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Population based association studies

There are several types of studies that are distinguished:

1. Candidate polymorphism studies-test if a previously identified
polymorphism influences some trait

2. Candidate gene studies-test if a gene has markers that are
within it or near it that are associated with a trait (these
markers needn’t be functional)

3. Fine mapping studies-determine the location of a variant that
influences some trait

4. Genome-wide association studies (GWAS)-a candidate gene
study that examines the entire genome, or at least a large
portion of it.



Population based association studies

While candidate gene studies and GWAS are similar in spirit,
candidate gene studies are more focused and typically try to sort
out other risk factors

GWAS are more computationally demanding due to the large
number of variants examined.

GWAS also suffer from the problem of multiple testing (more on
this latter).



Genotype

In association studies we examine if DNA sequences can predict a
trait of interest.

So, for us, the DNA sequence is the explanatory variable and the
trait is the response variable.

The genotype of someone is the specific DNA sequence that
someone has at some location on the genome.

As humans generally have 2 copies of each chromosome (one from
each parent), when we discuss a genotype we refer to the
information on both copies.

Hence when we consider a SNP, which are mostly biallelic, there
are 3 distinct genotypes (2 homozygous and 1 heterozygous).



Family versus population based studies

We focus on population based studies: family based studies have
their own considerations.

Family based studies are difficult to design as one needs to recruit
entire families into the study.

Also, very difficult to design family based studies for late onset
diseases.

However family based studies do allow one to study rare variants.

They also allow one to estimate the phase with greater certainty.



Data structure

There are 3 classes of information that we will deal with

1. genotypic data

2. trait data

3. covariate data



Genotypes

Currently SNPs are the most common form of genotypic data, but
there are other forms for genotypic data such as indels and
microsattelite markers.

In all cases, given a sample from a population, there will be a
collection of locations that differ among subjects (a set of loci that
exhibit variation) and a finite number of possible values for these
variants (the alleles found in this sample).

Sometimes we use the term multilocus genotype when we refer to
the genotypes at multiple locations. These are distinct from
haplotypes.

For SNPs, as there are only 2 alleles, the minor allele is the allele
that is less frequent in the population and the minor allele
frequency is the probability that one observes the minor allele.



Genotype frequency and allele frequency

Consider a biallelic locus with alleles a and A.

Suppose that there is a population with the following proportions
of genotypes

P(AA) = 0.75 P(Aa) = 0.20 P(aa) = 0.05

To compute the allele frequency: pretend that the population has
100 subjects so that the proportions count numbers of people with
a genotype.

Then our population of alleles is a population of 200, and of this
200, 75+75 are A alleles that are involved in a homozygous
genotype and 20 come from the heterozygous subjects, thus the
major allele frequency is

(75 + 75 + 20)/200 = 0.85.



Traits and covariates

Trait, phenotype and outcome are all used interchangeably in this
course.

Continuous traits, e.g. HIV viral load, frequently need to be
transformed prior to conducting any analysis.

The main problem with continuous traits is that sometimes they
are more variable for higher levels of the variable: for example, if
you dichotomize the data and compare the variance you will often
notice this.

When this occurs with the residuals in a regression setting, this
phenomenon is referred to as heteroscedasticity.



Traits and covariates

This will make methods designed for normally distributed data
perform poorly.

Frequently just taking the logarithm (to any base) will get rid of
this problem.

Using log transformations in conjunction with methods for
normally distributed data usually outperforms strictly
nonparametric approaches.



Traits and covariates

A covariate is a variable that may be relevant for understanding
the relationship between the trait of interest and the genetic data.

We will discuss the role of covariates later, for now let’s note that
sometimes it makes sense to transform them too.

For example, in the context of multiple linear regression, if I use a
log transformation on all of the variables then the regression
coefficients give the percent change in the response variable for a 1
percent change in the explanatory variable.



Data examples

We will work with 3 data examples throughout our discussion of
statistical genetics:

One has SNP data from a complex trait study of humans.

One has HIV sequence information.

The final one has SNP data from populations all over the world.

HIV carries its genetic information in a single RNA molecule
whereas humans have 2 copies of the (haploid) human genome.



Data examples

HIV is a virus that has a much higher error rate (compared to
mammals) when it replicates its genome.

The various strains (or quasi-species) that one finds depends on a
variety of factors, e.g. administration of antiretroviral drugs (ART
or HAART).

The primary mechanisms whereby genetic diversity is introduced
into humans are recombination and independent assortment of the
chromosomes (although mutation plays a role).



