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Overview

Prior to conducting tests of association between markers and
traits, it is common to examine the marker data for a couple of
types of genetic correlation:

I linkage disequilibrium

I Hardy-Weinberg equilibrium



Linkage disequilibrium

Linkage disequilibrium exists when there is an association between
the alleles that are found at 2 loci.

Linkage disequilibrium typically exists only for closely related loci
and trails off at greater distances.

Moreover, it doesn’t decay smoothly, rather there appear to be
blocks of loci where all loci in the block are associated.

In association studies we use this property of genomes to identify
locations that impact the trait under investigation.

If we can uncover loci that impact the trait we can then see if there
are nearby genes and examine what is known about their functions.



Linkage disequilibrium

There are several methods in use for quantifying the extent of
linkage disequilibrium between a pair of loci.

Suppose we have data on n subjects, and consider 2 sites where
each site has 2 possible alleles (e.g. SNPs).

Suppose the alleles at site 1 are represented with a and A while the
alleles at site 2 are represented with b and B.

Further suppose that the probability of observing these alleles is
given by pa, pA, pb and pB .

If the alleles that occur at these 2 sites are independent then we
can compute the probability of observing a genotype by just
multiplying the probability of observing the alleles.



Linkage disequilibrium

In fact, consider the following table of expected counts if there is
linkage equilibrium:

B b

A n11 = NpApB n12 = NpApb n1. = NpA

a n21 = NpapB n22 = Npapb n2. = Npa

n.1 = NpB n.2 = Npb N = 2n



Linkage disequilibrium

Compare this to the table of expected counts if there is linkage
disequilibrium:

B b

A n11 = N(pApB + D) n12 = N(pApb − D) n1. = NpA

a n21 = N(papB − D) n22 = N(papb + D) n2. = Npa

n.1 = NpB n.2 = Npb N = 2n

where D = pAB − pApB . Clearly if D = 0 we get the previous table.

Note that in order to estimate D we need estimates of pAB , pA

and pB .



Linkage disequilibrium

While estimating pA and pB is straightforward, we can just use the
sample proportions, n1./N and n.1/N respectively, estimating pAB

would seem to require knowledge of haplotypes which we don’t
have.

However we can estimate pAB using the method of maximum
likelihood.



Linkage disequilibrium

One problem with using D to measure the extent of linkage
disequilibrium is that its upper bound depends on the allele
frequencies, hence it is difficult to interpret.

For this reason we use

D ′ =
|D|

Dmax

where

Dmax =

{
min(pApb, papB) D > 0
min(pApB , papb) D < 0

Values of D ′ near 1 indicate linkage disequilibrium while values
near zero indicate linkage equilibrium.



Linkage disequilibrium

We will now see how to use R to compute estimates of D ′.

First, load the genetics package and attach the fms data set.

> library(genetics)
> attach(fms)

Then we use the genotype function to create genotype objects
from 2 of the SNPs in the ACTN3 gene as follows.

Actn3Snp1 <- genotype(actn3 r577x,sep="")
Actn3Snp2 <- genotype(actn3 rs540874,sep="")



Linkage disequilibrium

We need to specify sep="" as the default separator of alleles is the
/ symbol, and our data just has the alleles paired with no
separator.

> actn3 r577x[1:10]
[1] CC CT CT CT CC CT TT CT CT CC
> Actn3Snp1[1:10]
[1] "C/C" "C/T" "C/T" "C/T" "C/C" "C/T" "T/T" "C/T"
[8] "C/T" "C/C"

Alleles: C T



Linkage disequilibrium

Now the data are in a suitable format for computing LD using the
LD function.

> LD(Actn3Snp1,Actn3Snp2)
Pairwise LD
-----------

D D’ Corr
Estimates: 0.1945726 0.8858385 0.7860811

X^2 P-value N
LD Test: 895.9891 0 725



Linkage disequilibrium

If we now compare this to the situation where we look at SNPs in
different genes, we see the level of LD is much lower.

As an example, we will use a SNP from the gene estrogen receptor
1.

