Topics in Statistical Genetics

INSIGHT Bioinformatics Webinar 2 August 22nd 2018

> Presented by Cavan Reilly, Ph.D. & Brad Sherman, M.S.

Recap of webinar 1 concepts

- DNA is used to make proteins and proteins are necessary for the creation and maintenance of life
- There is variation in DNA sequences among humans: we frequently look at a particular type of variant called a SNP
- We can use statistical models to relate data on SNPs to traits of interest
- It is possible to get data on up to a million SNPs for thousands of people-we now have this for some INSIGHT trial participants
- There are standard quality control procedures used to set up analysis data sets

Genetic Associations (codominant test)

- Frequencies of alleles at a SNP can be compared between cases and controls to determine if there is a statistically significant association between the SNP and case/control status
- Consider the following table:
 - We could conduct Pearson's chi-square test

Status	Genotype		
	AA	Aa	aa
Cases	553	376	71
Controls	1289	623	88

Genetic Associations (dominant test)

 Alternatively, we could assume that the disease follows a dominant mode of transmission, so that the table becomes as follows if a is the disease allele (we can still use Pearson's chisquare test)

Status	Genotype		
	Disease genotype	Healthy genotype	
Cases	447	553	
Controls	711	1289	

Genetic Associations (alleles test)

 As another alternative, we can examine the frequency of each allele among cases and controls (and again, use Pearson's chi-square test if Hardy-Weinberg equilibrium holds)

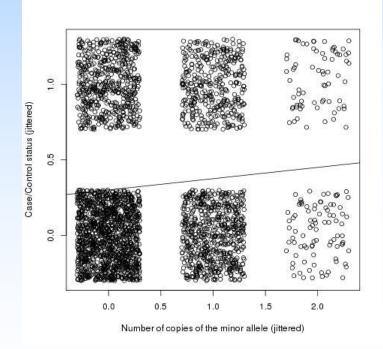
	Alleles	
Status	а	Α
Cases	518	1482
Controls	799	3201

Genetic Associations (trend test)

- As yet another alternative, we might assume an *additive* genetic model in which the probability that someone is a case depends linearly on the number of copies of one of the alleles
 - Which allele we select with bi-allelic variants doesn't matter for computing a p-value: typically use the number of copies of the minor allele
 - We can use simple linear regression to conduct this test (case/control status is the outcome and the number of alleles is the predictor)
- All analyses of the INSIGHT genotypic data that have been conducted thus far have used this additive model

Genetic Associations (trend test)

• Jittered scatterplot and regression line



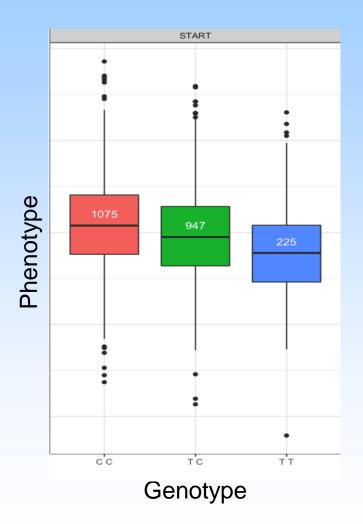
Comparison of tests

The p-values one obtains from these various tests can be quite variable:

Model	p-value
Codominant	1.7×10^{-6}
Dominant	$1.5 imes 10^{-6}$
Recessive	$2.4 imes 10^{-3}$
Alleles	2.1×10^{-7}
Trend	2.4×10^{-7}

Genetic Associations

- Quantitative variables (e.g. viral load) can be accommodated using the trend test with the quantitative variable as the explanatory variable
 - Quantitative trait locus (QTL)
- With either type of response variable, we can make adjustments for confounders in this regression context by including them as further explanatory variables
- However, when the outcome is dichotomous (e.g. case/control status) one would typically use logistic regression



Multiple hypothesis testing

- Some study designs in contemporary statistical genetics (e.g., GWAS) entail large numbers of hypothesis tests
- Such approaches are subject to false positives unless action is taken to avoid this
- The *family-wise* error rate is the probability of making one or more false positives when conducting more than 1 test
- The Bonferroni correction is widely used despite there being uniformly more powerful approaches to the control of the family-wise error rate: Holm's method

Multiple hypothesis testing

- In the statistical genetics literature, the use of 5.0 x 10⁻⁸ as a cut-off for p-values to be deemed significant is taken for granted
 - If a test statistic has a p-value this extreme, we speak of genome-wide significance
- One can interpret this as a Bonferroni correction for a million tests using the usual cut-off for statistical significance
- The Bonferroni correction assumes that the tests are independent: if there is dependence among the tests it is too strict

