
Cluster Analysis

Cavan Reilly

November 20, 2019

Table of contents

Overview

Distances

Cluster Algorithms
Hierarchical clustering
An example
Clustering Noise
Fastcluster
Divisive Hierarchical clustering
p-values for hierarchical clustering
k-means clustering
Partitioning around Medoids
Self Organizing Maps

Determining the Number of Clusters

Biclustering

Comparing cluster solutions

Overview

The goal of cluster analysis is to use multi-dimensional data to sort
items into groups so that

1. items within the same group are similar across samples

2. items in distinct groups are dissimilar across samples

These groups are called “clusters”.

In typical applications items are collected under different conditions
and so one wants to find items that are similar as conditions
change.

Overview

When items are genes and we have gene expression measurements
for these genes, then we are looking for genes that go up or down
together as conditions change.

We interpret such groups of genes as being part of a functional
group whose activities are coordinated in response to biological
stimuli.

For example, consider a collection of genes whose protein products
are used at the start of cell replication.

Now consider an experiment where we take a collection of cells and
promote repeated rounds of cell replication.

Overview

Suppose we collect a subset of these cells at regular time intervals
and measure gene expression.

One would see the collection of genes whose protein products are
used at the start of cell replication increase their level of gene
expression at the start of replication, then decrease, then increase
as the next round of cell replication starts.

Thus genes involved in the same cellular process would tend to
move together over time.

Overview

More generally, if our samples were from different biological states
then groups of genes involved in cellular processes that distinguish
between these biological states would tend to “move together”
across samples.

If the different states were “healthy” and “diseased” and there is a
biological process that differed between the healthy and diseased
states then these genes should form clusters, much like in the cell
replication example.

As such, the goal of cluster analysis as applied to gene expression
studies is much like the goal of creating the gene ontology:
uncover groups of genes whose regulation is coordinated to meet
some biological objective.

Overview

Hence the first question is what do we mean by similar and
dissimilar.

We define similarity between 2 items in terms of the variables of
the items: we assume that these are quantitative.

In the context of gene expression measurements, the items are
usually genes and for each gene we measure gene expression for a
number of conditions (or subjects).

So we measure distance in terms of how similar the gene
expression measurements are for all conditions.

Distances

For example, consider 2 genes with gene expression levels given by
x1i and x2i for i , . . . , n where n is the number of samples.

A simple measure of distance is just

d(x1, x2) =
n∑

i=1

|x1i − x2i |

If the level of gene expression was the same for a pair of genes
across all conditions then this distance would be zero.

Distances

More generally we consider distance measures of the form

d(x1, x2) =
∑

i

[
|x1i − x2i |p

] 1
p

This is called the Minkowski distance with parameter p: if p = 2
we call this Euclidean distance.

There are other distances that are frequently used in certain
applications.

Data Standardization

An important component of applying these methods is data
standardization.

Typically one will alter the mean and standard deviation for all
items so that all items have the same mean and standard
deviation-usually mean 0 and standard deviation 1.

If one doesn’t do this then the clusters one finds will usually just
differ in terms of their overall expression level.

We don’t want to find groups of genes that are simply expressed at
higher levels over all conditions, we want to find groups that
respond to stimuli in the same manner.

Data standardization

It is the correlation structure of genes across conditions that drives
clusters: this isn’t changed by standardizing the data across
conditions.

We previously advocated for filtering based on the idea that many
genes will not be expressed under some conditions.

Now there is an even greater need as cluster algorithms work much
better with smaller data sets.

In fact many applications will first filter for testing, then test for
differences across conditions, then use the results from testing as a
filter prior to using cluster analysis.

Cluster Algorithms

If the goal is to assign clusters to minimize the average within
cluster distance for a fixed number of clusters then there are only
finitely many ways one can assign items to clusters.

Hence if we could just look at every way of assigning items to
clusters we could find an assignment that minimizes the mean
within cluster cluster distances: however there are too many
possible assignments in typical applications.