Esr1Snp1 <- genotype(esr1 rs1801132,sep="")
> LD(Actn3Snp1,Esr1Snp1)
Pairwise LD
-----------

D D’ Corr
Estimates: 0.01466542 0.1122922 0.06722353

X^2 P-value N
LD Test: 6.534478 0.01058033 723

So while the estimate is lower (D ′ = 0.11 instead of D ′ = 0.89)
the p-value for the test indicates that it is different from 0 using
conventional cutoffs.



Linkage disequilibrium

However, despite what the documentation for this package says,
this is not a valid test for LD because the haplotype frequency is
estimated and then used as if it was known.

The estimate of the haplotype frequency has uncertainty
associated with it and this test ignores that uncertainty.

Also note that the sample size used for the test is based on the
number of alleles, which is twice as large as the sample size.

This is not a valid value for the sample size unless we have
Hardy-Weinberg equilibrium at both loci (more on this below).



Linkage disequilibrium

We can also examine LD between sets of SNPs. First we set up a
few more SNPs from the ACTN3 gene.

Actn3Snp3 <- genotype(actn3 rs1815739,sep="")
Actn3Snp4 <- genotype(actn3 1671064,sep="")
Actn3AllSnps <- data.frame(Actn3Snp1,Actn3Snp2,Actn3Snp3,Actn3Snp4)



Linkage disequilibrium

Here we will just pick out the estimates of D ′ from the output
rather than examine all of the output.

> LD(Actn3AllSnps)$"D’"
Actn3Snp1 Actn3Snp2 Actn3Snp3 Actn3Snp4

Actn3Snp1 NA 0.8858385 0.9266828 0.8932708
Actn3Snp2 NA NA 0.9737162 0.9556019
Actn3Snp3 NA NA NA 0.9575870
Actn3Snp4 NA NA NA NA



Linkage disequilibrium

We can also make a heatmap to graphically illustrate the extent of
LD using the LDheatmap package.

> install.packages("LDheatmap")
> library(LDheatmap)
Loading required package: grid
> LDheatmap(Actn3AllSnps,LDmeasure="D’")



Pairwise LD
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Linkage disequilibrium: r 2

Another way to measure LD is via a quantity related to the
Pearson’s χ2 test statistic applied to the tables presented earlier.

This measure is r2 = χ2
1/N, where χ2

1 is the Pearson’s χ2 test
statistic and N = 2n.

It can be shown that

r2 =
D2

pApBpapb

so that there is a close connection between D ′ and r2. Both adjust
the measure D, they just do so in slightly different ways.



Linkage disequilibrium: r 2

We can use the same function to compute r2, but specify R^2 in
place of D’. For example:

> LD(Actn3AllSnps)$"R^2"
Actn3Snp1 Actn3Snp2 Actn3Snp3 Actn3Snp4

Actn3Snp1 NA 0.6179236 0.6729845 0.6375185
Actn3Snp2 NA NA 0.9435869 0.9000219
Actn3Snp3 NA NA NA 0.8994410
Actn3Snp4 NA NA NA NA



Linkage disequilibrium blocks

There appear to recombination hotspots in the genome: locations
where recombinations frequently occur.

For regions between these hotspots there is high LD with groups of
alleles segregating through populations.

To see these one can compute the average LD over regions by
finding the mean level of LD over some region.



Average LD

This is easy to do in R, for example:

> LDMat <- LD(Actn3AllSnps)$"D’"
> mean(LDMat,na.rm=T)
[1] 0.9321162

A tagging SNP is a SNP selected from a LD block to represent all
SNPs in that block.

The use of such SNPs reduces the problem of multiple testing,
however sets of tagging SNPs seem to differ across populations,
thus the use of tagging SNPs in association studies with outbred
populations may require stratified analyses.



Hardy-Weinberg equilibrium (HWE)

Hardy-Weinberg equilibrium at a locus is said to exist when mating
decisions are made without reference to alleles at that locus.

When HWE exists, genotype frequencies only depend on allele
frequencies provided we ignore mutations and there is no
immigration.

For genetic markers that are not associated with traits that impact
fitness we expect HWE to hold, however if a certain allele gives
individuals an advantage in terms of reproduction, then we would
expect that the frequency of that allele to increase over time.

If a genetic locus does not obey HWE then allele frequencies
depend on time, and combining data from different generations to
estimate an “allele frequency” is problematic.

