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Overview

We’ve seen that there are tools for testing for overenrichment of
certain biological pathways, such as the methods based on the
gene ontology.

It would seem that the same approaches can be used for the
analysis of RNA-Seq experiments.

While one can’t rely on the annotation packages specific to certain
microarrays, one can still obtain data from biomart and take the
same approach.



goseq

Some have maintained that these approaches are inadequate for
RNA-Seq data.

The main argument advanced for this case has to do with claims
that RNA-Seq has lower power for testing for differences across
groups for genes that are shorter.

If one assumes

1. one is testing for differences with counts for each gene

2. these counts are distributed according to the Poisson
distribution

3. one is using a 2 sample t-test to test for differences
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Then it follows that one has lower power for shorter genes.

This is because the power of a 2 sample t-test depends on the
ratio of the difference in the means across 2 groups relative to the
within group standard deviation.

If the data are distributed according to a Poisson distribution in
each group, and L is the length of the gene, then

mean of the counts in group 1=Lµ1

and

mean of the counts in group 2=Lµ2
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and since the mean and variance are the same for a Poisson
random variable:

variance of the counts in group 1=Lµ1

and

variance of the counts in group 2=Lµ2

so the mean variance is L(µ1+µ2)
2 .

Thus the ratio of the difference in the means to the standard
deviation is

Lµ1 − Lµ2√
L(µ1 + µ2)/2

which is
√

L(µ1 − µ2)/(0.5(µ1 + µ2))0.5

therefore the power is greater for longer genes.
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However:

1. no one is simply testing for differences with counts for each
gene currently (e.g. edgeR)

2. no one claims that RNA-Seq data are well modeled as Poisson
random variables

3. no one is using a 2 sample t-test to test for differences
between groups

Nonetheless there are methods that have been designed to correct
for differences in gene length when conducting geneset enrichment
analyses: the goseq package.
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To use this approach, first we need to find the appropriate gtf file
for our organism, then make a transcriptome database from that
file.

> library(GenomicFeatures)
> btdb <- makeTxDbFromGFF("/export/home/courses/ph7445/
+ data/Bos_taurus.UMD3.1.83.gtf",dataSource=
+ "ftp.ensembl.org/pub/release-83/gtf/
+ bos_taurus/",organism="Bos taurus")

Then we get a gene based dataset from this database, and from
that get summaries of each gene’s length.

> txsByGene=transcriptsBy(btdb,"gene")
> lengthData=median(width(txsByGene))
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> summary(lengthData)
Min. 1st Qu. Median Mean 3rd Qu. Max.
26 963 8396 30910 31200 1851000

After the length data is set up then we need to define an indicator
variable for which genes differ and give that indicator gene IDs.

> library(goseq)
> bovDif=as.integer(padj<0.05)
> names(bovDif)=bovIDs[apply(bovCnts,1,min)>4]
> bovLen=lengthData[names(lengthData) %in% names(bovDif)]
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Then we see there are genes without length data, so we need to
exclude those from further consideration.

> table(names(bovDif) %in% names(bovLen))

FALSE TRUE
374 10616

> table(names(bovLen) %in% names(bovDif))

TRUE
10616
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> bovDif1=bovDif[names(bovDif) %in% names(bovLen)]

but we lose a few genes associated with a low FDR in the process

> table(bovDif1)
bovDif1

0 1
10489 127
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Next we need to estimate the change in power as a function of
gene length. Here is a graphical method to visualize this:

> pdf("null_p_bov.pdf")
> pwf=nullp(bovDif1,bias.data=bovLen)
Warning message:
In pcls(G) : initial point very close to some inequality
constraints
> dev.off()
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Then we use this estimated change in power to test for differences
in the frequency of the occurrence of genes that display differences
across groups between functional categories.

> gs1=goseq(pwf,gene2cat=bov_bm[,c(1,3)])
Using manually entered categories.
For 153 genes, we could not find any categories. These
genes will be excluded. To force their use, please
run with use_genes_without_cat=TRUE (see documentation).
This was the default behavior for version 1.15.1 and
earlier.
Calculating the p-values...
’select()’ returned 1:1 mapping between keys and columns
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Then the following code can be used to examine the output.

