
Multiple comparison procedures

Cavan Reilly

October 23, 2019

Table of contents
Overview

Power

Test multiplicity

Family-wise error rate

False discovery rate

Single step approaches
Bonferroni adjustment
Multiple comparisons in ANOVA

Benjamini Hochberg adjustment

Benjamini Yakutieli adjustment

The q value

Resampling based methods
Westfall and Young adjustment
The null restricted bootstrap
The bootstrap

Effective number of tests

Test multiplicity

In the traditional application of statistical methods to data analysis
one has a single primary outcome and the goal is to define a
procedure for testing a hypothesis about that outcome.

For example, we may hypothesize that some drug lowers mortality,
so we would design a study to test this hypothesis.

In practice there are also typically secondary outcomes which are
also assessed but whose role is not as important as the primary
outcome.

A positive finding for a secondary outcome would suggest another
study whose primary outcome would be the past secondary
outcome.

One could use the previous data for the secondary outcome to
design a well powered study for this secondary outcome.

Power

Power is the probability that the null hypothesis will be rejected if
the alternative hypothesis is true.

For example, if we simulate data so that the null hypothesis is true
then we will reject the null hypothesis sometimes: if we use a
significance level of 0.05 this will happen 5% of the time.

We can check this in R using a for loop.

Power

> pval <- rep(NA,1000)
> for(i in 1:1000){
+ y1 <- rnorm(20)
+ y2 <- rnorm(20)
+ pval[i] <- t.test(y1, y2, var.equal=TRUE)$p.value
+ }
> sum(pval<.05)/1000
[1] 0.046

Which is about 5%.

We can use the same approach to determine the power when the
null hypothesis is not true.

Power

> for(i in 1:1000){
+ y1=rnorm(20)
+ y2=rnorm(20, mean=1)
+ pval[i]=t.test(y1, y2, var.equal=TRUE)$p.value
+ }
> sum(pval<.05)/1000
[1] 0.87

So this means that a study with 20 subjects per group and a
primary outcome with mean 0 in one group and mean 1 in the
other group (and a standard deviation of 1 in both groups) has
about a 90% chance of finding a significant difference if one tests
for a difference using a 2 sample t-test.

The more subjects one has in the study, or the greater difference
between the 2 groups, the larger the power of the study.

Test multiplicity

If one has many outcomes and tests them all it is possible that one
will mistakenly reject a null hypothesis when in fact it is true.

This is the primary reason why studies are designed with a single
primary outcome.

In this context we are controlling what is called the family-wise
error rate.

A type I error occurs when we falsely reject the null hypothesis, i.e.
we say there is an effect or difference when in truth none exists.

A type II error occurs when we falsely fail to reject the null
hypothesis, i.e. we fail to detect a difference.

Family-wise error rate

Suppose we are interested in testing m null hypotheses, denoted
H1

0 , . . . ,H
m
0 .

Non-significant Significant

H0 U V m0

HA T S m −m0

m − R R m

Here V is the number of times a type I error is made while T is
the number of times a type II error is made.

The family-wise error rate (FWER) is P(V ≥ 1).

Family-wise error rate

There are stricter definitions that condition on the complete set of
nulls or only subsets.

In particular the FWER under the complete null is

P(V ≥ 1|H1
0 , . . . ,H

m
0)

whereas the FWER under a partial null is P(V ≥ 1) conditioning
on some subset of the null hypotheses.

A test procedure has strong control of the FWER if the FWER is
less than or equal to the level of the test under all partial nulls.

It is said to have weak control if the FWER is less than or equal to
the level of the test conditioning on the complete set of nulls.

False discovery rate

The false discovery rate is the proportion of falsely rejected nulls
among the set of nulls that are rejected.

In terms of the table we have that the FDR is just E
(

V
R

)
.

Being more careful, we note that since R = 0 with positive
probability we must define the FDR to be 0 when R = 0, hence we
find that

FDR = E
(

V

R

∣∣∣∣ R > 0

)
P(R > 0) + E

(
V

R

∣∣∣∣ R = 0

)
P(R = 0)

= E
(

V

R

∣∣∣∣ R > 0

)
P(R > 0)

False discovery rate

If we assume that all nulls are true then V = R and so V
R is 0 if

V = 0 and it is 1 if V > 0, hence

E
(

V

R

)
= 0× P(V = 0) + 1× P(V ≥ 1)

= P(V ≥ 1)

= FWER

so that if all nulls are true then the FDR equals the FWER.