This has lead to a tremendous number of algorithms for finding
good clusters.

There are also many algorithms for trying to determine how many
clusters to use.

Hierarchical clustering

In hierarchical clustering, one doesn’t assign items to definitive
clusters, rather one recursively groups items together so that items
that are separated or brought together at some stage differ from
other items in a similar fashion.

Agglomerative clustering-all items start as their own clusters and
one successively merges clusters, merging clusters that are similar.

Divisive clustering-all items start in one big cluster and one splits
off groups of items so that the items that are split off together are
similar and different from the other items.

In order to achieve the goal of either of these sorts of algorithms
one needs to define distances between clusters.

Hierarchical clustering

There are a number of commonly used methods for measuring
distance between clusters (even more are available in R), these are:

1. single linkage

2. average linkage

3. complete linkage

An example

We previously examined an example looking for differences
between 2 groups of cows using edgeR: we found that 130
transcripts differed at an FDR of 5%.

Here we will set up that data again and look at some different
types of filters we can apply

> grp=factor(c(rep(1,5),rep(2,6)))
> bovCnts=read.table("bovineCounts.txt")

> bovCntsF1=bovCnts[apply(bovCnts,1,min)>4,]
> iqrs=apply(bovCnts,1,IQR)
> bovCntsF2=bovCnts[iqrs>median(iqrs),]
> bovCntsF3=bovCnts[iqrs>quantile(iqrs,.9),]

An example

Now we will read in a file with the ENSEMBL gene identities and
use that to get some information on GO.

> bovIDs=scan("bov_ens_ids.txt",what="",sep="\n")
> library(biomaRt)
> mart=useMart("ensembl")
> ensembl=useDataset("btaurus_gene_ensembl",mart=mart)
> bov_bm=getBM(attributes=c(’ensembl_gene_id’,
+ ’hgnc_symbol’,’go_id’,’name_1006’,
+ ’namespace_1003’),filters=’ensembl_gene_id’,
+ values=bovIDs,mart=ensembl)

An example
Now let’s try some t-tests:

> f1=function(x){
+ t.test(x[grp==1],x[grp==2])$p.value
> }
> tt0=apply(log(bovCnts+1),1,f1)
> tt1=apply(log(bovCntsF1+1),1,f1)
> tt2=apply(log(bovCntsF2+1),1,f1)
> tt3=apply(log(bovCntsF3+1),1,f1)
> sum(p.adjust(tt0,method="BH")<0.1,na.rm=T)
[1] 0
> sum(p.adjust(tt1,method="BH")<0.1,na.rm=T)
[1] 0
> sum(p.adjust(tt2,method="BH")<0.1,na.rm=T)
[1] 0
> sum(p.adjust(tt3,method="BH")<0.1,na.rm=T)
[1] 0

An example
and try limma

> library(limma)
> mm=model.matrix(~grp)
> l0=eBayes(lmFit(bovCnts,design=mm))
> l1=eBayes(lmFit(bovCntsF1,design=mm))
> l2=eBayes(lmFit(bovCntsF2,design=mm))
> l3=eBayes(lmFit(bovCntsF3,design=mm))

> sum(p.adjust(l0$p.value[,2],method="BH")<.1)
[1] 0
> sum(p.adjust(l1$p.value[,2],method="BH")<.1)
[1] 0
> sum(p.adjust(l2$p.value[,2],method="BH")<.1)
[1] 0
> sum(p.adjust(l3$p.value[,2],method="BH")<.1)
[1] 0

An example

So let’s stick with the edgeR analysis. Still multiple ways one can
filter.