If there is immigration or noninterbreeding subgroups in a
population, again, the notion of “allele frequency” is problematic.



HWE

We can use either Pearson’s χ2 tests or Fisher’s exact test to test
for HWE.

If our marker only has 2 alleles then the 2 categorical variables we
conceptually have data about are which allele an individual has on
the chromosome he received from his mother and which allele he
has on the chromosome he received from his father.

With unrelated subjects we can’t distinguish which allele came
from which parent if someone is heterozygous, so we only observe
3 cells: if the 2 alleles are represented by a and A then the 3 cells
are AA, Aa and aa.



HWE

If we use the following notation for genotype frequencies

AA Aa aa

n11 n12 n22

then En11 = Np2
A, En12 = 2NpA(1− pA) and En22 = N(1− pA)2

but recall we can estimate pA with (2n11 + n12)/(2N) so that we
can use the usual (observed− expected)2/expected and sum over
all cells in the table to get a χ2 test statistic in the usual fashion.



Testing HWE in R

We can conduct these tests in R using the genetics package.

> attach(hgdp)
> Akt1Snp1 <- genotype(AKT1.C0756A,sep="")
> HWE.chisq(Akt1Snp1)

Pearson’s Chi-squared test with simulated
p-value (based on 10000 replicates)

data: tab
X-squared = 6.927, df = NA, p-value = 0.007699

So we conclude that this locus is not in HWE.



Testing HWE in R

However if we select a subset of the data we see that the results of
the χ2 test differ from the version of Fisher’s exact test that is
appropriate in this situation

> Akt1Snp1Maya <- genotype(AKT1.C0756A[Population=="Maya"],sep="")

> table(Akt1Snp1Maya)
Akt1Snp1Maya
A/A C/A C/C
1 6 18



Testing HWE in R

> HWE.chisq(Akt1Snp1Maya)
Pearson’s Chi-squared test with simulated
p-value (based on 10000 replicates)

data: tab
X-squared = 0.287, df = NA, p-value = 1
> HWE.exact(Akt1Snp1Maya)

Exact Test for Hardy-Weinberg Equilibrium
data: Akt1Snp1Maya
N11 = 18, N12 = 6, N22 = 1, N1 = 42, N2 = 8, p-value
= 0.4843

However both fail to reject the null hypothesis that there is HWE
at this locus.



HWE and population substructure

In the presence of

population admixture-interbreeding of 2 genetically distinct
populations, or

population stratification-the existence of 2 or more genetically
distinct groups that don’t interbreed, HWE will not hold.

As such, failure of HWE can be used as a method to assess if
either of these 2 phenomena are present.

Or it may be a sign of genotyping errors, in any event, it is a good
thing to check prior to further analysis.



Genotyping errors

A genotyping error occurs when the genotype measured by the
algorithm is not the underlying genotype.

As mentioned, one can test for HWE for each variant and then not
consider variants that are not in HWE.

There are a number of problems with this approach:

I deviations from HWE could be due to associations between
genotypes and disease status-a number of improvements have
been suggested but these too are problematic

I departure from HWE could be due to population substructure

I multiple hypothesis testing-how do we interpret all of these
tests.

Despite these difficulties, in practice SNPs are frequently dropped
from the analysis due to a failure of HWE.



Identifying population substructure

While self-declared race can be useful for stratifying analyses,
ethnicity operates on a much finer level than categories such as
African-American.

With sufficient marker data one can detect trends in ethnicity as
one traverses Europe.

Hence there is a demand for tools that can allow us to identify
substructure and account for it in the analysis.

Once identified, one can either conduct a stratified analysis (i.e.
analyze the different subgroups separately) or account for the
subpopulations in a multiple regression type of approach.



Multidimensional scaling

Multidimensional scaling (MDS) relies on the idea that the
collection of SNP data for each subject can be thought of as
residing in a high dimensional space.

For example, think of the SNP data as the number of copies of the
major allele for each SNP.

If there are 3 SNPs, then each subject has data of the form, e.g.
(0, 1, 0).

Now imagine these are the coordinates of a point in a 3
dimensional space.

So each subject is represented by a point in 3 dimensional space,
and we can think about the distance between pairs of points in this
space.