False discovery rate

Thus if we control the FDR (i.e. keep it less than some value) then
we are controlling the FWER in the weak sense.

If not all of the null hypotheses are true, so that V < R, then
V /R < 1 and so E(V

R |V ≥ 1) < 1 which gives us

E
(

V

R

)
= E

(
V

R

∣∣∣∣ V = 0

)
P(V = 0) + E

(
V

R

∣∣∣∣ V ≥ 1

)
P(V ≥ 1)

= 0× P(V = 0) + E
(

V

R

∣∣∣∣ V ≥ 1

)
P(V ≥ 1)

< FWER.

So that the false discovery rate is less than the FWER in general.

Control of the FDR versus the FWER in the strong sense depends
on the application: exploratory versus confirmatory.

Single step approaches

There are 2 types of algorithms that are used to control the
FWER: single step procedures and step down procedures.

In a single step procedure the same criterion is used for all tests.

In a step down procedure the p-values are sorted and a different
criterion is used for each test in the sorted arrangement.

The Bonferroni adjustment is the most widely used single step
procedure.

To motivate this procedure, first assume that we control the level
of each of our m tests by requiring

P(reject H i
0|H i

0 true) ≤ α

for some α, the level of the individual tests.

Single step approaches
Then we have

FWER = P(V ≥ 1|H1
0 , . . . ,H

m
0)

= 1− P(V = 0|H1
0 , . . . ,H

m
0).

If we then assume the tests are independent

FWER = 1−
m∏

i=1

P(do not reject H i
0|H i

0)

= 1−
m∏

i=1

[1− P(reject H i
0|H i

0)]

≤ 1−
m∏

i=1

(1− α)

= 1− (1− α)m

Single step approaches

Note that with m = 2 and α = 0.05 we get a FWER of 0.0975, so
that with just 2 independent tests each controlled at the
conventional significance level we have almost doubled our chances
of making a type I error!

With m = 14 this probability becomes over 0.50.

The Bonferroni adjustment changes the significance level for all
tests.

Instead of using a significance level of α one just uses α′ = α/m.

This is because 1− (1− α)m ≈ mα by a first order Taylor
expansion for α near zero.

Single step approaches

As an example, we will test for associations between mutations in
the protease gene and indinavir and nelfinavir fold resistance using
the virco data set.

We will dichotomize the genotype data and only consider positions
in the gene for which at least 5% of the strains have an observed
mutation.
> attach(virco)
> PrMut <- virco[,23:121]!="-" & virco[,23:121]!="."
> dim(PrMut)
[1] 1066 99
> NObs <- dim(virco)[1]
> PrMutSub <- data.frame(PrMut[,apply(PrMut,2,sum) > NObs*0.05])

> dim(PrMutSub)
[1] 1066 47
> Trait <- IDV.Fold-NFV.Fold

Bonferroni adjustment

Now we will write a function to get the the p-value from a 2
sample t-test and apply this to our data set.

> TtestP <- function(Geno){
+ return(t.test(Trait[Geno==1],Trait[Geno==0],na.rm=T)$"p.value")

+ }
> Pvec <- apply(PrMutSub,2,TtestP)

> sort(Pvec)

P30 P76 P88 P55 P48 P89

3.732500e-12 9.782323e-10 1.432468e-06 2.286695e-06 5.749467e-06 8.924013e-05

P11 P82 P60 P85 P54 P43

4.171618e-04 9.500604e-04 1.115441e-03 1.219064e-03 1.489381e-03 2.025621e-03

...

P58 P62 P41 P12 P57

5.440101e-01 6.677043e-01 6.998280e-01 8.050362e-01 9.938846e-01

Bonferroni adjustment

So if we just use a significance level of 0.05 for each test we get
the following sets of mutations.

> names(PrMutSub)[Pvec < 0.05]

[1] "P11" "P14" "P30" "P32" "P33" "P35" "P43" "P46" "P47" "P48" "P54" "P55"

[13] "P60" "P61" "P67" "P69" "P76" "P82" "P84" "P85" "P88" "P89"

However if we use the Bonferroni adjustment we find fewer
differences.