> delist <- DGEList(counts=bovCntsF1, group=grp)
> delist <- estimateCommonDisp(delist)
> delist <- estimateTagwiseDisp(delist)
> et <- exactTest(delist)
> padj <- p.adjust(et$table[,3], method="BH")
> sum(padj<0.05)
[1] 130

An example

> delist <- DGEList(counts=bovCntsF2, group=grp)
> delist <- estimateCommonDisp(delist)
> delist <- estimateTagwiseDisp(delist)
> et <- exactTest(delist)
> padj <- p.adjust(et$table[,3], method="BH")
> sum(padj<0.05)
[1] 166

An example

> delist <- DGEList(counts=bovCntsF3, group=grp)
> delist <- estimateCommonDisp(delist)
> delist <- estimateTagwiseDisp(delist)
> et <- exactTest(delist)
> padj <- p.adjust(et$table[,3], method="BH")
> sum(padj<0.05)
[1] 60

An example

So let’s stick with the first analysis with 130 genes that differ.

A heatmap is a commonly used graphical technique for displaying
data: here we will display the subset of genes that we are finding
to differ.

Here we specify to not print the row labels-this means don’t report
the gene identifiers as there are too many to be able to read from
the figure.

> library(gplots)
> colnames(bovCntsF1)=substr(names(bovCntsF1),1,4)
> pdf("heatmap1.pdf")
> heatmap.2(as.matrix(bovCntsF1[padj<0.1,]),labRow = F)
> dev.off()

sn
27

sn
28

sn
29

sn
24

m
n2

1

m
n2

0

sn
26

sn
25

m
n2

2

m
n2

3

m
n1

9

1000 3000

Value
0

60
0

12
00

Color Key
and Histogram

C
ou

nt

An example

Note that we don’t separate the animals that well and the color
key and histogram indicates that the distribution of gene
expression is highly skewed-this all suggests taking the log first.

> pdf("heatmap2.pdf")
> heatmap.2(log(as.matrix(bovCntsF1[padj<0.1,])),
+ labRow = F)
> dev.off()

Which gives slightly better separation.

sn
27

sn
28

sn
29

sn
24

sn
26

sn
25

m
n2

1

m
n2

0

m
n2

2

m
n2

3

m
n1

9

2 4 6 8

Value
0

10
0

25
0

Color Key
and Histogram

C
ou

nt

An example

We will now apply some cluster analysis methods to this set of
transcripts.

First select the genes that appear to differ, then standardize them
so that all genes have mean zero and standard deviation 1.

> bovSub1=bovCntsF1[padj<0.05,]
> bovSub1s=as.matrix((bovSub1-apply(bovSub1,1,
+ mean))/apply(bovSub1,1,sd))

An example

Next we compute the distance between all genes, then use the
hclust function, which performs agglomerative hierarchical
clustering: we consider both complete and average linkage

> d1=dist(bovSub1s)
> h1a=hclust(d1,method="average")
> h1c=hclust(d1,method="complete")

An example

We usually plot the results of this using dendograms which are tree
like structures.

> pdf("hclust-plot.pdf")
> par(mfrow=c(1,2))
> plot(h1a,labels=F,xlab="",main="Average Linkage")
> plot(h1c,labels=F,xlab="",main="Complete Linkage")
> dev.off()

0
1

2
3

4

Average Linkage

hclust (*, "average")

H
ei

gh
t

0
1

2
3

4
5

6

Complete Linkage

hclust (*, "complete")

H
ei

gh
t

Cutting dendograms
We can also cut a dendogram off at a certain point to get an
assignment of items to clusters.

By default the cutree function cuts the tree based on the number
of clusters but can use the h argument to cut at a certain height.

> ch1a=cutree(h1a,4)
> table(ch1a)
ch1a
1 2 3 4
1 84 41 4

> ch1a=cutree(h1a,h=1.8)
> table(ch1a)
ch1a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 60 22 5 2 2 4 7 4 4 3 2 3 2 3 4 1 1

Clustering Noise

So what would clustering noise look like: let’s simulate uniformly
and normally distribute data and try to cluster that

> noiseData1=matrix(runif(130*11),ncol=11)
> noiseData2=matrix(rnorm(130*11),ncol=11)
> dn1=dist(noiseData1)
> dn2=dist(noiseData2)
> hn1=hclust(dn1,method="average")
> hn2=hclust(dn2,method="average")
> pdf("noise-hclust.pdf")
> par(mfrow=c(1,2))
> plot(hn1,main="Uniform Noise",xlab="",labels=F)
> plot(hn2,main="Normal Noise",xlab="",labels=F)
> dev.off()

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Uniform Noise

hclust (*, "average")

H
ei

gh
t

1
2

3
4

5
6

Normal Noise

hclust (*, "average")

H
ei

gh
t

Fastcluster

For large data sets hclust can be slow, so there is a package that
has a faster implementation: fastcluster

We can experiment to see how much faster this is.

