
Estimation of haplotypes

Cavan Reilly

October 9, 2019

Table of contents

Overview

Frequentist vs. Bayesian statistics

Estimating haplotypes with the EM algorithm

Individual level haplotypes

Testing for differences in haplotype frequency

Bayesian methods for haplotype estimation

Testing for haplotype trait associations
Haplotype trend regression
Haplotype associations via multiple imputation
Haplotype testing using trait information

Overview

If there is substantial LD over a region containing a disease
mutation, collections of SNPs within this region should all be
associated with the disease phenotype.

If we test each SNP we introduce test multiplicity problems that
could be avoided if we looked at an association between a
multilocus haplotype and the disease trait.

However multilocus haplotypes can’t be determined directly from
the genotypic data in humans.

Thus we need methods for estimating haplotypes and testing for
an association between these haplotypes and a trait of interest.

Overview

We need to take care to fully incorporate all sources of variability
when looking at associations between traits and haplotypes.

In particular, we can’t simply estimate the haplotype for each
individual, then pretend that we know these haplotypes and test
for an association between the occurrence of the haplotype and the
disease trait.

This will overstate our certainty about the haplotypes and will lead
to false positives.

Overview

The text discusses 2 approaches, an EM algorithm based approach
and a Bayesian approach.

These 2 approaches are not very different: in particular they use
the same model, but they differ with regard to the method of
inference.

The method that uses the EM algorithm uses maximum likelihood
to estimate the parameters in the model, whereas the Bayesian
approach uses the posterior mode to estimate the haplotype for
each subject.

From a practical perspective this distinction is like using the median
or the mean to estimate the center of a distribution: we have the
model that our measurements are actually measurements of the
same quantity but that quantity is subject to measurement error.

Frequentist vs. Bayesian statistics

Most people learn frequentist statistics when they learn statistics.

Let’s say a parameter is a numerical quantity that governs the
probability distribution of our measurements (we could be more
general, but this is fine).

We use Roman letters to indicate data and we use Greek letters to
indicate parameters.

For example, when we say y ∼ N(µ, 1) where µ is a parameter.

We don’t observe µ, only data centered at that value.

Frequentist vs. Bayesian statistics

In frequentist statistics, we assume that parameters are fixed
unknown constants.

So a confidence interval is a random interval (since it is based on
the data and the data is modeled as random) that will contain the
unknown parameter with some probability.

Any given confidence interval either contains the parameter or it
doesn’t, but we don’t know if that is true or not for any particular
confidence interval.

This makes sense if you are a governmental regulatory agency: you
will mistakenly approve a drug once in a while but you have no
idea when you will make those mistakes.

So we control the overall probability of making such mistakes.

Frequentist vs. Bayesian statistics

In Bayesian statistics, parameters are treated as random variables:
what is crucial is what information one conditions upon when
making statements.

We think of the data as being generated conditional upon certain
values of the parameters: so we don’t say simply y ∼ N(µ, 1) but
rather y |µ ∼ N(µ, 1).

So if we think we observe y |µ then the question is how to say
something about µ once we observe data, y , i.e. make statements
about p(µ|y).

Frequentist vs. Bayesian statistics

Bayes theorem is a simple result that allows one to say something
about p(µ|y) in terms of p(y |µ) and states that

p(µ|y) ∝ p(y |µ)p(µ),

where the proportionality constant doesn’t depend on µ.

The factor p(y |µ) is the likelihood and p(µ) is called the prior.

Most researchers who use Bayesian methods try to do so in a way
that minimizes the impact of the prior as it reflects what we know
about the parameter prior to observing the data (and we usually
don’t know much).

Frequentist vs. Bayesian statistics

This means that what we know about the parameter after
observing the data, p(µ|y), called the posterior distribution, is
mainly driven by the likelihood.

Hence if a Bayesian approach and a frequentist approach use the
same likelihood (i.e. the same probability model), they should
pretty much give the same answer-this is in fact what we observe
in practice.

The main exception to this rule are situations in which one has
many parameters relative to the number of observations.

In this case the primary method of frequentist inference, namely
maximum likelihood, is not justified and the approximations that
these methods use are probably not of very high quality.

Using the EM algorithm to estimate haplotypes

The expectation and maximization (EM) algorithm is a general
statistical algorithm for computing maximum likelihood estimates
or posterior modes.