> PvecAdj <- p.adjust(Pvec,method="bonferroni")

> names(PrMutSub)[PvecAdj < 0.05]

[1] "P11" "P30" "P48" "P55" "P76" "P82" "P88" "P89"

Multiple comparisons in ANOVA

Historically, the first investigations into multiple hypothesis testing
were motivated by post-hoc comparisons in ANOVA.

Recall, in ANOVA one tests the null hypothesis of no difference
between the groups.

So if that hypothesis is rejected the natural question is, which
groups differ and how.

Tukey addressed this question by determining the sampling
distribution of the largest difference between means.

Scheffe took a different approach in which he considered every
possible linear combination of the means, so his approach is more
general.

Multiple comparisons in ANOVA

We will examine how to use Tukey’s approach in R.

We will examine the association between a SNP and the percent
change in the non-dominant muscle strength.

> attach(fms)
> Trait <- NDRM.CH
> table(resistin c180g)
resistin c180g
CC CG GG

330 320 89
> m1 <- lm(Trait~resistin c180g)

Multiple comparisons in ANOVA

> summary(m1)
Call:
lm(formula = Trait ~ resistin c180g)
Residuals:

Min 1Q Median 3Q Max
-56.054 -22.754 -6.054 15.346 193.946
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 56.054 2.004 27.973 <2e-16 ***
resistin c180gCG -5.918 2.864 -2.067 0.0392 *
resistin c180gGG -4.553 4.356 -1.045 0.2964

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 33.05 on 603 degrees of freedom
(791 observations deleted due to missingness)

Multiple R-squared: 0.007296, Adjusted
R-squared: 0.004003

F-statistic: 2.216 on 2 and 603 DF, p-value: 0.11

Multiple comparisons in ANOVA

So we detect a difference between the CC and CG genotypes if we
don’t do any adjustment, although the p-value for the ANOVA test
is 0.11.

We note in passing that if one looks at diagnostic plots the
residuals are far from normal.

To use Tukey’s method we do the following.

Multiple comparisons in ANOVA

> TukeyHSD(aov(Trait~resistin c180g))
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Trait ~ resistin c180g)
$resistin c180g

diff lwr upr p adj
CG-CC -5.917630 -12.645660 0.8103998 0.0977410
GG-CC -4.553042 -14.788156 5.6820721 0.5486531
GG-CG 1.364588 -8.916062 11.6452381 0.9478070

So after making the adjustment the difference is not significant.

Benjamini Hochberg control of FDR

The Benjamini Hochberg adjustment is a step down procedure, i.e.
it uses a different criterion for each test.

The method starts with a set of p-values which are assumed to be
independent and we select a threshold for the FDR, which we
denote q.
The algorithm is as follows:

1. Sort the p-values in increasing order to get p(1), p(2), . . . , p(m)

2. define k = max{i : p(i) ≤ i
mq}

3. Reject H
(1)
0 ,H

(2)
0 , . . .H

(k)
0 .

Benjamini Hochberg control of FDR

So if we have the set of sorted p-values

0.001, 0.012, 0.014, 0.122, 0.245, 0.320, 0.550, 0.776, 0.840, 0.995

we would compare these 2 the following set of numbers
0.005, 0.010, 0.015, 0.020, 0.025, 0.030, 0.035, 0.040, 0.045, 0.050

and find that k = 3 so that we reject the null hypotheses
associated with the first 3 p-values.

Note that we still reject hypothesis 2 even though its p-value
exceeds the second cut-off value.

Benjamini Hochberg control of FDR

We can also get adjusted p-values by letting

padj∗
(i) = p(i)m/i .

However after this adjustment the adjusted p-values may no longer
be strictly increasing, hence you would go though and fix that up
with

padj
(i) = min

j≥i
padj∗
(j) .

We can obtain these adjusted p-values in R too again using the
virco data.

Benjamini Hochberg in R

> m <- length(Pvec)
> BHp <- sort(Pvec,decreasing=T)*m/seq(m,1)
> sort(cummin(BHp))

P30 P76 P88 P55 P48 P89

1.754275e-10 2.298846e-08 2.244200e-05 2.686866e-05 5.404499e-05 6.990477e-04

P11 P82 P85 P60 P54 P43

2.800943e-03 5.581605e-03 5.729603e-03 5.729603e-03 6.363718e-03 7.933683e-03

...

P20 P62 P41 P12 P57

5.946157e-01 7.132296e-01 7.309314e-01 8.225370e-01 9.938846e-01

Benjamini Hochberg in R

Then we can get the names of the mutations that differ, but we
must first reorder the mutations.

