
High dimensional data analysis

Cavan Reilly

October 16, 2019

Table of contents

Data mining

Random forests
Missing data

Logic regression

Multivariate adaptive regression splines

Data mining

Data mining is the process of searching through large data sets for
associations.

If one uses conventional statistical testing methods then one is
guaranteed to find some sort of association if one searches hard
enough.

However these associations frequently won’t be found in another
independent sample.

Many methods have been developed for this process, and the field
of inquiry that seeks to develop and apply these tools is referred to
as machine learning.

Data mining

We will consider 3 appraoches to high dimensional data analysis
here:

I random forests

I logic regression

I multivariate adaptive regression splines

However there are many other algorithms that have the same
purpose.

Hence our treatment is selective and far from comprehensive.

Random forests

Random forests generate a collection of trees.

The result from applying random forests is not a final, best tree,
but is a guide to which explanatory variables have the greatest
impact on the outcome.

Thus it tells us about variable importance rather than the exact
nature of the relationship between the set of predictors and the
trait under investigation.

Random forests

Here are the steps of the algorithm.

1. Randomly select about 1/3 of the data with replacement and
call it the out of bag data (OOB data), call the rest of the
data the learning sample (LS).

2. Use the LS data to fit a tree without any pruning. However,
at each split only use a randomly chosen set of predictors
(about 1/3 of the data).

3. Use the OOB data to determine the impurity at all terminal
nodes, sum these and call this the tree impurity.

4. For each predictor used to construct the tree, permute the
subject indicators, recompute the tree impurity, and find the
difference between this tree impurity and the tree impurity
from the previous step to get the variable importance for each
predictor.

Random forests

One then repeats the whole process many times and at the end
computes the average variable importance for each predictor.

By only selecting a subset of variables to use at each split the
algorithm potentially avoids problems due to high levels of LD
among SNPs.

By permuting each predictor used and recomputing the tree
impurity the algorithm can assess if a predictor is important for the
overall classification process in a nonparametric fashion.

In the R package randomForest, variable importance is reported as
the average over all iterations divided by its standard error.

This package also reports the mean of the total node impurity
based on splits involving each predictor.

Random forests in R

Here we again set up the Virco data set and examine how all of
the mutations predict the difference in the fold change for NFV
and IDV.

We need to get rid of missing data before using the randomForest
function as it doesn’t allow missing data.

> library(randomForest)
> Trait <- NFV.Fold - IDV.Fold
> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

> Trait.c <- Trait[!is.na(Trait)]
> VircoGeno.c <- VircoGeno[!is.na(Trait),]
> RegRF <- randomForest(VircoGeno.c, Trait.c,
+ importance=TRUE)

Random forests in R

First we examine the output, then generate a plot to see which are
the important variables.

> RegRF

Call:

randomForest(x = VircoGeno.c, y = Trait.c, importance = TRUE)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 33

Mean of squared residuals: 5547.21

% Var explained: 15.9

> varImpPlot(RegRF,main="")

P76
P70
P97
P30
P19
P3
P37
P18
P32
P98
P48
P46
P34
P95
P88
P2
P12
P72
P58
P15
P69
P6
P84
P20
P94
P63
P36
P73
P54
P35

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10
%IncMSE

P70
P12
P2
P30
P95
P41
P57
P47
P1
P3
P58
P13
P94
P10
P90
P82
P46
P62
P77
P54
P84
P93
P37
P72
P15
P25
P20
P73
P35
P36

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 2e+05 4e+05
IncNodePurity

Random forests in R

The plot indicates that the 5 most important variables are P35,
P36, P54, P63 and P73.

Recall that the regression based approach identified P35, P46,
P54, P58 and P73, so P36 and P63 are novel.

Not clear if any of these effects are statistically significant, and
while one can inspect the individual trees using getTree it is not
clear how one would use that information.

Missing data and random forests

It is not uncommon to have missing genotype data, especially in
studies examining many variants.

In our example we had to dispose of 90 observations due to
missingness, which was almost 10% of the sample.