It is useful when you can think of some of the data as “missing
data” and the problem is such that if you had the missing data you
could estimate the remaining parameters in a straightforward
fashion.

We will call the “remaining parameters” the unknown parameters
below to distinguish them from the “missing data” parameters.

We can treat the haplotype of each subject as missing data: if we
had this piece of information estimating the haplotype frequencies
would be simple (these frequencies are part of the model for our
data).

Using the EM algorithm to estimate haplotypes

If we assume that we have p markers and all markers only take 2
values then the model for haplotype analysis is that each subject
has 2 copies of one of 2p possible haplotypes.

If p = 2 then there are 4 possible haplotypes and each subject has
2 copies from this set.

The model for haplotypes then is quite simple: each observation
contributes 2 pieces of information where each piece of information
is from a finite set.

The multinomial model is used as a model for the occurrence of
each of the haplotypes, hence if there are 4 possible haplotypes
there are 3 independent parameters and these parameters are the
probability of observing each of the haplotypes.

Note that these models assume Hardy Weinberg equilibrium in
that genotype probabilities depend solely on allele haplotype
frequencies.

Using the EM algorithm to estimate haplotypes

The EM algorithm consists of applying 2 steps at each iteration of
the algorithm:

I in the E step we compute the expected value of the logarithm
of the likelihood for the missing and observed data conditional
on a current value for the unknown parameters and the
observed data,

I in the M step we maximize the result from the E-step with
respect to the unknown parameters to get a new value for the
unknown parameters.

Using the EM algorithm to estimate haplotypes

Note that in the E-step we compute the expected value of a
random quantity and this involves summing over all possible values
of the haplotype.

If there are many markers then this can be slow as the number of
terms in the summation will increases exponentially with the
number of markers.

We can also get an estimate of the haplotype for each individual,
but these MLEs are difficult to interpret as the number of such
parameters increases with the sample size.

Using the EM algorithm to estimate haplotypes in R

We will examine estimating haplotypes using the actinin3 gene
within self declared Caucasians and African Americans.

Hence after loading the appropriate package and setting up the
data we apply the haplotype estimation function to the subsets of
data.

We also supply a value to this function that provides a lower
bound for the frequency of a haplotype.

> attach(fms)

> install.packages("haplo.stats")

> library(haplo.stats)

> Geno <- cbind(substr(actn3 r577x,1,1), substr(actn3 r577x,2,2),

+ substr(actn3 rs540874,1,1), substr(actn3 rs540874,2,2),

+ substr(actn3 rs1815739,1,1), substr(actn3 rs1815739,2,2),

+ substr(actn3 1671064,1,1), substr(actn3 1671064,2,2))

Using the EM algorithm to estimate haplotypes in R

> SNPnames <- c("actn3 r577x", "actn3 rs540874",
+ "actn3 rs1815739", "actn3 1671064")
> Geno.C <- Geno[Race=="Caucasian" & !is.na(Race),]
> HaploEM <- haplo.em(Geno.C, locus.label=SNPnames,
+ control=haplo.em.control(min.posterior=1e-4))

We now examine the output from this function

Using the EM algorithm to estimate haplotypes in R

> HaploEM

===

Haplotypes

===

actn3 r577x actn3 rs540874 actn3 rs1815739 actn3 1671064 hap.freq

1 C A C G 0.00261

2 C A T A 0.00934

3 C A T G 0.01354

4 C G C A 0.47294

5 C G C G 0.01059

6 T A C A 0.00065

7 T A T G 0.39891

8 T G C A 0.08557

9 T G T A 0.00065

10 T G T G 0.00520

===

Details

===

lnlike = -1285.406

lr stat for no LD = 2780.769 , df = 5 , p-val = 0

Using the EM algorithm to estimate haplotypes in R

We now do the same calculations for the African Americans.

> Geno.AA <- Geno[Race=="African Am" & !is.na(Race),]
> HaploEM2 <- haplo.em(Geno.AA, locus.label=SNPnames,
+ control=haplo.em.control(min.posterior=1e-4))

Using the EM algorithm to estimate haplotypes in R

> HaploEM2

===

Haplotypes

===

actn3 r577x actn3 rs540874 actn3 rs1815739 actn3 1671064 hap.freq

1 C A C A 0.01157

2 C A C G 0.08130

3 C A T G 0.03764

4 C G C A 0.57762

5 C G C G 0.01139

6 T A C A 0.00015

7 T A T G 0.17166

8 T G C A 0.10833

9 T G C G 0.00033

===

Details

===

lnlike = -84.97891

lr stat for no LD = 119.7087 , df = 4 , p-val = 0

Computing individual level haplotypes

While we can use maximum likelihood to consistently estimate the
probability of each haplotype, we can use the connection between
MLEs and Bayesian methods to determine the posterior probability
that each subject has each possible haplotype.