> BHp[order(Pvec,decreasing=T)] <- cummin(BHp)
> names(PrMutSub)[BHp < 0.05]

[1] "P11" "P30" "P43" "P46" "P47" "P48" "P54" "P55" "P60" "P61" "P67" "P69"

[13] "P76" "P82" "P84" "P85" "P88" "P89"

So we find twice as many mutations as being associated with the
difference in the fold change than we found using the Bonferroni
correction.

Benjamini Hochberg in R

We can also do this more directly just using the p.adjust
function.

> sort(p.adjust(Pvec,method="BH"))

P30 P76 P88 P55 P48 P89

1.754275e-10 2.298846e-08 2.244200e-05 2.686866e-05 5.404499e-05 6.990477e-04

P11 P82 P60 P85 P54 P43

2.800943e-03 5.581605e-03 5.729603e-03 5.729603e-03 6.363718e-03 7.933683e-03

...

P58 P62 P41 P12 P57

5.946157e-01 7.132296e-01 7.309314e-01 8.225370e-01 9.938846e-01

Benjamini Yakutieli adjustment

The Benjamini Hochberg adjustment assumes that the tests are
independent, but this is frequently not the case.

For example, SNPs that are close on the genome are likely in
linkage disequilibrium so the test statistics should be similar.

While the Benjamini Hochberg adjustment frequently works fine
with some dependence among the tests, the Benjamini Yakutieli
adjustment allows for dependence among the tests.

Moreover, all one needs to do is replace q with q̃ = q/
∑m

i=1 i−1.

Also easy in R via the p.adjust function.

Benjamini Yakutieli adjustment in R

> BYp <- p.adjust(Pvec, method="BY")

> names(PrMutSub)[BYp < 0.05]

[1] "P11" "P30" "P43" "P48" "P54" "P55" "P60" "P61" "P76" "P82" "P85" "P88"

[13] "P89"

So we can see that we don’t find as many mutations, and a
comparison shows that the Benjamini Yakutieli adjusted p-values
are larger and frequently top out at 1.

> cbind(BHp,BYp)[1:5,]
BHp BYp

P57 0.527903116 1.00000000
P12 0.002800943 0.01243048
P41 0.822537013 1.00000000
P62 0.119861101 0.53193923
P58 0.073533226 0.32633780

The q value

The q value is a quantity that is analogous to a p-value except it is
used to control the FDR rather than the FWER.

Formally it controls what is called the positive false discovery rate,
which is defined as

pFDR = E
(

V

R

∣∣∣∣ R > 0

)
.

There is an R package distributed through Bioconductor that
computes the q value.

The q value

First we must get the package from bioconductor and load it.
> if (!requireNamespace("BiocManager", quietly =
TRUE))
+ install.packages("BiocManager")
> BiocManager::install("qvalue")
> library(qvalue)

Then we just apply the function to a set of p-values.

> sort(qvalue(Pvec,lambda=0)$qvalues)

P30 P76 P88 P55 P48 P89

1.754275e-10 2.298846e-08 2.244200e-05 2.686866e-05 5.404499e-05 6.990477e-04

P11 P82 P60 P85 P54 P43

2.800943e-03 5.581605e-03 5.729603e-03 5.729603e-03 6.363718e-03 7.933683e-03

...

P58 P62 P41 P12 P57

5.946157e-01 7.132296e-01 7.309314e-01 8.225370e-01 9.938846e-01

The q value

and we get exactly the same mutations as from the BH adjustment.

> names(PrMutSub)[qvalue(Pvec,lambda=0)$qvalues < 0.05]

[1] "P11" "P30" "P43" "P46" "P47" "P48" "P54" "P55" "P60" "P61" "P67" "P69"

[13] "P76" "P82" "P84" "P85" "P88" "P89"

We can also use a less conservative procedure that uses the
bootstrap to estimate the proportion of null mutants and obtain a
larger list.

> names(PrMutSub)[qvalue(Pvec,pi0.method="bootstrap")$qvalues < 0.05]

[1] "P11" "P13" "P14" "P15" "P16" "P30" "P32" "P33" "P34" "P35" "P43" "P46"

[13] "P47" "P48" "P53" "P54" "P55" "P60" "P61" "P67" "P69" "P72" "P76" "P82"

[25] "P84" "P85" "P88" "P89"

It also provides a method for estimating the proportion of true
nulls and reports that.