When you load this library it simply writes over the the hclust
function, masking the usual function and thereby automatically
substituting the newer version so no code has to change.

We can test this in terms of real time savings.

> ddb=dist(bovCntsF1)
> system.time(hclust(ddb))
> library(fastcluster)
> system.time(hclust(ddb))

Divisive Hierarchical Clustering

There are also methods for divisive clustering available in R: these
are used less commonly.

> diana1=diana(d1)
> pdf("divisive-clust.pdf")
> plot(diana1,which.plots=2,labels=F,xlab="")
> dev.off()

0
1

2
3

4
5

6

Dendrogram of diana(x = d1)

Divisive Coefficient = 0.83

H
ei

gh
t

p-values for hierarchical clustering

Here is an example where we cluster samples instead of genes.

With the pvclust package one can obtain p-values that test if there
is evidence for distinct clusters at each split.

> library(pvclust)
> # this takes a couple of minutes
> bov.pv <- pvclust(bovCntsF1, nboot=1000)
> pdf("hier-pval.pdf")
> plot(bov.pv, cex=0.8, cex.pv=0.7)
> dev.off()

In this plot the red numbers indicate the support for the split using
an unbiased estimate (the green values are less reliable): au is for
approximately unbiased.

sn
26

cn
t1

m
n2

1c
nt

1

m
n2

2c
nt

1

sn
24

cn
t1

sn
25

cn
t1

sn
28

cn
t1

sn
27

cn
t1

sn
29

cn
t1

m
n1

9c
nt

1

m
n2

0c
nt

1

m
n2

3c
nt

1

0.
01

5
0.

02
5

0.
03

5
0.

04
5

Cluster dendrogram with AU/BP values (%)

Cluster method: average
Distance: correlation

H
ei

gh
t

99

82

89

84
98 97

100
61

100

au

97

71

74

85
98 98

100
51

100

bp

1

2

3

4
5 6

7
8

9

edge #

p-values for hierarchical clustering

We can also directly examine the p-values for the edges by
examining the output of pvclust directly.

> bov.pv$edges[,1]
[1] 0.9869109 0.8166574 0.8934202 0.8381512 0.9834966
[6] 0.9651529 1.0000000 0.6077128 1.0000000 1.0000000

So not much evidence for clusters in this example.

k-means clustering

Perhaps the first algorithm for cluster analysis was the k-means
algorithm.

The algorithm proceeds as follows: suppose I have an initial set of
cluster centers.

1. for each item, determine which cluster center to which it is
closest-assign that item to that cluster

2. once all items are assigned to clusters, compute the center of
each cluster by finding the mean of all coordinates

3. go back to step 1 and reassign items to clusters

This process continues until no items are assigned to new clusters.

k-means clustering

Usually the algorithm converges quite quickly, perhaps too quickly.

It is advisable to use multiple starting points and select the
solution to use based on some metric of cluster quality, such as
mean within cluster variance.

The algorithm can fail if there is a cluster with no objects.

This can happen if there are too many clusters or if the choice of
initial clusters is unfortunate.

This can best be avoided if the initial cluster centers are chosen to
be the locations of actual items.

k-means clustering

Here is an example using our cow example, here we use 50 starting
values

> set.seed(1245)
> k1=kmeans(bovSub1s,centers=4,nstart=50)
> k2=kmeans(bovSub1s,centers=4,nstart=50)

Then we can compare the solutions-we get the same answer in a
sense

> table(k1$cluster)

1 2 3 4
22 40 20 48

k-means clustering

> table(k2$cluster)

1 2 3 4
40 20 22 48
> table(k1$cluster,k2$cluster)

1 2 3 4
1 0 0 22 0
2 40 0 0 0
3 0 20 0 0
4 0 0 0 48

Partitioning around Medoids

A natural extension in some ways is to use the median instead of
the mean.