Multiple hypothesis testing

- Due to linkage disequilibrium we expect tests of association between markers which are close on the genome and a phenotype to be dependent
 - It is not uncommon to find markers which are in complete linkage equilibrium, i.e. there is a perfect association between them
- Some argue that due to linkage disequilibrium there are only about 1 million independent tests possible in a genome, so the use of genome-wide significance is justifiable regardless of the number of markers

Multiple hypothesis testing: new paradigm

- The use of large-scale hypothesis testing became more common in the 1990's-this led to new approaches to corrections for multiple hypothesis testing
- The new paradigm that emerged focused on determining the *false discovery rate* (FDR)
- FDR control is motivated as follows: I conduct tests of many null hypotheses and use some criterion to say a certain number, say X, of the nulls are rejected
 - So I have made X discoveries!

False discovery rates

- Using one of many methods I can estimate the proportion of my discoveries that are likely false (hence the name)
- By choosing a value for the FDR one can control the FDR at that value
- The seminal paper on this topic was authored by Benjamini and Hochberg, and the most commonly used technique bears their name
 - Their technique assumes that the tests are independent, however there are extensions to dependent tests
- The Benjamini Hochberg technique is conservative in that the actual FDR is typically lower than the value at which it is controlled

False discovery rates

- Controlling the FDR is not equivalent to controlling the family-wise error rate
- In fact one can mathematically demonstrate that if one controls the FDR at level α then the family-wise error rate is at least α
 - So if you control the FDR at 5% then the family-wise error rate is 5% or larger
 - So controlling the FDR is less conservative than standard statistical practice
- In practice it is common to see authors control the FDR at 10%, and there are publications in reputable journals where it is controlled at even higher levels (like 30%)

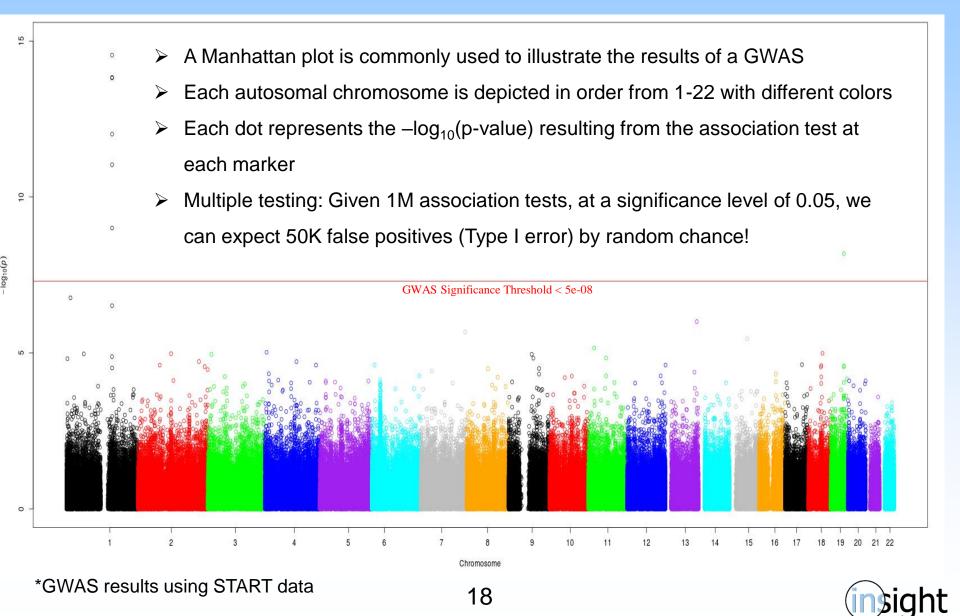
False discovery rates

- The usual justification for this is that one is conducting an exploratory analysis
 - So there is greater concern for type II errors than type I errors
- As such analyses are exploratory one typically follows up with other analyses to investigate the set of SNPs that have been detected to be associated with the outcome

Genetic Associations: INSIGHT

- We have looked at several quantitative traits using a GWAS in this manner thus far
 - 1. Viral load
 - 2. D-dimer
 - 3. hsCRP
 - 4. IL-6
- These analyses included principle components, gender and sometimes age as additional covariates
- These analyses were also pursued at the individual study level and by combining data across studies