> qvalue(Pvec,pi0.method="bootstrap")$pi0
[1] 0.1891253

Resampling based methods

The free step-down resampling approach of Westfall and Young
(1993) uses repeated samples under the complete null hypothesis
to determine adjusted p-values.

Recall: the complete null hypothesis is the joint hypothesis that no
markers are related to the trait.

We will first describe the algorithm assuming that we have a
quantitative trait.

The method relies on the subset pivotality assumption which states
that the distribution of test statistics is the same if all null
hypotheses are true or only a subset are true.

Notation: let xij represent the genotype for the j th marker for
individual i and let yi represent the trait variable for this subject.

Free step-down resampling

First you fit the linear model

yi = β0 + β1x1i + β2x2i + . . .+ βmxmi + εi ,

and compute the test statistic Tj (which is the parameter estimate

β̂j divided by its standard error) and p-value, pj for each marker.

Then sort the absolute value of the observed tests statistics in
increasing order: |T |(1), |T |(2), . . . , |T |(m).

The next step is to sample with replacement from the set of
residuals

ri = yi − β̂0 − β̂1x1i − β̂2x2i − . . .− β̂mxmi

and then fit a regression model with these residuals as the outcome
variable and the same set of predictor variables.

Free step-down resampling

We then record the absolute value of the test statistics in the order
given by the order of the observed test statistics on the bth

iteration:

|T |∗b(1), |T |
∗b
(2), . . . , |T |

∗b
(m)

We then repeat this process of sampling from the set of residuals,
refitting the model and recording the test statistics many (i.e.
thousands) times.

The idea here is to examine the null distribution of the ordered test
statistics.

Note: these won’t necessarily be ordered.

Free step-down resampling

Then, for each of the samples, we check if the j th ordered statistic
is less than what we obtain from our simulation under the
complete null. That is, on the bth iteration we compute

q∗b1 = |T |∗b(1)

q∗b2 = max(q∗b1 , |T |∗b(2))

q∗b3 = max(q∗b2 , |T |∗b(3))

...

q∗bm = max(q∗bm−1, |T |∗b(m))

and determine if q∗bj > |T |(j).

Free step-down resampling

The proportion of times that this is true gives the initial adjusted
p-value, p̃(j).

The adjusted p-value is obtained from these initial estimates by
enforcing that they are ordered by

p̃(m) = p̃(m)

p̃(m−1) = max(p̃(m), p̃(m−1))

p̃(m−2) = max(p̃(m−1), p̃(m−2))

...

p̃(1) = max(p̃(2), p̃(1))

Westfall and Young have shown that this controls the FWER in
the strong sense.

Free step-down resampling

While there are functions in the multtest package that allow one to
do these adjustments, they are developed for the gene expression
data, not SNP data.

Hence we will just code this up directly in R using the FAMuSS
data as an example.

We will examine if 4 SNPs in the ACTN3 gene are related to
muscle strength in the non-dominant arm.

> attach(fms)
> Actn3Bin <- data.frame(actn3 r577x!="TT",actn3 rs540874!="AA",

+ actn3 rs1815739!="TT",actn3 1671064!="GG")

> Mod <- summary(lm(NDRM.CH~.,data=Actn3Bin))

Free step-down resampling in R

> Mod

Call:

lm(formula = NDRM.CH ~ ., data = Actn3Bin)

Residuals:

Min 1Q Median 3Q Max

-55.181 -22.614 -7.414 15.486 198.786

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 54.700 3.212 17.028 <2e-16 ***

actn3 r577x.....TT.TRUE -12.891 4.596 -2.805 0.0052 **

actn3 rs540874.....AA.TRUE 10.899 11.804 0.923 0.3562

actn3 rs1815739.....TT.TRUE 27.673 17.876 1.548 0.1222

actn3 1671064.....GG.TRUE -29.166 17.516 -1.665 0.0964 .

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 32.93 on 591 degrees of freedom

(801 observations deleted due to missingness)

Multiple R-squared: 0.01945, Adjusted R-squared: 0.01281

F-statistic: 2.93 on 4 and 591 DF, p-value: 0.02037

Again, the residuals plots look rather poor, but let’s ignore that.

Free step-down resampling in R

Next, we’ll record the observed test statistics, sort them, create a
complete data set (note the large amount of missing data above)
and save the order of the observed statistics.

