make a table of number of terms in each of the sets
of GO categories.

> query="select ontology from go_term"
> goCats=dbGetQuery(GO_dbconn(), query)
> gCnums=table(goCats)[c("BP","CC","MF")]
> gCnums
goCats

BP CC MF
28007 3827 9955

Database versions of annotation packages

This hints at the sort of more complex queries that are possible:
here we search for genes on the U133 array that have the term
transcription factor binding in their GO description.

> query=paste("select go_id from go_term where",
+ "term = ’transcription factor binding’")
> tfb=dbGetQuery(GO_dbconn(), query)
> tfbps=hgu133aGO2ALLPROBES[[tfb$go_id]]
> table(names(tfbps))

IBA IDA IEA IGI IPI ISS NAS TAS
53 123 188 1 416 89 48 36

Database versions of annotation packages

One can also do reverse searches, for example finding Affymetrix
probe set IDs from gene symbols.

> s1=revmap(hgu133aSYMBOL)
> s1$BCR
[1] "202315_s_at" "217223_s_at"

	Overview
	Gene Ontology
	Hypergeometric tests

	Biomart
	Database versions of annotation packages