The EM results above can be interpreted as the posterior mode
with a prior that specifies all haplotypes are equally likely for all
subjects and all possible values for the haplotype frequencies are
also equally likely.

Computing individual level haplotypes

For example if there are 2 biallelic markers and someone has
haplotype (AB, ab) or (Ab, aB) then if we have haplotype
probabilities θ1, θ2, θ3, and θ4 for the haplotypes AB, Ab, aB, and
ab then under Hardy Weinberg equilibrium we get:

posterior probability of (AB, ab) is p1 ∝ θ1θ4
posterior probability of (Ab, aB) is p2 ∝ θ2θ3.

Computing individual level haplotypes in R

The HaploEm objects we created before store the information
necessary to compute the posterior probabilities for each subject.

The nreps feature keeps information on how many possible
haplotypes are possible for each subject, while the hap1code and
hap2code features tell us which of the haplotypes are possible
where the numbers refer to the rows of the HaploEm output we
examined previously

> HaploEM$nreps[1:5]
indx.subj
1 2 3 4 5
1 2 2 2 1

Computing individual level haplotypes in R

> HaploEM$indx.subj[1:8]
[1] 1 2 2 3 3 4 4 5
> HaploEM$hap1code[1:8]
[1] 4 3 4 3 4 3 4 4
> HaploEM$hap2code[1:8]
[1] 4 8 7 8 7 8 7 4

So subjects 1 and 5 have only 1 pair of possible haplotypes and it
is number 4 in the previous list while subjects 2, 3, and 4 have
either (3, 8) or (4, 7).

Computing individual level haplotypes in R

We can also take a look at the posterior probabilities of these
haplotypes

> HaploEM$post[1:8]

[1] 1.000000000 0.006102808 0.993897192 0.006102808 0.993897192 0.006102808

[7] 0.993897192 1.000000000

So the (4, 7) pair seems more likely. As a check we can do these
calculations directly.

Computing individual level haplotypes in R

> HapProb <- HaploEM$hap.prob
> HapProb

[1] 0.0026138447 0.0093400121 0.0135382726 0.4729357032 0.0105890282

[6] 0.0006518550 0.3989126970 0.0855667219 0.0006548104 0.0051970549

> q1 <- prod(HapProb[c(3,8)])
> q2 <- prod(HapProb[c(4,7)])
> q1 / (q1+q2)
[1] 0.006102807
> q2 / (q1+q2)
[1] 0.9938972

Testing for differences in haplotype frequency

Often interest lies testing for differences between haplotype
frequencies in 2 populations.

For example we saw that the haplotype CGCA is observed with a
probability of 0.47 in Caucasians but is observed with probability
0.58 in African Americans: is this difference too large to just be
chance variation?

Using the general theory of maximum likelihood estimation we can
obtain the standard errors of the haplotype frequencies using the
observed Fisher information matrix.

Testing for differences in haplotype frequency

We can then use these estimated standard errors to compute a
95% confidence interval for the difference in the frequencies.

FreqDiff <- HaploEM2$hap.prob[4] -
+ HaploEM$hap.prob[4]
s1 <- HapFreqSE(HaploEM)[4]
s2 <- HapFreqSE(HaploEM2)[4]
SE <- sqrt(s1^2 + s2^2)
CI <- c(FreqDiff - 1.96*SE, FreqDiff + 1.96*SE)
CI
[1] -0.00339528 0.21277255

Note that since this interval contains 0 we can’t exclude a value of
0 for this difference, hence there is insufficient evidence to support
a claim for a difference in these probabilities.

Bayesian methods for haplotype estimation

In practice, Bayesian methods were not very useful until the early
1990s when Markov chain Monte Carlo (MCMC) methods were
introduced.

They were not useful because the computations involved were not
really feasible: we need to be able to do high dimensional
numerical integration to use Bayesian methods.

A number of MCMC algorithms are available for carrying out these
numerical integration.