Multidimensional scaling

With many SNPs it is impossible to visualize these points but we
can still define distances between individuals.

The goal of multidimensional scaling is to represent high
dimensional data points in a lower dimensional space so that the
pairwise distances between individuals are retained.

This would allow us to graphically assess if there are groups of
subjects that are close in the high dimensional space, thereby
allowing us to see if there is population substructure.

If we can identify such subpopulations, then we could define
indicator variables for each subject that encode the subpopulation
identity and include these in a multiple regression model to
determine if a SNP impacts a trait given the effect of the
subpopulation.



Principal components analysis

We can use principal components analysis (PCA) to much the
same end.

The idea is that maybe all of the subjects collections of SNPs look
like the SNP data for just a few subjects with small amounts of
noise added.

We then try to identify the reduced sets of collections of SNPs and
determine for each subject which of the few SNP collections to
which he or she is closest.



Substructure identification in R

To use MDS, we first need to generate a table that has all of the
pairwise distances between subjects based on the gene AKT1.

We will first extract all SNPs that cover this gene, then create a
table that has the genotype for each subject encoded numerically
then compute the distances between each subject.

> attach(fms)
> NamesAKT1Snps <- names(fms)[substr(names(fms),1,4)=="akt1"]

> NamesAKT1Snps

[1] "akt1 t22932c" "akt1 g15129a" "akt1 g14803t"

[4] "akt1 c10744t c12886t" "akt1 t10726c t12868c"

...

[22] "akt1 g22187a" "akt1 a22889g" "akt1 g23477a"

So there are 24 SNPs that intersect this gene.



Substructure identification in R

Now select the SNPs and convert to a numerical format (we need
to give numeric values to the NAs or cmdscale will fail).
> FMSgeno <- fms[,is.element(names(fms),NamesAKT1Snps)]

> dim(FMSgeno)
[1] 1397 24
> FMSgenoNum <- data.matrix(FMSgeno)
> FMSgenoNum[is.na(FMSgenoNum)] <- 4

Then compare the 2 tables.



Substructure identification in R

> FMSgeno[1:5,1:4]

akt1 t22932c akt1 g15129a akt1 g14803t akt1 c10744t c12886t

1 TT GG GG CC

2 TT AA TT CC

3 TT AA TT CC

4 TT AG GT CC

5 TT AG GT CC

> FMSgenoNum[1:5,1:4]

akt1 t22932c akt1 g15129a akt1 g14803t akt1 c10744t c12886t

1 3 3 1 1

2 3 1 3 1

3 3 1 3 1

4 3 2 2 1

5 3 2 2 1



Substructure identification in R

next compute distances.

> DistFmsGeno <- as.matrix(dist(FMSgenoNum))
> DistFmsGeno[1:5,1:5]

1 2 3 4 5
1 0.000000 4.795832 5.291503 3.741657 3.162278
2 4.795832 0.000000 2.236068 3.872983 3.000000
3 5.291503 2.236068 0.000000 3.162278 3.741657
4 3.741657 3.872983 3.162278 0.000000 2.449490
5 3.162278 3.000000 3.741657 2.449490 0.000000



Substructure identification in R

Finally generate a figure.

> plot(cmdscale(DistFmsGeno),xlab="C1",ylab="C2")
> abline(v=0,lty=2)
> abline(h=4,lty=2)

Some clusters are clear in the low dimensional representation of the
data.
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Substructure identification in R

PCA is also straightforward in R, here we just plot the first 2.

PCFMS <- prcomp(FMSgenoNum)
plot(PCFMS$"x"[,1],PCFMS$"x"[,2],xlab="PC1",ylab="PC2")

Again a couple of distinct clusters are observed.
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Accounting for substructure

While the informal method described above involving multiple
regression models using indicators identified using graphical tools is
reasonable, how to deal with substructure is an ongoing problem.

One controversial aspect of trying to do this is that we use the
same SNPs for identifying population substructure as we do for
testing for associations.

Some of the main approaches are

I genomic control-use a different sampling distribution when
testing for associations than the usual χ2.

I structured association-much like our graphical approaches
except use a formal model based clustering algorithm.

I eigenstrat-program that formalizes the PCA based graphical
approach described above.
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