> cat=gs1$category[which(p.adjust(
+ gs1$under_represented_pvalue,
+ method="BH")<.1)]
> cat=cat[cat!=""]
> cat_name=rep(NA,length(cat))
> for(i in 1:length(cat))
+ cat_name[i]=unique(bov_bm[
+ bov_bm[,3]==cat[i],4])
> bov_go_under=cat_name
[1] NA
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> cat=gs1$category[which(p.adjust(
+ gs1$over_represented_pvalue,
+ method="BH")<.1)]
> cat=cat[cat!=""]
> cat_name=rep(NA,length(cat))
> for(i in 1:length(cat))
+ cat_name[i]=unique(bov_bm[
+ bov_bm[,3]==cat[i],4])
> bov_go_over=cat_name
[1] NA
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Let’s try the approach the authors of Bioconductor Case Studies
recommend: don’t correct for multiple hypothesis testing (we get
348 categories if we use α = 0.05 so we use 0.01 here).

> cat=gs1$category[which(gs1$over_represented_pvalue<
+ 0.01)]
> cat=cat[cat!=""]
> cat_name=rep(NA,length(cat))
> for(i in 1:length(cat))
+ cat_name[i]=unique(bov_bm[
+ bov_bm[,3]==cat[i],4])
> bov_go_over=cat_name
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> bov_go_over
[1] "enzyme inhibitor activity"
[2] "negative regulation of intestinal phytosterol

absorption"
[3] "ATP-binding cassette (ABC) transporter complex"
[4] "negative regulation of intestinal cholesterol

absorption"
[5] "acetyl-CoA carboxylase activity"
[6] "facial nerve morphogenesis"
[7] "glycerol metabolic process"
[8] "acetyl-CoA metabolic process"

...
42 total
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We can also restrict this to a particular component of the ontology
with the following:

> cat=gs1$category[which(gs1$over_represented_pvalue<
+ 0.01)]
> cat=cat[cat!=""]
> cat_name=rep(NA,length(cat))
> ontol=rep(NA,length(cat))
> for(i in 1:length(cat)){
+ cat_name[i]=unique(bov_bm[bov_bm[,3]==cat[i],4])
+ ontol[i]=unique(bov_bm[bov_bm[,3]==cat[i],5])
+ }
> bov_go_over=cat_name
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> table(ontol)
ontol
biological_process cellular_component molecular_function

23 7 12

> bov_go_over[ontol=="biological_process"]
[1] "negative regulation of intestinal phytosterol

absorption"
[2] "negative regulation of intestinal cholesterol

absorption"
[3] "facial nerve morphogenesis"
[4] "glycerol metabolic process"
[5] "acetyl-CoA metabolic process"
[6] "negative regulation of lipoprotein lipase activity"

...
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> bov_go_over[ontol=="cellular_component"]
[1] "ATP-binding cassette (ABC) transporter complex"
[2] "insulin-like growth factor ternary complex"
[3] "extracellular space"
[4] "extracellular region"
[5] "apical plasma membrane"
[6] "integral component of plasma membrane"
...
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> bov_go_over[ontol=="molecular_function"]
[1] "enzyme inhibitor activity"
[2] "acetyl-CoA carboxylase activity"
[3] "growth factor activity"
[4] "biotin carboxylase activity"
[5] "integrin binding"
[6] "oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular oxygen"

...

Then many of the genes associated with biological processes are
sensible given that this is liver tissue from cows in negative energy
balance.



Conclusions

While the motivation for the method behind the goseq package
may not hold in contemporary applications of RNA-Seq, these
results can still be useful.

As an alternative, one can always make a matrix of gene expression
data into an ExpressionSet object and use tools for microarrays.

This is an attractive feature in that there are many tools available
for microarray analysis.

The primary difference is that one must download information from
biomart to link gene identities to functional classes.
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