This doesn’t quite work out because the median is characterized by
the observation with the value in the middle of the other
observations, and this can’t work with data in multiple dimensions.

Nonetheless there are multiple implementations of this idea.

Partitioning around Medoids

The function pam in the cluster library is one such implementation.

> p1=pam(bovSub1s,k=4)

We can see that this agrees pretty well with the k-means result.

PAM

> table(p1$clustering,k1$cluster)

1 2 3 4
1 14 0 5 0
2 0 21 0 47
3 0 19 0 1
4 8 0 15 0

This is deterministic and will always provide the same solution-not
clear how to specify different initial values.

PAM

One can permute the rows-this gives a different solution.

> permbov=bovSub1s[sample(1:130,replace=T),]
> p2=pam(permbov,k=4)
> table(p1$clustering,p2$cluster)

1 2 3 4
1 9 2 5 3
2 36 11 8 13
3 13 3 3 1
4 10 6 4 3

PAM

So a little problematic that the solution is not invariant with
respect to the order of the rows of the data matrix.

Nonetheless this is considered the go-to cluster analysis method in
some circles.

There are also faster implementations of this method available
through the clara function in the cluster package.

This works by sampling the data, finding clusters, then assigning
the items not used for clustering to the cluster where they fit best.

Related techniques are used in the Spade package which is
designed for the analysis of mass cytometry data sets.

Model based clustering

There are a large number of methods based on the connection
between mixture models and cluster analysis.

A mixture model is a probability model for a continuous random
variable which assumes that the probability density is a linear
combination of simpler densities.

For example, a 2 component normal mixture distribution is a
weighted average of 2 normal densities. For example, if 0 < λ < 1

λN(µ1, σ
2
1) + (1− λ)N(µ2, σ

2
2)

is a univariate normal mixture distribution.

Model based clustering

We can draw samples from such a distribution by sampling which
mixture distribution we draw from then sampling from that
distribution.

> dev=rep(NA,100)
> for(i in 1:100){
+ comp=sample(1:2,1)
+ if(comp==1) dev[i]=rnorm(1,-1,1)
+ if(comp==2) dev[i]=rnorm(1,4,.5)
+ }
> hist(dev)

Model based clustering

So mixture models give rise to observations that exhibit clustering.

So we turn this idea around: if I want to fit a model to data that
exhibits clustering I can fit a mixture model.

For more than one dimensional data I need to use what’s called the
multivariate normal distribution, which is an extension of the
normal distribution to higher dimensions.

The big difference between the regular (univariate) normal
distribution and the multivariate normal distribution is that the
elements in the multivariate version can have non-zero correlation.

This correlation gives rise to different shaped clusters.

I can even have different correlation structures in my different
clusters, so these are very flexible models.

Model based clustering

So rather than using some algorithm to find clusters I treat my
observed data as observations from a multivariate normal mixture
model and estimate the parameters in that model.

One can use the EM algorithm to estimate the parameters in these
sorts of models.

We saw this when we talked about population structure in genetic
association studies.

There we used the mclust package, as we will here.

This package considers a large number of possible models and
selects the best one in terms of the Bayesian Information Criterion
(BIC).

Model based clustering

The collection of models is as follows:

1. “E”: equal variance (univariate)

2. “V”: variable variance (univariate)

3. “EII”: spherical, equal volume

4. “VII”: spherical, unequal volume

5. “EEI”: diagonal, equal volume and shape

6. “VEI”: diagonal, varying volume equal shape

7. “EVI”: diagonal, equal volume, varying shape

8. “VVI”: diagonal, varying volume and shape

9. “EEE”: ellipsoidal, equal volume, shape and orientation

10. “EEV”: ellipsoidal, equal volume and shape

11. “VEV”: ellipsoidal, equal shape

12. “VVV”: ellipsoidal, varying volume, shape and orientation

Model based clustering

> m1=Mclust(bovSub1s)
> m1
’Mclust’ model object:
best model: ellipsoidal multivariate normal (XXX)
with 1 components

So for this data set this algorithm concludes that there aren’t really
any clusters.