The Gibbs sampler is a popular MCMC algorithm and is widely
used in phylogenetic analysis, sequence motif discovery and
haplotype estimation.

Bayesian methods for haplotype estimation

To see how this algorithm works, let’s suppose there are p
parameters and denote them θ1, θ2, . . . , θp.

For concreteness suppose these parameters indicate which of a set
of 4 haplotypes a collection of individuals have at 2 loci.

To use Monte Carlo estimation, we draw samples from the joint
posterior distribution of all samples

p(θ1, θ2, . . . , θp|y).

If we had such samples, say 1000 of them, then by looking at the
relative frequency that a given subject had each of the haplotypes
we could estimate the probability of having each haplotype for this
subject.

Bayesian methods for haplotype estimation

If we then estimate an individual’s haplotype with the most likely
haplotype, that would be an example of using Monte Carlo
estimation to find the posterior mode which we then use to
estimate a haplotype.

In MCMC we generate a Markov chain whose limiting distribution
is the joint posterior distribution that we want samples from.

Bayesian methods for haplotype estimation

The Gibbs sampler generates this Markov chain by starting the
algorithm at the value θ1, θ2, . . . , θp and successively sampling
from the following probability distributions:

p(θ1|θ2, . . . , θp, y) to get θ∗1

p(θ2|θ∗1, θ3, . . . , θp, y) to get θ∗2

...

p(θp|θ∗1, θ∗2 . . . , θ∗p−1, y) to get θ∗p.

This process will give rise to a new sample θ∗1, θ
∗
2, . . . , θ

∗
p and so

one can draw a new sample based on this sample.

Bayesian methods for haplotype estimation

It is a Markov chain because θ∗1, θ
∗
2, . . . , θ

∗
p will depend on

θ1, θ2, . . . , θp.

By sampling likely haplotypes for all subjects the algorithm doesn’t
need to consider every possible haplotype unlike the EM algorithm
(which must sum over every possible haplotype during the E-step).

This property of the Gibbs sampler makes it better suited to deal
with situations where there are many possible haplotypes, i.e. when
there are many markers and/or these markers have many alleles.

Bayesian methods for haplotype estimation

While the EM algorithm will converge to a maximum, it may be
only a local maximum.

While the Gibbs sampler may also get trapped in a local mode, it
does have a chance of escaping such a mode and finding the true
regions of parameter space with high posterior probability.

The program PHASE and its extensions can be used to run the
Gibbs sampler to sample haplotypes.

Testing for haplotype trait associations

While estimating haplotype frequencies and testing for differences
in these frequencies between populations is of interest, we usually
want to test for an association between a haplotype and a trait.

As previously noted, we generally can’t simply treat estimated
haplotypes as known and then test for an association.

We will discuss 3 approaches to this problem:

I haplotype trend regression

I multiple imputation

I a model based approach that estimates haplotypes using the
trait information

Haplotype trend regression

If we know the haplotypes without error and wanted to assess the
impact of a certain haplotype on a continuous trait, we could
create an explanatory variable that encodes the number of copies
of the haplotype in each individual (0, 1, or 2).

We could then fit a regression model with the trait as the outcome
and the number of copies of the haplotype as the explanatory
variable

In haplotype trend regression we use the expected number of
copies of the haplotype under consideration conditional on the
genotype as the explanatory variable.

Haplotype trend regression

For example, if a subject has 2 possible haplotype pairs
H1 = (h1, h4) and H2 = (h2, h3) with probabilities p1 and p2

respectively, then the conditional expectation of the number of
copies of each member of the pairs is just 1 times these
probabilities.

Suppose there were only these 4 observed haplotypes in all subjects
and we wanted to test for an effect of all possible haplotypes.

In this case the subject with H1 and H2 would have 4 predictor
variables with x1 = x4 = p1 and x2 = x3 = p2.

Haplotype trend regression in R

We can use the usual approach to testing for a difference in the
magnitude of the residuals to test for differences between linear
models.

This test between regression models is based on an F test and can
be done using the anova command as follows.

