1 Nonparametric methods

In the context of linkage analysis, a nonparametric method is a technique for establishing linkage that does
not require specification of the mode of transmission. This is in contrast to the previous methods in which
we had to specify if the disease was recessive or dominant. A common feature of nonparametric methods is
the use of small, nuclear families as opposed to the large multigeneration families used in parametric linkage
analysis.

1.1 Sib-pair method

In the 1930s and 1940s, the most popular method of linkage analysis was based on the sib-pair method
of Penrose (1935). While subsequent developments have supplanted this method, it is provides a natural
introduction to modern affected sib-pair methods. In addition, this method uncovered the first case of linkage
in humans.

The method is quite simple. Suppose the phenotype for each member of a sib-pair (i.e. a pair of siblings)
is known. We suppose each phenotype corresponds to a genotype at some locus. Each sib-pair can be
classified as having the same or not the same phenotype for each of the 2 phenotypes. We organize this data
into a 2 by 2 table with a dimension for each phenotype, and a row or column for same or different. Each
sib-pair contributes one entry to this table.

same on phen. 2 | differ on phen. 2

same on phen. 1
differ on phen. 1

If there is linkage between the loci corresponding to the phenotypes, the concordant cells of the table
should fill up, i.e. sib-pairs will either have the same allele at the 2 loci or different alleles. We can then
conduct a goodness of fit test, like Pearson’s x? test, to test for linkage.

While this method is simple to implement and easy to understand, it has some weaknesses. First, since
it ignores the parental phenotypes, many non-informative matings are considered in the data, and this acts
to dilute any effect we may otherwise see. Secondly, incomplete penetrance and phenocopies can disguise
effects since we don’t model these factors.

1.2 Affected sib-pair (ASP) methods

A simple modification to the idea of the basic sib-pair method greatly enhances the power of the method.
Instead of using any sib-pair, we use affected sib-pairs (some methods also use affected-unaffected sib-
pairs). While we may still consider non-informative matings (since the parents may be homozygous for
the marker), we don’t have to worry about incomplete penetrance since both of the siblings are affected
(although phenocopies still pose a problem).

To understand the basis for these methods, and other methods of nonparametric linkage analysis, we
need to introduce the idea of 2 markers being identical by descent (IBD). Consider 2 offspring and the alleles
they have at some locus. If the 2 received the allele from the same parent, then the alleles are said to be
identical by descent. If they have the same value for an allele but didn’t receive it from the same parent,
we say the alleles are identical by state (IBS). As an example, suppose the parents have 4 different marker
alleles at some locus. Two of their children will either have 0, 1, or 2 alleles in common at this locus. If
the marker locus is unlinked to the disease locus (recall both children are affected), the probability they
share 0 or 2 alleles is 1/4 and the probability they share 1 allele is 1/2. If the marker is tightly linked



to the disease locus, then you would expect children to share alleles at the marker locus more frequently
than not (with the surplus depending on the mode of genetic transmission). This notion of allele sharing
has widespread application in statistical genetics, for example, it is what we meant by allele sharing in the
discussion of quantitative traits. We can also express the pedigree likelihood in terms of IBD indicators
rather than genotypes.

A variety of tests have been designed to test for linkage by comparing IBD proportions to their expected
values under the hypothesis of no linkage. Define

z; = P(i alleles are IBD for an ASP).

As examples illustrate, if a marker is tightly linked to a recessive disease gene, we expect zg = 21 = 0 and
z2 = 1, while for a dominant disorder zy = 0, and z; = 22 = 1/2. Since the values of these probabilities
under no linkage are zo = 1/4, 21 = 1/2 and 22 = 1/4, ASP methods are better at detecting linkage of a
marker to a recessive trait.

The basic idea of any test using ASPs is to estimate the z; with the sample proportions, then construct
a test statistic based on these proportions. One could construct a x2 goodness of fit test to the proportions
(a test with 2 degrees of freedom), but this test will have low power compared to tests that have a specific
alternative. An asymptotically equivalent test, is to use the likelihood ratio test of the hypothesis of no
linkage. If one specifies a mode of transmission in the alternative hypothesis, then one can construct a more
powerful test than the x? goodness of fit test. As is typical for non-parametric methods, one can devise a
test that doesn’t need a specification of the model, but one can devise a more powerful test if one proposes
a model under the alternative. For this reason, there are 3 popular methods for testing the hypothesis of
no linkage in ASP analysis. One specifies the alternative of a recessive mode of inheritance, one specifies a
dominant mode of inheritance, and one tries to find a balance between the other two. Not surprisingly, the
test that tries to strike a balance is not as powerful as either of the other 2 tests if the mode of inheritance
is known.