Human genetics

Independent assortment ensures that pairs of alleles at loci on
distinct chromosomes are equally likely to end up in the same sex
cell.

Recombination goes further and mixes up pairs of alleles on the
same chromosome, resulting in chromosomes that are not found in
either parent.

If 2 loci are very close on a chromosome it is unlikely that a
recombination will separate the loci and switch pairs of alleles.



Human genetics

Hence pairs of alleles that are at loci that are very close tend to be
transmitted together.

Such loci are said to be in linkage disequilibrium.

While we intuitively think of there being a disease causing
mutation in a coding region of a gene, it is not uncommon for a
variant that is in a noncoding region to be in complete linkage
disequilibrium with that mutation.



Human genetics

In practice this implies that the difference between causal variants
and tagging variants (i.e. those that mark the causal variants due
to strong linkage disequilibrium) is actually not so clear.

In fact, it’s possible that the variant in the noncoding region is the
actual causal variant (e.g. it interferes with transcription factor
binding) and the variant in the coding region is not harmful.



HIV genetics

HIV creates further copies of itself by binding to certain cells and
inserting its genetic material into the cell.

Upon gaining entry to a cell, it uses reverse transcriptase to make
a DNA copy of the material it stores in RNA.

The enzyme integrase then inserts this DNA into the DNA of the
cell, and the cell then makes the proteins HIV needs to assemble
new infectious particles.

One of these proteins is protease and this protein is essential for
creating some of the other proteins that are necessary for HIV to
replicate itself.



HIV genetics

Modern ART use multiple drugs so that different drugs target
different components of the HIV life cycle.

These treatment strategies have been very effective at prolonging
the life of HIV positive patients, nonetheless these patients are at
greater risk for many negative health outcomes (e.g. cardiovascular
events) even though no virus can be measured in their blood.

Due to the high error rate of replication there is a substantial
amount of genetic diversity within each patient. An amino acid
needs to be present in at least 20% of the virions to be detectable
as a variant using contemporary methods.



Data example

We will use data from the Functional SNPs associated with muscle
size and strength (FAMuSSS) study.

This study obtained data on 225 SNPs from 1397 college students.

The study had the subjects participate in a 12 week exercise
program and measured a number of variables related to muscle and
metabolic syndrome.

We will read this data into R by writing in the URL and then using
the read.delim function:
> fmsURL <- "http://www.biostat.umn.edu/~ cavanr/FMS data.txt"

> fms <- read.delim(file=fmsURL)



Data example

We can see all of the variables which were measured by looking at

> names(fms)

There are over 340 of them, so if we just want to look at the first
20, we can do

> names(fms)[1:20]

[1] "id" "acdc rs1501299" "ace id"

[4] "actn3 r577x" "actn3 rs540874" "actn3 rs1815739"

[7] "actn3 1671064" "ardb1 1801253" "adrb2 1042713"

[10] "adrb2 1042714" "adrb2 rs1042718" "adrb3 4994"

[13] "agrp 5030980" "akt1 t22932c" "akt1 g15129a"

[16] "akt1 g14803t" "akt1 c10744t c12886t" "akt1 t10726c t12868c"

[19] "akt1 t10598a t12740a" "akt1 c9756a c11898t"



Data example

If we want a table of the gender of the subjects we can issue the
command
> table(fms$Gender)
Female Male

607 426
Or we can first attach our data frame, then just refer to the gender
variable
> attach(fms)
> table(Gender)
Gender
Female Male

607 426



Computing the minor allele frequency

As an example we will compute the minor allele frequency for the
SNP rs540874.

Note that if you search on the name of this SNP you will find a
link to dbSNP which has lots of useful information, for example it
is on chromosome 11 in a gene called ACTN3, alpha-actinin-3.

Let’s take a look at the frequency of the genotypes in our study

> GenoCount <- summary(actn3 rs540874)
> GenoCount

AA GA GG NA’s
226 595 395 181



Computing the minor allele frequency

Then let’s compute the genotype frequencies treating the NA’s as
missing at random.

NumbObs <- sum(!is.na(actn3 rs540874))

> GenoFreq <- as.vector(GenoCount/NumbObs)
> GenoFreq
[1] 0.1858553 0.4893092 0.3248355 0.1488487

then we can compute them directly as follows

> (2*GenoFreq[1]+GenoFreq[2])/2
[1] 0.4305099
> (2*GenoFreq[3]+GenoFreq[2])/2
[1] 0.5694901



Computing the minor allele frequency

We can also do this using prebuilt packages, in particular the
genetics package, as follows.