Manhattan plot



Imputation

- A common approach to the analysis of GWAS data is to impute data for SNPs not originally genotyped
- To conduct this imputation, one needs data from individuals that overlap the set of SNPs that one has genotyped and has additional genetic variants
 - Such datasets are common and publicly available
- The idea: in a small window of the genome compare data that needs imputation to other genomes, and if some are similar to the input genome, use that for reference
 - Then apply to windows that cover the genome

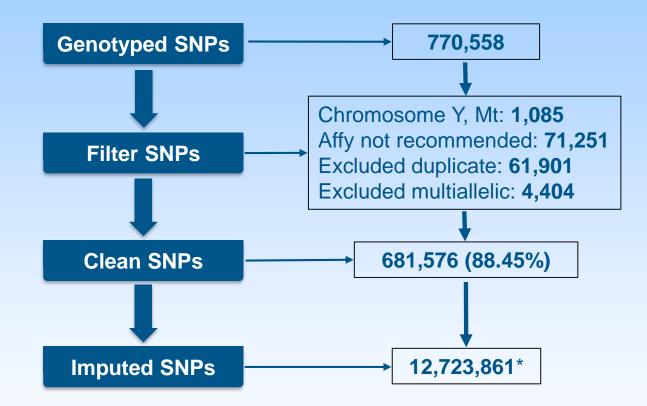
Imputation

- These techniques use hidden Markov models, which makes this fast
- Imputed data will not necessarily be an integer giving the number of minor alleles
- Rather, it will be an estimate of the number of copies of the minor allele for that sample
- Note: we could filter out a SNP for QC then impute data for that SNP

Imputation method

Note: This analysis pipeline is implemented in the genipe tool. (Lemieux Perreault et al. 2016. Bioinformatics)

SNP QC and Imputation Summary



* Following imputation, SNPs are filtered to include those with an IMPUTE2 INFO score > 0.8 (confidently imputed) and to remove duplicates.

Variant Call Format (VCF)

VCF is a text file format (most likely stored in a compressed manner). It contains meta-information lines, a header line, and then data lines each containing information about a position in the genome. The format also has the ability to contain genotype information on samples for each position.

1.1 An example

##fileformat=VCFv4.1 ##fileDate=20090805 ##source=myImputationProgramV3.1 ##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta ##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x> ##phasing=partial ##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data"> ##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth"> ##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency"> ##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele"> ##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129"> ##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership"> ##FILTER=<ID=q10,Description="Quality below 10"> ##FILTER=<ID=s50,Description="Less than 50% of samples have data"> ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype"> ##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality"> ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth"> ##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality"> #CHROM POS TD ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003 REF 14370 rs6054257 G 29 PASS GT:GQ:DP:HQ 0|0:48:1:51.51 1|0:48:8:51.51 1/1:43:5:... 20 Α NS=3;DP=14;AF=0.5;DB;H2 20 17330 . Т Α 3 a10 NS=3:DP=11:AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3 20 1110696 rs6040355 A G.T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4 20 1230237 . т 47 PASS NS=3:DP=13:AA=T GT:GQ:DP:HQ 0|0:54:7:56.60 0|0:48:4:51.51 0/0:61:2 20 1234567 microsat1 GTC G.GTCT 50 PASS NS=3:DP=9:AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

START Genotype Data Files

- All samples and controls passing sample QC. No SNP filters.
 - Binary variant call format file (bcf): START.AffyAAS.bcf
 - PLINK format files: START.AffyAAS.bed, START.AffyAAS.bim, START.AffyAAS.fam
- Control samples removed and annotations added for dbSNP RS ID ,gene symbols (+/-5kb) and SNP filters.
 - Binary variant call format file (bcf): START.ann.bcf
- Control samples removed and SNPs failing QC removed.
 - PLINK format files: START.auto.clean.bed, START.auto.clean.bim, START.auto.clean.fam
- Imputed genotype files
 - PLINK format files: START.chr#.imputed.bed, START.chr#.imputed.bim, START.chr#.imputed.fam

Mendelian randomization

- One of Mendel's laws is *independent assortment:* the alleles at distinct genomic locations are transmitted to offspring independently
 - So if I know both copies of the genome you have and I know which allele one of your sex cell's has at some position on chromosome 1, I have a 50% chance of predicting the allele you have at a position on another chromosome where you are heterozygous
 - One can exploit the independence of a genotype from other genetic factors under a number of assumptions
 - This is equivalent to using a technique called *instrumental* variables that is common in econometrics with a genetic variant playing the role of the instrument