1.2.1 The mean test
The mean test is designed to provide a powerful test under the alternative of a dominant mode of transmission.
The test statistic is
Tmean = 22 + 521
One compares this to the null value of 1/2, and the distribution of the statistic can be worked out based on

the properties of sample proportions from multinomial samples. That is, the variance of a sample proportion
is well known, but here we have to consider the correlation between Z; and 2;.

1.2.2 The proportion test

The proportion test is designed to provide a powerful test when the alternative is a recessive mode of
transmission. The test statistic is

Tproportion = Z2,

and one compares this to its null value of 1/4. The variance of this statistic is just the variance of a sample
proportion. Recall, for recessive traits we expect zg = z1, so we use neither of these in the test.



1.2.3 Minmax test of Whittemore and Tu

In a recent article, Whittemore and Tu (1998) propose a test of no linkage using the idea of minimax tests.
Both the mean and proportion tests can be viewed as a special case of the more general test statistic

Ty = woZo + w121 + wo2s.

This test statistic will be asymptotically normal, so if we use the square of T, we get a test statistic that
is asymptotically x? with 1 degree of freedom (as opposed to the 2 degrees of freedom in the likelihood
ratio test). This test statistic is invariant under linear transformations of the weights, so typically we set
wo = 0 and wy, = 1. This implies the properties of the test depend solely on the value of w;. The idea of
Whittemore and Tu is to select w; so that we minimize the maximal cost of making a mistake (hence the
minmax terminology). An interesting result of Whittemore’s in this connection is that any allowable value
for wy must lie between 0 and 1/2 (the values used in the proportion and mean tests respectively). They
show that the minmax value of w; is 0.275, slightly closer to the mean test (that is dominant inheritance)

1.3 Linkage disequilibrium

It is reasonable to suppose that some genetic disorders arise due to a mutation at some gene. A random
mutation can lead to an organism that doesn’t produce the protein necessary for some biological function.
Consider some individual who has undergone a mutation that leads to a dominant disease. If we use D to
represent the mutant disease allele, and single digit numbers to represent marker alleles, then his genotype
on say chromosome 4 is something like

chromosome 4, copy 1

1,4,7,3,8,D,3,7,3,6,2

chromosome 4, copy 2

4,2,6,2,5,d,2,6,1,7,8.

He will transmit one of these chromosomes to each of his offspring. Consider an offspring who is affected. Such
an offspring must have received copy 1, but perhaps there was a crossover, so this individual’s chromosome
4 from the affected parent would be something like

4,2,6,3,8,D,3,7,3,6,2.

As generations come and go, one of the chromosomes in all of the affected individuals must have the disease
gene. Those with the disease gene will also have the markers near the disease loci that the original family
member with the disease had unless there is some recombination that results in another marker taking its
place. That is, we would expect to find alleles 8 and 3 at the marker loci next to disease allele in affected
offspring in this family, a state we refer to as linkage disequilibrium.

We define the linkage disequilibrium parameter, §, for the marker with allele value 8 in the above example
as

6 = P(D,8) — P(D)P(8).

This parameter is not so useful as a measure of linkage disequilibrium because its minimal and maximal
value depend on the allele frequencies. If there is no linkage disequilibrium

P(D,8) = P(D)P(8),



and so we expect § to be near zero (otherwise we expect it to be positive). Over time, the disequilibrium
would decay at a rate depending on the recombination fraction between the disease and marker loci. If d; is
the linkage disequilibrium at time ¢, then

8 = (1= )" do,

where 6o = P(D,8) — P(D)P(8) for the original mutant, i.e. o = 1 — P(8). If one knows the recombination
fraction and P(8), one can thus deduce the time of the original mutation.

The linkage disequilibrium parameter can be estimated by using sample proportions. This also indicates
how to construct confidence intervals for §. To test the hypothesis

H025:0

one tests if the disease haplotype (i.e. markers associated with the disease phenotype) occurs in significantly
different proportions in the affected versus the non-affected populations. If haplotypes are not so easily
constructed, one must average over phase. These tests fall into the category of association tests since they
look for an association between haplotypes and disease phenotypes.