Self Organizing Maps

Self organizing maps is another algorithm that can be used to
cluster items.

The basic idea: start with a collection of randomly initialized
“cluster centers” and compare each item to be clustered to this
collection of cluster centers-find the cluster center that is closest.

Modify the closest cluster center so that it is more similar to this
item.

Slightly modify cluster centers that are also close to the item’s
closest cluster center.

Repeat many times, but as the algorithm proceeds, change the
cluster centers less.

Self Organizing Maps

There are multiple packages that implement this algorithm: som
and kohonen.

They provide the same basic functionality, but kohonen has more
graphical options.

While there are a number of inputs one can adjust, the SOM grid
is perhaps the most critical.

In many ways this is like specifying the number of clusters.

We will examine the impact of varying this in the following.

Self Organizing Maps

The som function provides the basic functionality: first we will
cluster subjects.

> s1=som(bovSub1s,xdim=2,ydim=2)
> s2=som(bovSub1s,xdim=6,ydim=2)
> s3=som(bovSub1s,xdim=2,ydim=6)

The code output has information on how each item relates to the
identified cluster centers: items with similar values for the codes
are grouped together by the algorithm.

Self Organizing Maps

Here is how one can use hclust to obtain clusters of subjects from
this output.

> som_cluster=cutree(hclust(dist(t(s1$code))),4)
> som_cluster
[1] 1 2 2 1 1 3 2 2 4 3 3

and here is how to cluster genes

> s1a=som(t(bovSub1s),xdim=2,ydim=2)
> s2a=som(t(bovSub1s),xdim=6,ydim=2)
> s3a=som(t(bovSub1s),xdim=2,ydim=6)
> s4a=som(t(bovSub1s),xdim=20,ydim=40)

Self Organizing Maps
Then, as before, use hierarchical clustering on the codes

> som_cluster1a=cutree(hclust(dist(t(s1a$code))),4)
> som_cluster2a=cutree(hclust(dist(t(s2a$code))),4)
> som_cluster3a=cutree(hclust(dist(t(s3a$code))),4)
> som_cluster4a=cutree(hclust(dist(t(s4a$code))),4)

Then we can compare to results from the k-means algorithm.

> table(k1$cluster,som_cluster1a)
som_cluster
1 2 3 4

1 0 40 0 0
2 0 48 0 0
3 13 0 0 7
4 9 0 13 0

Self Organizing Maps

Other solutions also similar to k-means.

Note that when the product of the 2 dimensions is the same we
get the same solution.

> table(som_cluster2a,som_cluster3a)
som_cluster3a

som_cluster2a 1 2 3 4
1 31 0 0 0
2 0 70 0 0
3 0 0 18 0
4 0 0 0 11

Self Organizing Maps

Although we can get the same solution using very different som
grid sizes.

> table(som_cluster1a,som_cluster4a)
som_cluster4a

som_cluster1a 1 2 3 4
1 22 0 0 0
2 0 88 0 0
3 0 0 13 0
4 0 0 0 7

Determining the Number of Clusters

Determining the number of clusters is a notoriously difficult
problem.

While many approaches have been developed none have ever been
shown to be better than other approaches mathematically and
probably can’t be.

If one thinks of this problem in the context of fitting mixture
distributions, then the likelihood is unbounded if one takes the
number of clusters equal to the number of observations and has
the variance of each cluster go to zero.

So the MLE of the number of clusters is the sample size.

One can impose constraints but then your solution will just be
determined by the arbitrary constraints.