HapMat <- HapDesign(HaploEM)
Trait <- NDRM.CH[Race=="Caucasian" & !is.na(Race)]
mod1 <- (lm(Trait~HapMat))
mod2 <- (lm(Trait~1))
anova(mod2,mod1)
Analysis of Variance Table
Model 1: Trait 1
Model 2: Trait HapMat

Res.Df RSS Df Sum of Sq F Pr(>F)
1 776 881666
2 766 869272 10 12394 1.0921 0.3653

Haplotype trend regression in R

Note that the textbook is in error here as it reports a test with 12
degrees of freedom which means that there were 12 different
haplotypes found (I think the text must have used a different
min.posterior in the call to haplo.em).

Haplotype associations via multiple imputation

We have previously noted that substituting the estimated
haplotypes and pretending they are known is not valid as such an
approach will underestimate the variance.

In multiple imputation we repeatedly sample haplotypes and
perform the subsequent association testing.

We then average over all of the results from imputing, and if we
use the correct standard error we can get a valid statistical
procedure.

This standard error must account for the variation given a
particular imputed set of haplotypes and the variation arising from
all of the possible haplotypes.

Haplotype imputation in R

Note that there is a typo in the text for this example: there is an
h9 where there should be an h8.

First we set up the data and create holders for the results from the
multiple imputations.

Nobs <- sum(Race=="Caucasian", na.rm=T)
Nhap <- length(HaploEM$hap.prob)
D <- 1000
Est <- rep(0,D)
SE <- rep(0,D)

Haplotype imputation in R

Then we create a loop to sample haplotypes.

for (nimput in 1:D){
Xmat <- matrix(data=0,nrow=Nobs,ncol=Nhap)

for (i in 1:Nobs){
IDSeq <- seq(1:sum(HaploEM$nreps))[HaploEM$indx.subj==i]

if (length(IDSeq)>1){Samp <- sample(IDSeq,size=1,

prob=HaploEM$post[IDSeq])}
if (length(IDSeq)==1){Samp <- IDSeq}
Xmat[i,HaploEM$hap1code[Samp]] <-1

Xmat[i,HaploEM$hap2code[Samp]] <-1

}
h8 <- Xmat[,8]>=1

Est[nimput] <- summary(lm(Trait~h8))$coefficients[2,1]

SE[nimput] <- summary(lm(Trait~h8))$coefficients[2,2]

}
MeanEst <- mean(Est)

Wd <- mean(SE^2)

Bd <- (1/(D-1))*sum((Est-MeanEst)^2)

Td <- Wd + ((D+1)/D)*Bd

nu <- (D-1)*(1 + (1/(D+1))*(Wd/Bd))^2

1-pt(MeanEst/sqrt(Td),df=nu)

[1] 0.06187731

Haplotype testing using trait information

If a subject’s haplotype is ambiguous, information about a trait is
potentially informative about the haplotype.

For instance, it may be that all subjects with one of the possible
haplotypes have similar trait values and these trait values differ
from those with the other haplotype.

In this case we would conclude that the haplotype for the
ambiguous subject is likely the haplotype of those with similar trait
values.

Haplotype testing using trait information

The basic idea is to extend the haplotype model based on the
multinomial distribution to allow the probabilities of each
haplotype to depend on the trait values.

The exact manner in which this dependence occurs depends on the
nature of the trait variable: we use logistic regression for binary
traits and linear regression for continuous data.

There are methods that allow departures from Hardy Weinberg
equilibrium, but the functions we will consider assume Hardy
Weinberg equilibrium.

Haplotype testing using trait information in R

We can use the haplo.glm function in R much in the same way
that we use the regular glm, although it doesn’t have the complete
functionality of glm.

We again examine associations between the actinin 3 gene and
change in muscle strength.

First we set up the genotype data and our trait then call the
function. To view a table of p-values you must use the summary
command

Geno.C <- setupGeno(Geno.C)
Trait <- NDRM.CH[Race=="Caucasian" & !is.na(Race)]
Dat <- data.frame(Geno.C=Geno.C, Trait=Trait)
> h1 <- haplo.glm(Trait~Geno.C,data=Dat,
+ allele.lev=attributes(Geno.C)$unique.alleles)

Haplotype testing using trait information in R

> summary(h1)

Call:

haplo.glm(formula = Trait ~ Geno.C, data = Dat, allele.lev =

attributes(Geno.C)$unique.alleles)

Deviance Residuals:

Min 1Q Median 3Q Max

-54.982 -24.143 -7.389 16.700 196.348

Coefficients:

coef se t.stat pval

(Intercept) 50.67787 2.21715 22.85724 0.000

Geno.C.3 8.49595 0.61133 13.89750 0.000

Geno.C.5 -0.44085 7.27971 -0.06056 0.952

Geno.C.8 2.01114 1.89143 1.06329 0.288

Geno.C.9 8.42214 3.50991 2.39953 0.017

Geno.C.rare 3.98509 6.29417 0.63314 0.527

(Dispersion parameter for gaussian family taken to be 1129.036)

Null deviance: 864661 on 761 degrees of freedom

Residual deviance: 853551 on 756 degrees of freedom

AIC: 7526.6

Number of Fisher Scoring iterations: 47

Haplotype testing using trait information in R

Haplotypes:

loc.1 loc.2 loc.3 loc.4 hap.freq

Geno.C.3 C A T G 0.012490

Geno.C.5 C G C G 0.010776

Geno.C.8 T A T G 0.402424

Geno.C.9 T G C A 0.083942

Geno.C.rare * * * * 0.018135

haplo.base C G C A 0.472233

Degrees of Freedom: 761 Total (i.e. Null); 756 Residual

Subjects removed by NAs in y or x, or all NA in geno

yxmiss genomiss

14 15

Null Deviance: 864660

Residual Deviance: 853550

AIC: 7526.6

Haplotype testing using trait information in R

The most common haplotype is taken as the reference group so
that the p-values reported in the output are for testing for a
difference between someone with 2 copies of this haplotype and
someone with 1 copy of the other haplotypes.

So we conclude that having a single CATG increases the percent
change in muscle strength by 8.50 (p < 0.001) compared to
someone with 2 copies of the base haplotype CGCA and only 1% of
this population has this haplotype.

Haplotype testing using trait information in R
There are some useful options when one uses this function.

For example, we can change the base haplotype. This is useful
when comparing across ethnic groups as the most common
haplotype may differ.

summary(haplo.glm(Trait~Geno.C,data=Dat,

allele.lev=attributes(Geno.C)$unique.alleles,

+ control=haplo.glm.control(haplo.base=9)))

Call:

haplo.glm(formula = Trait ~ Geno.C, data = Dat, control =

haplo.glm.control(haplo.base = 9),

allele.lev = attributes(Geno.C)$unique.alleles)

Deviance Residuals:

Min 1Q Median 3Q Max

-54.982 -24.143 -7.389 16.700 196.348

Coefficients:

coef se t.stat pval

(Intercept) 67.52215 5.32869 12.67145 0.000

Geno.C.3 0.07381 4.59843 0.01605 0.987

Geno.C.4 -8.42214 3.14163 -2.68082 0.008

Geno.C.5 -8.86299 7.34521 -1.20664 0.228

Geno.C.8 -6.41100 3.07598 -2.08422 0.037

Geno.C.rare -4.43705 6.49639 -0.68300 0.495

Haplotype testing using trait information in R

(Dispersion parameter for gaussian family taken to be 1129.036)

Null deviance: 864661 on 761 degrees of freedom

Residual deviance: 853551 on 756 degrees of freedom

AIC: 7526.6

Number of Fisher Scoring iterations: 47

Haplotypes:

loc.1 loc.2 loc.3 loc.4 hap.freq

Geno.C.3 C A T G 0.01249

Geno.C.4 C G C A 0.47223

Geno.C.5 C G C G 0.01078

Geno.C.8 T A T G 0.40242

Geno.C.rare * * * * 0.01813

haplo.base T G C A 0.08394

Haplotype testing using trait information in R

Other options include the ability to change the genetic model: for
example we may want to allow for a dominance effect rather than
the additive effects we have used thus far.

To do this one again uses the control argument, but specifies

control=haplo.glm.control(haplo.effect="dominant")

Cases with missing trait or covariate values are ignored but missing
genotype data can be handled with the EM algorithm.

The main drawback of the haplo.glm methodology is the
assumption of Hardy Weinberg equilibrium.

With the 2 step approach that uses multiple imputation, one can
first estimate the haplotype frequencies within each ethnic group
then combine data across the ethnic groups to get a more powerful
test.

	Overview
	Frequentist vs. Bayesian statistics
	Estimating haplotypes with the EM algorithm
	Individual level haplotypes
	Testing for differences in haplotype frequency
	Bayesian methods for haplotype estimation
	Testing for haplotype trait associations
	Haplotype trend regression
	Haplotype associations via multiple imputation
	Haplotype testing using trait information