A simple fix for this is to simply substitute the most commonly
observed SNP for missing values.

This should be conducted within ethnic groups as its validity relies
on Hardy Weinberg equilibrium.

Missing data and random forests in R

The randomForest package has functions that allow one to do
this.

> Trait <- NDRM.CH[Race=="Caucasian" & !is.na(Race) & !is.na(NDRM.CH)]

> NamesAkt1Snps <- names(fms)[substr(names(fms),1,4)=="akt1"]

> FMSgeno <- fms[,is.element(names(fms),NamesAkt1Snps)]

+ [Race=="Caucasian" & !is.na(Race) & !is.na(NDRM.CH),]

> dim(FMSgeno)

[1] 777 24

So we have 777 subjects out of 1154 Caucasians under
consideration at this point.

Missing data and random forests in R

Let’s next examine the proportion of missing data for our SNPs.

> round(apply(is.na(FMSgeno),2,sum)/dim(FMSgeno)[1],3)

akt1 t22932c akt1 g15129a akt1 g14803t

0.069 0.067 0.021

akt1 c10744t c12886t akt1 t10726c t12868c akt1 t10598a t12740a

0.071 0.075 0.071

akt1 c9756a c11898t akt1 t8407g akt1 a7699g

0.066 0.069 0.067

akt1 c6148t c8290t akt1 c6024t c8166t akt1 c5854t c7996t

0.021 0.066 0.021

akt1 c832g c3359g akt1 g288c akt1 g1780a g363a

0.021 0.021 0.021

akt1 g2347t g205t akt1 g2375a g233a akt1 g4362c

0.066 0.066 0.069

akt1 c15676t akt1 a15756t akt1 g20703a

0.021 0.021 0.021

akt1 g22187a akt1 a22889g akt1 g23477a

0.071 0.021 0.021

Missing data and random forests in R

We then use the single imputation approach. Here are genotypes
at one SNP before and after imputation.

> FMSgenoRough <- na.roughfix(FMSgeno)
> table(FMSgeno$"akt1 t22932c")
CC TC TT
3 55 665

> table(FMSgenoRough$"akt1 t22932c")
CC TC TT
3 55 719

Now use the randomForest function on the imputed data set.

> RandForRough <- randomForest(FMSgenoRough,Trait,
+ importance=TRUE)

Missing data and random forests in R

Here is the output that we previously viewed graphically.

> RandForRough$"importance"[order(RandForRough$"importance"[,1],

+ decreasing=TRUE),]

%IncMSE IncNodePurity

akt1 t10726c t12868c 234.365556 26555.977

akt1 t8407g 197.084466 15232.624

akt1 g288c 130.835952 23870.986

akt1 g14803t 122.216074 19274.661

akt1 g15129a 118.016707 14555.595

akt1 c6148t c8290t 111.196225 16282.021

akt1 a15756t 109.983082 23851.596

akt1 a22889g 99.801940 26576.974

akt1 c832g c3359g 95.813145 11138.666

akt1 t10598a t12740a 94.835043 17957.746

akt1 g2347t g205t 85.283846 17545.905

akt1 g22187a 82.328928 22391.776

akt1 c6024t c8166t 63.121531 8805.539

akt1 a7699g 62.914052 8162.597

akt1 g23477a 54.096923 19348.334

akt1 c9756a c11898t 49.616864 8575.560

akt1 g2375a g233a 49.140841 17405.400

Missing data and random forests in R

akt1 c5854t c7996t 49.026789 19192.551

akt1 c15676t 41.848416 20593.258

akt1 g4362c 33.724391 7866.557

akt1 c10744t c12886t 5.698555 4253.520

akt1 g1780a g363a 5.291269 2947.077

akt1 g20703a -1.958886 28478.770

akt1 t22932c -5.089253 16526.413

Missing data and random forests

There are more sophisticated approaches available than single
imputation.

The proximity score between 2 individuals is the proportion of trees
for which those 2 subjects end up in the same terminal node, we
denote this pij for subjects i and j .

A better imputation algorithm starts by fitting a random forest
using single imputation.