Determining the Number of Clusters
Nonetheless there is considerable interest in some sort of solution
to this problem.

The package NbClust computes 30 different metrics for selecting
the number of clusters, however you must tell it a method in which
you are interested.

Usage is as follows: it automatically generates some plots.

> nb1=NbClust(bovSub1s,method="kmeans")

* Among all indices:
* 11 proposed 2 as the best number of clusters
* 4 proposed 3 as the best number of clusters
* 3 proposed 4 as the best number of clusters
* 1 proposed 5 as the best number of clusters
* 1 proposed 6 as the best number of
...

Determining the Number of Clusters

So it appears that 2 is the best number of clusters, however this
package, like most of the metrics that have been developed for this
purpose, assumes there are at least 2 clusters.

So this does not provide an answer to the question of if there is
any clustering at all in one’s data.

Biclustering

Thus far we have largely discussed clustering genes as we are
interested in finding genes that act in a coordinated fashion to
carry out some biological function.

We may also be interested in the question of the extent to which
our samples are similar to each other in terms of their gene
expression profiles (i.e. the collection of gene expression
measurements).

We can use all of the previously discussed methods to do this: we
simply transpose our gene expression data matrix (which is the
transpose of the usual statistical data matrix-so one needs to be
careful).

But suppose one wants to cluster genes and samples at the same
time: biclustering.

Biclustering
The biclust package has a wide selection of methods to choose
from for biclustering.

Basic usage is a call to the function biclust and the user supplies
the data matrix and method= for one of the available methods.

Some methods require additional preprocessing: we’ll examine
some that don’t.

Some methods require manual specification of parameters.

> b1=biclust(bovSub1s,method=BCCC(),
+ delta=1.5, alpha=1, number=10)
> b2=biclust(bovSub1s,method=BCPlaid())
> b3=biclust(bovSub1s,method=BCSpectral(),
+ numberOfEigenvalues=3)
Warning message:
In spectral(x, normalization, numberOfEigenvalues, minr,

minc, withinVar) : No biclusters found

Biclustering
Then if we inspect the output we can see how many clusters were
found.

> b1

An object of class Biclust

call:

biclust(x = bovSub1s, method = BCCC(), delta = 1.5, alpha = 1,

number = 10)

There was one cluster found with

130 Rows and 11 columns

> b2

An object of class Biclust

call:

biclust(x = bovSub1s, method = BCPlaid())

There was one cluster found with

15 Rows and 3 columns

Biclustering

The package also has a function that can be used to visualize the
results

pdf("biclust-hm-bccc.pdf")
drawHeatmap(bovSub1s,bicResult=b1,1)
dev.off()

pdf("biclust-hm-bcplaid.pdf")
drawHeatmap(bovSub1s,bicResult=b2,1)
dev.off()

Bicluster 1 (size 130 x 1)

1

123
456
789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130

Bicluster 1 (size 15 x 3)

m
n1

9

m
n2

2

m
n2

3

2148

4138

4830

7056

7218

10132

10445

11125

11432

12141

14388

14603

14631

18778

19638

Comparing cluster solutions

A number of metrics have been proposed for comparing the
agreement among a set of clustering solutions.

The Rand index and its extensions (the adjusted Rand statistic and
the corrected Rand statistic) examine how frequently 2 items are
placed in the same cluster by 2 clustering solutions.

This functionality is implemented in multiple packages: for
example in mclust.

Comparing cluster solutions

To use this you just extract the information on cluster assignment
from the output of a cluster object.

> adjustedRandIndex(k1$cluster,k2$cluster)
[1] 1

> adjustedRandIndex(p1$clustering,p2$clustering)
[1] -0.001278062

	Overview
	Distances
	Cluster Algorithms
	Hierarchical clustering
	An example
	Clustering Noise
	Fastcluster
	Divisive Hierarchical clustering
	p-values for hierarchical clustering
	k-means clustering
	Partitioning around Medoids
	Self Organizing Maps

	Determining the Number of Clusters
	Biclustering
	Comparing cluster solutions