> TestStatObs <- Mod$coef[-1,3]
> Tobs <- as.vector(sort(abs(TestStatObs)))
> MissDat <- apply(is.na(Actn3Bin),1,any) |
+ is.na(NDRM.CH)
> Actn3BinC <- Actn3Bin[!MissDat,]
> Ord <- order(abs(TestStatObs))

Free step-down resampling in R

Now we are in position to do the resampling. For this we use a for
loop as follows.

> M <- 1000
> NSnps <- 4
> Nobs <- sum(!MissDat)
> TestStatResamp <- matrix(nrow=M, ncol=NSnps)
> for(i in 1:M){
+ Ynew <- sample(Mod$residuals, size=Nobs, replace=T)
+ ModResamp <- summary(lm(Ynew~., data=Actn3BinC))
+ TestStatResamp[i,] <- abs(ModResamp$coef[-1,3])[Ord]
+ }

Free step-down resampling in R

Next we look at the cumulative maxima (the q∗bj values for the j th

marker on the bth sample), and compute the adjusted p-values.

> Qmat <- t(apply(TestStatResamp, 1, cummax))
> Padj <- apply(t(matrix(rep(Tobs,M),NSnps)) < Qmat, 2, mean)

> Padj
[1] 0.370 0.249 0.234 0.040

Free step-down resampling with binary traits

When our outcome is not continuous but binary, we need a slight
modification of the previous procedure.

In this case we use a logistic regression model: if we let

P(yi = 1|x1i , x2i , . . . , xmi) = πi

then we have the model that

log
(
πi/(1− πi)

)
= β0 + β1x1i + β2x2i + . . .+ βmxmi .

Note that this equation has no ε term: that is because the
randomness enters because yi is modeled as a random binary
variable with success probability πi .

So we replace our call to lm with a call to glm with family set to
binomial.

Free step-down resampling with binary traits

The other difference is that we don’t sample residuals, rather we
sample the binary outcome yi so that it has success probability

π̃i = exp(mi)/
(

1 + exp(mi)
)

where

mi = β̂0 + β̂1x1i + β̂2x2i + . . .+ β̂mxmi .

The null restricted bootstrap

The free step-down resampling procedure is closely related to the
use of the bootstrap, which is a general statistical technique for
computing standard errors and statistical bias.

An example of a resampling based technique that is closer to the
actual bootstrap is the null restricted bootstrap.

The distinguishing feature of the bootstrap is sampling with
replacement from your data.

You must use replacement to get a different sample of the same
size.

The bootstrap

Although there are many applications of the bootstrap in statistics,
we will consider the simplest use: generating a confidence interval
for a mean.

Note: this is a large sample procedure and will give invalid results
with small sample sizes.

To use the bootstrap to get a confidence interval one samples from
the observed data with replacement and computes the mean many
times, then use the quantiles of the sampled means to get the
endpoints of the interval.

The bootstrap

This is straightforward to do in R-first we simulate some data and
use known expressions for the standard error of the mean to get
the endpoints of a 95% confidence interval.

> set.seed(1)
> y1 <- rnorm(75)
> mean(y1)-qt(.975, df=74)*sqrt(var(y1)/75)
[1] -0.0906181
> mean(y1)+qt(.975, df=74)*sqrt(var(y1)/75)
[1] 0.3348219

Now we run 1000 iterations and get the mean of our samples.

> sim <- rep(NA, 1000)
> for(i in 1:1000){
+ y2 <- sample(y1, replace=TRUE)
+ sim[i] <- mean(y2)
}

The bootstrap

Then examine the quantiles of the simulations.

> quantile(sim, c(.025, .975))
2.5% 97.5%

-0.07578891 0.32268552

We can increase the number of bootstrap samples to increase the
accuracy of the approximation.

sim <- rep(NA, 10000)
for(i in 1:10000){
+ y2 <- sample(y1, replace=TRUE)
+ sim[i] <- mean(y2)
}

The bootstrap

Here the new endpoints:
> quantile(sim, c(.025, .975))

2.5% 97.5%
-0.08671406 0.33040957

For comparison, here is the original interval: -0.0906181,
0.3348219

So the approximation is pretty good and we didn’t need to know
the sampling distribution (i.e. the quantiles of the t distribution)
or how to compute the standard error.