The proximity scores are then calculated.

Missing data and random forests

Then, if genotype data was missing for subject i , for each possible
genotype, we compute the average proximity score of subjects with
that genotype to subject i .

We then assign the genotype with the highest average proximity
score.

Then repeat fitting random forests and imputing.

After a while fit the final random forest.

It’s not clear if this process converges to a final answer or how
many times one should repeat the process.

Missing data and random forests in R

We return to the previous example and use some things we’ve
already set up.

> FMSgenoMI <- rfImpute(FMSgeno, Trait)

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1260 111.05 |

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1241 109.40 |

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1257 110.82 |

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1253 110.46 |

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1241 109.39 |

> RandForFinal <- randomForest(FMSgenoMI[,-1], Trait, importance=TRUE)

Missing data and random forests in R

The results have the same top SNP, but with a higher level of
importance.

> RandForFinal$"importance"[order(RandForFinal$"importance"[,1],

+ decreasing=TRUE),]

%IncMSE IncNodePurity

akt1 t10726c t12868c 275.972895 26379.565

akt1 t8407g 215.239603 18653.158

akt1 g288c 125.970201 23006.316

akt1 g14803t 118.484596 18590.184

akt1 g15129a 112.634668 14430.548

akt1 c6148t c8290t 110.098681 14128.753

akt1 a15756t 108.350798 25081.994

akt1 a22889g 102.888684 27519.912

akt1 g2347t g205t 99.874095 18860.208

akt1 t10598a t12740a 99.668040 15841.751

akt1 g22187a 87.859637 23192.396

akt1 c832g c3359g 86.295125 11718.348

akt1 a7699g 80.272263 9685.794

akt1 c6024t c8166t 71.193225 8303.793

akt1 g2375a g233a 56.545555 19601.788

akt1 g23477a 54.657235 19967.984

Missing data and random forests in R

akt1 c5854t c7996t 53.464080 19031.417

akt1 c9756a c11898t 50.022642 8412.683

akt1 c15676t 42.705935 22458.086

akt1 g4362c 37.384479 9252.566

akt1 c10744t c12886t 13.630497 9215.804

akt1 t22932c 6.783107 19136.158

akt1 g1780a g363a 6.335833 2903.492

akt1 g20703a 5.588045 31654.745

Haplotype importance

We also may be interested in assessing the impact of haplotypes on
the trait.

As we’ve already discussed how the EM algorithm can be used to
compute the posterior probability of subjects having various
haplotypes, we can use those ideas to generate haplotypes that we
then supply to a random forest.

There is a package called mirf that has functions that allow on to
use multiple imputation to sample haplotypes, compute variable
importance measures via random forests, then average over the
multiply imputed data sets.

But as of the time of the drafting of these notes the package
doesn’t appear to be supported.

Logic regression

In logic regression we model the mean of the trait as depending on
a sequence of Boolean expressions multiplied by parameters that
indicate the effect of the expression on the mean.

A Boolean expression is a sequence of “and”s, “or”s and “not”s
that results in a binary outcome.

For example, consider 4 variants that are binary and labeled v1,
v2,v3 and v4, and suppose that the most common variant is coded
as 0 with the less common variant coded 1.

Then (v1 = 0 and v2 = 0) or (v3 = 1 and not v4 = 1) describes a
complicated multilocus haplotype.

Associated with this haplotype is a parameter that gives the effect
of this haplotype on the mean.

Logic regression

Except for cases where there are a very small number of variants
under investigation, the number of possible expressions is too large
to explicitly consider each.

Hence in practice, researchers have used either a greedy search
algorithm or simulated annealing.

A greedy search algorithm is an algorithm that always tries to
increase the value it is trying to optimize.

Simulated annealing is a very general algorithm that sometimes
accepts losing progress towards the goal of optimizing something.

Due to this property, simulated annealing can avoid getting stuck
at a local optimum unlike greedy search algorithms.

Logic regression in R

First we set up the data and remove missing data, then we run a
logic regression and create a plot.