Mendelian randomization

- A famous example: what is the role of alcohol consumption (a modifiable risk factor) in the development of cardiovascular disease (CVD)?
- There are many potential confounders: age, gender, on and on
- However there is a genotype that is known to have a large impact on alcohol consumption: the ADH1B gene.
- If this
 - Only impacts cardiovascular disease risk through alcohol consumption
 - Is unrelated to the confounders
- We can use the instrumental variable estimator to obtain a method for testing for an association between alcohol consumption and risk for CVD

Instrumental variables

- The instrumental variables estimator is given by the ratio of
 - The regression coefficient from regressing the outcome (CVD) on the instrument (ADH1B genotype)
 - The regression coefficient from regressing the explanatory variable (alcohol consumption) on the instrument (ADH1B genotype)
 - Can get a standard error via a number of methods
- The trick in applying this technique is finding the instrument!
- We need to find a gene that is only related to the outcome via its impact on the explanatory variable

Mendelian randomization, HIV and CVD

- Suppose we knew of a genotype that was associated with contracting HIV
- Suppose we were interested in determining the impact of being HIV positive on the development of CVD
- If the genotype only impacts the development of CVD through its impact on contracting HIV, then such a genotype could be used as an instrument
 - We would need data on the genotype and CVD for HIV negative subjects to compute the instrumental variable estimator
 - But we could assess the relationship between HIV and CVD without worrying about confounders

Haplotypes

- A haplotype is a set of alleles that are on the same chromosome
- Haplotypes can not be observed with data from conventional hybridization based genotyping platforms
- However they can sometimes be deduced
- If we can detect an association between a haplotype and a phenotype then we may have a more specific measure of risk than that based on a single SNP

Haplotypes: an example

- Consider 2 SNPs that each take 2 values
 - SNP 1 has the 2 alleles A and a
 - SNP 2 has the 2 alleles B and b
 - The possible haplotypes are:
 - (A, B), (A, b), (a, B) and (a, b)
 - Everyone has 2 haplotypes: 1 from one's mother and the other from one's father: for example (A, B) and (a, b)
 - This person's genotypes at these 2 markers would be (A, a) and (B, b)-this is the genotypic data one would have
 - If someone's genotypic data was (A, A) and (b, b) then we know someone has 2 copies of the haplotype (A, b)

Haplotypes: an example

- However there are pairs of SNP genotypes that don't allow unambiguous determination of haplotypes
 - For example if someone's genotypes are (A, a) and (B, b) then the possible haplotypes are (A, B) and (a, b) or (A, b) and (a, B)
- Model-based approaches to haplotype estimation have been developed-these typically assume the markers are in Hardy-Weinberg equilibrium
- There also model-based techniques for estimating the risk associated with having haplotypes when haplotypes are not known for everyone with certainty (as is usually the case)

Summary

- There are a variety of statistical tests one can use, however the regression based trend test is common in GWAS
- These regression based tests are easy to extend to accommodate confounders
 - Frequently include principle components to account for ethnicity
- Type I error is a serious problem with large numbers of tests: typically a rather drastic Bonferroni correction is used
 - FDR control can be more powerful and may be more appropriate for exploratory research

Summary

- Some investigations with INSIGHT data have been conducted
 - There is more to do and the data is available in multiple forms
- Contemporary approaches frequently use imputation to obtain data for more SNPs
 - One should probably use a stricter cut-off for statistical significance, but this is not what is commonly done
- One can do more than just test for associations between SNPs and traits
 - Using Mendelian randomization one can investigate causality in the presence of confounders
 - By testing for associations between haplotypes and traits one may be able to develop more specific genetic risk factors

Acknowledgements

- INSIGHT Patients and Site Coordinators
- University of Minnesota
 - James Neaton
 - Shweta Sharma Mistry
 - Jacqueline Nordwall
 - Deborah Wentworth
 - Greg Thompson
- Advanced BioMedical Laboratories
 - Marie Hoover
 - Norman Gerry

- CHIP, Centre of Excellence for Health, Immunity and Infections
 - Jens Lundgren
 - Man-Hung Eric Tang
 - Christina Ekenberg
- NIAID, NIH
 - Clifford Lane
 - Julia Metcalf
- Leidos Biomedical Research, Inc.
 - Michael Baseler
 - Tomozumi Imamichi
 - Xiaojun Hu