> library(genetics)

> Geno <- genotype(actn3 rs540874,sep="")

> summary(Geno)

Number of samples typed: 1216 (87%)

Allele Frequency: (2 alleles)

Count Proportion

G 1385 0.57

A 1047 0.43

NA 362 NA

Genotype Frequency:

Count Proportion

G/G 395 0.32

G/A 595 0.49

A/A 226 0.19

NA 181 NA

Heterozygosity (Hu) = 0.4905439

Poly. Inf. Content = 0.3701245



Computing the minor allele frequency

Note that we get the same allele frequencies along with some other
summaries.

Both the Heterozygosity and the Polymorphism information
content tells us how informative this marker is for localizing a
disease gene.

The heterozygosity tells us the probability that a random individual
will be heterozygous at this locus.



Computing the minor allele frequency

The polymorphism information content is the probability that
marker genotype of an offspring will allow deduction of which of
the 2 marker alleles it received from one of the parents.

As such it indicates the probability that one will be able to infer
phase when one has data from related subjects.

This is a measure of marker usefulness that is more relevant to
linkage analysis than association studies.



Human genome diversity project

Here is the updated website for the HGDP:

http://www.hagsc.org/hgdp/

This project was undertaken to collect cell lines for studying
human diversity.

We will look at 4 SNPs in the v-akt murine thymoma oncogene
homolog 1 gene.

We can read in the data using our previous strategy.
> hgdpURL <- "http://www.biostat.umn.edu/~ cavanr/HGDP AKT1.txt"

> hgdp <- read.delim(file=hgdpURL)



Human genome diversity project

Then we inspect the top of the data set
> head(hgdp)

Well ID Gender Population Geographic.origin Geographic.area

1 B12 HGDP00980 F Biaka Pygmies Central African Republic Central Africa

2 A12 HGDP01406 M Bantu Kenya Central Africa

3 E5 HGDP01266 M Mozabite Algeria (Mzab) Northern Africa

4 B9 HGDP01006 F Karitiana Brazil South America

5 E1 HGDP01220 M Daur China China

6 H2 HGDP01288 M Han China China

AKT1.C0756A AKT1.C6024T AKT1.G2347T AKT1.G2375A

1 CA CT TT AA

2 CA CT TT AA

3 AA TT TT AA

4 AA TT TT AA

5 AA TT TT AA

6 AA TT TT AA



Human genome diversity project

and we can see there is data for 1064 subjects from 52 populations.

> dim(hgdp)
[1] 1064 10
> length(table(hgdp[,4]))
[1] 52



The virco data set

The virco data set has information on the protease sequence from
1066 HIV viral isolates.

For each virus we also have fold resistance measures for 8 protease
inhibitors.

By fold resistance we mean the resistance of each viral strain to
the protease inhibitors relative to the wild type strain.



The virco data set

We can read in the data using a strategy similar to what we have
done thus far, but now use the read.csv function since commas
separate the entries.

> vircoURL <- "http://www.biostat.umn.edu/~ cavanr/Virco data.csv"

> virco <- read.csv(file=vircoURL)

and we can see that the data for each isolate is represented by 124
variables.

> dim(virco)
[1] 1066 124



The virco data set

Here we look at a selection of these variables to see that the data
is coded in 2 ways that are consistent

> virco[1:5,c(1,6,11,32,85,93,104,112,122)]

SeqID IsolateName IDV.Fold P10 P63 P71 P82 P90

1 3852 CA3176 14.2 I P - - M

2 3865 CA3191 13.5 I P V T M

3 7430 CA9998 16.7 I P V A M

4 7459 Hertogs-Pt1 3.0 I P T - M

5 7460 Hertogs-Pt2 7.0 - - - A -

CompMutList

1 L10I, M46I, L63P, G73CS, V77I, L90M, I93L

2 L10I, R41K, K45R, M46I, L63P, A71V, G73S, V77I, V82T, I85V, L90M, I93L

3 L10I, I15V, K20M, E35D, M36I, I54V, R57K, I62V, L63P, A71V, G73S, V82A, L90M

4 L10I, L19Q, E35D, G48V, L63P, H69Y, A71T, L90M, I93L

5 K14R, I15V, V32I, M36I, M46I, V82A

This is the usual nomenclature for discussing amino acid mutations.
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