> library(LogicReg)
> Trait <- NFV.Fold - IDV.Fold
> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

> Trait.c <- Trait[!is.na(Trait)]
> VircoGeno.c <- VircoGeno[!is.na(Trait),]
> VircoLogicReg <- logreg(resp=Trait.c, bin=VircoGeno.c,
+ select=1)

Parameter = −544.4273

P94 P25

and P58

or

tree 1 out of 1

Logic regression in R

We can also examine the output.

> VircoLogicReg
score 77.475
548 -544 * (((not P94) and (not P25)) or (not P58))

Note that running the algorithm multiple times gives different
answers as it uses a randomized search algorithm (simulated
annealing).

This implies that we are not using enough iterations, check the
help file for logreg for extensive treatment of monitoring the
progress of the algorithm.

Logic regression in R

We can also specify multiple trees in the model as follows.

> VircoLogicRegMult <- logreg(resp=Trait.c, bin=VircoGeno.c, select=2,

+ ntrees=2, nleaves=8)

The number of trees in these models is 2

The model size is 8

The best model with 2 trees of size 8 has a score of 32.4689

> plot(VircoLogicRegMult)

Parameter = −1575.0385

P35 P77 P36 P55

or or P84 P73

or or

or

tree 1 out of 2 total size is 8

Logic regression in R

Here is the description of the model.

> VircoLogicRegMult

2 trees with 8 leaves: score is 32.469

1580 -1580 * ((((not P35) or P77) or (P36 or P55)) or (P84 or (not P73)))

+682 * (P25 and P15)

There is also an MCMC based implementation that samples trees.

This method determines the importance of a variable by
determining how frequently it is included in the model.

Logic regression in R

We again use the virco data set but now determine which
mutations in the protease region predict Saquinavir fold change.

> Trait <- SQV.Fold
> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

> Trait.c <- Trait[!is.na(Trait)]
> VircoGeno.c <- VircoGeno[!is.na(Trait),]
> VircoLogicRegMCMC <- logreg(resp=Trait.c,
+ bin=VircoGeno.c, select=7)

This can take a while.

Logic regression in R

We then plot the output to examine which locations are important.

plot(sort(VircoLogicRegMCMC$single), xlab="Sorted SNPs",
+ ylab="Number of selected models")

●

●

●●●●●●
●●

●
●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●

●●●●●●●●
●●●

●●●●
●●●

●
●●●●●

●
●

●

●

●

0 20 40 60 80 100

80
0

10
00

12
00

14
00

Sorted SNPs

N
um

be
r

of
 s

el
ec

te
d

m
od

el
s

Logic regression in R

To determine the identity of the top 5 scoring loci, we print the
names of the mutations from least to most important.

> names(VircoGeno)[order(VircoLogicRegMCMC$single)]

[1] "P28" "P98" "P8" "P5" "P99" "P27" "P22" "P70" "P49" "P83" "P39" "P63"

[13] "P64" "P52" "P56" "P42" "P38" "P40" "P72" "P9" "P55" "P89" "P32" "P51"

[25] "P76" "P88" "P23" "P14" "P86" "P97" "P34" "P96" "P87" "P67" "P44" "P79"

[37] "P24" "P10" "P59" "P68" "P46" "P92" "P11" "P95" "P77" "P20" "P71" "P65"

[49] "P7" "P43" "P36" "P29" "P15" "P73" "P62" "P30" "P69" "P19" "P91" "P3"

[61] "P81" "P57" "P6" "P66" "P35" "P1" "P26" "P90" "P31" "P80" "P60" "P47"

[73] "P58" "P2" "P93" "P78" "P50" "P82" "P21" "P84" "P37" "P53" "P12" "P13"

[85] "P75" "P61" "P33" "P16" "P17" "P25" "P41" "P18" "P45" "P4" "P85" "P74"

[97] "P94" "P54" "P48"

So the top scoring loci are P48, P54, P74, P85 and P94.

Logic regression in R

However there is extensive variability-when you rerun there will be
a different set of top scoring mutations.