The null restricted bootstrap

In this technique we repeatedly sample sets of outcomes and
predictors and compare the resample based estimates to the
observed estimates, and then select a common threshold to apply
to all predictors so that the overall level of the test of the complete
null is controlled.

We will illustrate the technique using the same example we used
for Westfall and Young’s procedure.

The null restricted bootstrap in R

> CoefObs <- as.vector(Mod$coef[-1,1])
> B <- 1000
> TestStatBoot <- matrix(nrow=B, ncol=NSnps)
> for(i in 1:B){
+ SampID <- sample(1:Nobs, size=Nobs, replace=T)
+ Ynew <- NDRM.CH[!MissDat][SampID]
+ Xnew <- Actn3BinC[SampID,]
+ s1 <- summary(lm(Ynew~.,data=Xnew))
+ CoefBoot <- s1$coef[-1,1]
+ SEBoot <- s1$coef[-1,2]
+ if(length(CoefBoot)==length(CoefObs)){
+ TestStatBoot[i,] <- (CoefBoot-CoefObs)/SEBoot
+ }
+ }

The null restricted bootstrap in R

Then we need to look at the overall significance level as it depends
on the common threshold.
> for(cj in seq(2.7, 2.8, .01)){
+ print(cj)

+ print(mean(apply(abs(TestStatBoot)>cj,1,sum) >= 1, na.rm=T))

+ }
[1] 2.7

[1] 0.05182927

[1] 2.71

[1] 0.05182927

...

[1] 2.76

[1] 0.05081301

[1] 2.77

[1] 0.04979675

...

So we find that a cut off of 2.77 gets the significance level for the
complete null within our usual range of 0.05. Looking at the
observed statistics we see the largest is significant.
> Tobs
[1] 0.923304 1.547991 1.665086 2.804549

Effective number of tests

When a pair of SNPs are in perfect linkage disequilibrium, the tests
of association between these SNPs and a trait give exactly the
same test statistic, but when we correct for multiplicity we pay the
price for multiple tests anyway.

By “pay the price”, think of the Bonferroni correction: if I have
more tests the cutoff is smaller, hence I need more samples to have
the same power.

Collecting samples costs money, so I am not being metaphorical at
all.

Hence we should clearly first examine the SNPs to see if any are in
complete LD before testing for associations.

But if 2 SNPs are almost in perfect LD, shouldn’t there be some
sort of middle ground?

Effective number of tests

There is: we try to estimate the effective number of tests we are
computing.

The idea is that if 2 SNPs are completely dependent then we are
really only conducting one test (so the Bonferroni cut off is 0.05),
whereas if they are completely independent then we really are
conducting 2 independent tests (so the Bonferroni cut off is 0.025).

For intermediate cases we get intermediate cutoffs.

Effective number of tests

Recall: given a square matrix R (like a correlation matrix), the
eigenvalues, λ and eigenvectors x are defined by the equation

Rx = λx .

If λobs are the observed eigenvalues of the correlation matrix of a
set of m SNPs and V̂ is the variance of these eigenvalues then the
effective number of tests is given by the following expression:

meff = 1 + (m − 1)

[
1− V̂

m

]
.

So we use meff in place of when we conduct our Bonferroni
correction.

Effective number of tests in R

We can use built in facilities for computing eigenvalues in R.

> corActn3 <- cor(Actn3BinC)
> eigenValActn3 <- eigen(corActn3)$values
> mEff <- 1+(4-1)*(1-var(eigenValActn3)/4)
> mEff
[1] 1.816267
> 0.05/4
[1] 0.0125
> 0.05/mEff
[1] 0.02752899

So the cut off is much higher giving considerably more power than
the simple Bonferroni method.

Effective number of tests in R

There is some controversy over the best way to compute the
correlations: some simulation studies have found that using
Pearson’s correlation coefficient (what we have used here) is
anti-conservative, i.e. we are not adequately controlling the
significance level.

Above we used Pearson’s correlation coefficient, others suggest
using r2, the measure of LD we discussed perviously, but this has
also been shown to be anti-conservative.

	Overview
	Power
	Test multiplicity
	Family-wise error rate
	False discovery rate
	Single step approaches
	Bonferroni adjustment
	Multiple comparisons in ANOVA

	Benjamini Hochberg adjustment
	Benjamini Yakutieli adjustment
	The q value
	Resampling based methods
	Westfall and Young adjustment
	The null restricted bootstrap
	The bootstrap

	Effective number of tests