Linkage disequilibrium can arise for reasons other than a linkage of a marker to a loci where a mutation
took place. For example, if you use a set of unrelated individuals it may appear that there is linkage
disequilibrium. Given this, linkage disequilibrium will be useful for mapping when the population under
study is a small isolated group with extensive intermarrying. In particular, this method will not be useful for
analyzing heterogeneous populations with individuals coming from a variety of sources. When conducting
association studies with heterogeneous populations one must use a test statistic that tests for association
and linkage at the same time.

1.4 Haplotype relative risk

One of the major problems with tests of linkage disequilibrium is the unaffecteds are unrelated, hence
the haplotypes of these individuals make for poor “control” haplotypes. A better way to define a control
population would be to use unaffected individuals from the same family. For now we will suppose we have
trios of parents and an affected child.

Consider the problem of whether some allele, denoted A, at a marker is in linkage disequilibrium with
with some disease. For each family, define the disease genotype to be the genotype at the marker in question
for the affected child. This disease genotype consists of 2 alleles. The control genotype consists of the 2
alleles not transmitted to the affected child. For example, if the parental genotypes are A|B and C|D and
the child has genotype A|D, then the disease genotype for this family is A|D and the control genotype is
B|C. The haplotype relative risk is defined as

_ P(A|disease genotype)

HRR = .
P(A|control genotype)

The test for linkage of the allele A to the disease loci in this context is
Hy: HRR=1.

We can test this hypothesis by setting up a certain 2 by 2 table and using Pearson’s x? test. To understand
the table, realize we have cases (i.e. the disease genotypes) and controls (i.e. the genotypes not transmitted).
Each case and control either has the disease allele in his or her genotype or does not, so we can form a 2 by
2 table as with any other case control study.



has allele A | doesn’t have allele A

case genotype
control genotype

If there are n families, then there are n affected children, hence there are n disease genotypes and n
control genotypes (so there are 2n entries in the table). If there is linkage disequilibrium between the allele
and the disease gene, we would expect the concordant cells of the table to fill up. Moreover, under the
assumption of linkage equilibrium, alleles segregate independently of one another, so we can think of this
table as representing data from 2n independent observations. Thus we can apply Pearson’s x2 test to the
table. For the previous example, we put an observation in the cell representing the A is in the disease
genotype, and an observation in the cell corresponding to a not A in the control genotype. If there is linkage
disequilibrium between allele A and the disease gene, we would expect to see observations pile up in the cells
in which allele A is in the disease genotype.

1.5 The transmission disequilibrium test

Another test for testing the hypothesis of no linkage via linkage disequilibrium is known as the transmission
disequilibrium test, TDT. This test is much like the HRR, but it ignores families where one parent is
homozygous for the allele suspected to be in association with the disease gene (since these obscure our view
of linkage disequilibrium). We think of each parent as contributing either the allele in disequilibrium with
the disease genotype (i.e. the case allele) or not (the control allele). Since the parents are matched, the
appropriate test is McNemar’s x? test for the table in which we have rows for the non-transmitted allele and
columns for the transmitted allele.

case allele A | case allele not A
control allele A | a b
control allele not A | ¢ d

We expect the numbers in the off-diagonal of the table to fill up under the null so we compare these.
When we work out the sample variance of this difference, we arrive at the test statistic, namely

(c—b)*
c+b

It can be shown that
E(c—b) =2n(1 —26)d/pp,

where pp is the probability of observing the disease allele and n is the sample size. Hence the expected
value of the difference is zero if § = 0 or § = 1, i.e. if there is linkage disequilibrium or if there is linkage (or
if both are true). For this reason, it is recommended that linkage disequilibrium first be established using
other methods (which is easy since we just have to detect association) then one tests for linkage using the
TDT. In such a context, it has been shown that the TDT is a powerful test for establishing linkage. In
contrast, it can be shown that the HRR tests § = 0 or § = 0 or both. Usually the null hypothesis of no
linkage disequilibrium or complete linkage is not of interest.

Exercises for week 5

1. If the phenocopy rate for a recessive trait is 0.3, then what are the IBD probabilities for a marker
tightly linked to the disease gene for 2 affected sibs? (Assume the genotypes of the parents are A, B
and C, D, both parents are heterozygous at the disease locus.)



2. Find estimates of the standard deviation for the mean and proportion tests. Use these estimates to
construct test statistics that have standard normal distributions under the relevant null hypothesis.
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