To use this in practice one needs to increase the number of
iterations using a command like the following prior to running this.

mymccontrol <- logreg.mc.control(nburn = 250000,
niter = 500000)

then one would issue the command
> VircoLogicRegMCMC <- logreg(resp=Trait.c,
+ bin=VircoGeno.c, select=7, mc.control=mymccontrol)

Logic regression in R

This would run a half million iterations rather than the default of
25000 which evidently is not enough for this problem.

It would take a long time to run this job, but that’s not uncommon
when using MCMC.

The best way to determine if one has run enough iterations is to
run the job twice and see if the results agree to within the desired
level of precision.

For a problem like this that means we should choose enough
iterations so that the top few most important loci are the same for
2 different runs.

Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) is a method,
similar to CART, for building models that explain the variation in a
trait.

The primary difference is that MARS seeks to build additive
models based on the set of predictor variables and their statistical
interactions with one another.

The algorithm does this recursively, where at each stage, it
incorporates the covariate or pairwise interaction among covariates,
that is the best predictor.

After it finishes building up the model, it does some backward
elimination to get rid of terms which it deems to be overfitting.

Multivariate adaptive regression splines in R

It is easy to implement using the earth package in R.

Here we install and load the package then set up some data from
the virco data set to conduct the analysis.

We create binary predictors as this is what the algorithm is
designed for, but we can encode SNP data using multiple indicator
variables.

> install.packages("earth")
> library(earth)
> Trait <- NFV.Fold - IDV.Fold
> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

> Trait.c <- Trait[!is.na(Trait)]
> VircoGeno.c <- VircoGeno[!is.na(Trait),]

Multivariate adaptive regression splines in R

Then we use the earth function with degree set to 2 to look for
2-way interactions

VircoMARS <- earth(Trait.c~., data=VircoGeno.c,
degree=2)
> summary(VircoMARS) Call: earth(formula=Trait.c~.,
data=VircoGeno.c, degree=2)

coefficients
(Intercept) -1.23166
P25TRUE 748.10125
P35TRUE 37.86730
P76TRUE -32.35013
P1TRUE * P25TRUE -784.98992
P1TRUE * P73TRUE -31.73965
P10TRUE * P35TRUE 28.78594
P10TRUE * P73TRUE 71.69144
P15TRUE * P35TRUE -32.09370

Multivariate adaptive regression splines in R

P15TRUE * P54TRUE 30.96957
P15TRUE * P73TRUE -58.99329
P20TRUE * P35TRUE 48.89864
P20TRUE * P54TRUE -38.47681
P20TRUE * P73TRUE 80.14481
P30TRUE * P73TRUE 254.30888
P30TRUE * P77TRUE 38.92757
P35TRUE * P36TRUE -41.63952
...
Selected 40 of 100 terms, and 23 of 99 predictors

Importance: P25TRUE, P1TRUE, P35TRUE, P36TRUE, P73TRUE, P54TRUE, P94TRUE, ...

Number of terms at each degree of interaction: 1 3 36

GCV 5173.102 RSS 4081272 GRSq 0.2173564 RSq 0.3660587

So the algorithm originally selected 40 terms and 23 remain after
pruning.

Multivariate adaptive regression splines in R

We can see the order of importance of these terms as follows.

> evimp(VircoMARS)
nsubsets gcv rss

P25TRUE 39 100.0 100.0
P1TRUE 38 96.3 97.1
P35TRUE 36 81.8 87.4
P36TRUE 36 81.8 87.4
P73TRUE 36 81.8 87.4
P54TRUE 34 72.3 81.0
P94TRUE 34 72.3 81.0
P10TRUE 34 71.8 80.6
P84TRUE 34 71.8 80.6
P77TRUE 33 70.0 79.0
P72TRUE 31 61.9 73.3
...
P85TRUE-unused 6 9.9 26.1
P65TRUE-unused 2 3.6 14.6

Multivariate adaptive regression splines in R

Note that each of these machine learning approaches identifies
different subsets of mutations, although some sites are frequently
seen.

	Data mining
	Random forests
	Missing data

	Logic regression
	Multivariate adaptive regression splines

