Topics in Statistical Genetics

INSIGHT Bioinformatics Webinar 2
August 22nd 2018

Presented by
Cavan Reilly,
Ph.D. & Brad
Sherman, M.S.
Recap of webinar 1 concepts

- DNA is used to make proteins and proteins are necessary for the creation and maintenance of life.
- There is variation in DNA sequences among humans: we frequently look at a particular type of variant called a SNP.
- We can use statistical models to relate data on SNPs to traits of interest.
- It is possible to get data on up to a million SNPs for thousands of people—we now have this for some INSIGHT trial participants.
- There are standard quality control procedures used to set up analysis data sets.
Genetic Associations (codominant test)

- Frequencies of alleles at a SNP can be compared between cases and controls to determine if there is a statistically significant association between the SNP and case/control status
- Consider the following table:
 - We could conduct Pearson’s chi-square test

<table>
<thead>
<tr>
<th>Status</th>
<th>Genotype</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AA</td>
<td>Aa</td>
</tr>
<tr>
<td>Cases</td>
<td></td>
<td>553</td>
<td>376</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td>1289</td>
<td>623</td>
</tr>
</tbody>
</table>
Genetic Associations (dominant test)

- Alternatively, we could assume that the disease follows a dominant mode of transmission, so that the table becomes as follows if a is the disease allele (we can still use Pearson’s chi-square test)

<table>
<thead>
<tr>
<th>Status</th>
<th>Disease genotype</th>
<th>Healthy genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>447</td>
<td>553</td>
</tr>
<tr>
<td>Controls</td>
<td>711</td>
<td>1289</td>
</tr>
</tbody>
</table>
Genetic Associations (alleles test)

• As another alternative, we can examine the frequency of each allele among cases and controls (and again, use Pearson’s chi-square test if Hardy-Weinberg equilibrium holds)

<table>
<thead>
<tr>
<th>Status</th>
<th>Alleles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>Cases</td>
<td>518</td>
<td>1482</td>
</tr>
<tr>
<td>Controls</td>
<td>799</td>
<td>3201</td>
</tr>
</tbody>
</table>
Genetic Associations (trend test)

- As yet another alternative, we might assume an additive genetic model in which the probability that someone is a case depends linearly on the number of copies of one of the alleles
 - Which allele we select with bi-allelic variants doesn’t matter for computing a p-value: typically use the number of copies of the minor allele
 - We can use simple linear regression to conduct this test (case/control status is the outcome and the number of alleles is the predictor)
- All analyses of the INSIGHT genotypic data that have been conducted thus far have used this additive model
Genetic Associations (trend test)

- Jittered scatterplot and regression line
Comparison of tests

• The p-values one obtains from these various tests can be quite variable:

<table>
<thead>
<tr>
<th>Model</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codominant</td>
<td>1.7×10^{-6}</td>
</tr>
<tr>
<td>Dominant</td>
<td>1.5×10^{-6}</td>
</tr>
<tr>
<td>Recessive</td>
<td>2.4×10^{-3}</td>
</tr>
<tr>
<td>Alleles</td>
<td>2.1×10^{-7}</td>
</tr>
<tr>
<td>Trend</td>
<td>2.4×10^{-7}</td>
</tr>
</tbody>
</table>
Genetic Associations

• Quantitative variables (e.g. viral load) can be accommodated using the trend test with the quantitative variable as the explanatory variable
 • Quantitative trait locus (QTL)
• With either type of response variable, we can make adjustments for confounders in this regression context by including them as further explanatory variables
• However, when the outcome is dichotomous (e.g. case/control status) one would typically use logistic regression
Multiple hypothesis testing

- Some study designs in contemporary statistical genetics (e.g., GWAS) entail large numbers of hypothesis tests.
- Such approaches are subject to false positives unless action is taken to avoid this.
- The *family-wise* error rate is the probability of making one or more false positives when conducting more than 1 test.
- The Bonferroni correction is widely used despite there being uniformly more powerful approaches to the control of the family-wise error rate: Holm’s method.
Multiple hypothesis testing

• In the statistical genetics literature, the use of 5.0×10^{-8} as a cut-off for p-values to be deemed significant is taken for granted
 – If a test statistic has a p-value this extreme, we speak of *genome-wide significance*
• One can interpret this as a Bonferroni correction for a million tests using the usual cut-off for statistical significance
• The Bonferroni correction assumes that the tests are independent: if there is dependence among the tests it is too strict
Multiple hypothesis testing

• Due to linkage disequilibrium we expect tests of association between markers which are close on the genome and a phenotype to be dependent
 – It is not uncommon to find markers which are in complete linkage equilibrium, i.e. there is a perfect association between them
• Some argue that due to linkage disequilibrium there are only about 1 million independent tests possible in a genome, so the use of genome-wide significance is justifiable regardless of the number of markers
Multiple hypothesis testing: new paradigm

- The use of large-scale hypothesis testing became more common in the 1990’s-this led to new approaches to corrections for multiple hypothesis testing
- The new paradigm that emerged focused on determining the *false discovery rate* (FDR)
- FDR control is motivated as follows: I conduct tests of many null hypotheses and use some criterion to say a certain number, say X, of the nulls are rejected
 - So I have made X discoveries!
False discovery rates

- Using one of many methods I can estimate the proportion of my discoveries that are likely false (hence the name)
- By choosing a value for the FDR one can control the FDR at that value
- The seminal paper on this topic was authored by Benjamini and Hochberg, and the most commonly used technique bears their name
 - Their technique assumes that the tests are independent, however there are extensions to dependent tests
- The Benjamini Hochberg technique is conservative in that the actual FDR is typically lower than the value at which it is controlled
False discovery rates

• Controlling the FDR is not equivalent to controlling the family-wise error rate
• In fact one can mathematically demonstrate that if one controls the FDR at level α then the family-wise error rate is at least α
 – So if you control the FDR at 5% then the family-wise error rate is 5% or larger
 – So controlling the FDR is less conservative than standard statistical practice
• In practice it is common to see authors control the FDR at 10%, and there are publications in reputable journals where it is controlled at even higher levels (like 30%)
False discovery rates

• The usual justification for this is that one is conducting an exploratory analysis
 – So there is greater concern for type II errors than type I errors
• As such analyses are exploratory one typically follows up with other analyses to investigate the set of SNPs that have been detected to be associated with the outcome
Genetic Associations: INSIGHT

• We have looked at several quantitative traits using a GWAS in this manner thus far
 1. Viral load
 2. D-dimer
 3. hsCRP
 4. IL-6
• These analyses included principle components, gender and sometimes age as additional covariates
• These analyses were also pursued at the individual study level and by combining data across studies
A Manhattan plot is commonly used to illustrate the results of a GWAS. Each autosomal chromosome is depicted in order from 1-22 with different colors. Each dot represents the $-\log_{10}(p\text{-value})$ resulting from the association test at each marker. Multiple testing: Given 1M association tests, at a significance level of 0.05, we can expect 50K false positives (Type I error) by random chance!

GWAS Significance Threshold < 5e-08

*GWAS results using START data
Imputation

• A common approach to the analysis of GWAS data is to impute data for SNPs not originally genotyped
• To conduct this imputation, one needs data from individuals that overlap the set of SNPs that one has genotyped and has additional genetic variants
 – Such datasets are common and publicly available
• The idea: in a small window of the genome compare data that needs imputation to other genomes, and if some are similar to the input genome, use that for reference
 – Then apply to windows that cover the genome
Imputation

- These techniques use hidden Markov models, which makes this fast.
- Imputed data will not necessarily be an integer giving the number of minor alleles.
- Rather, it will be an estimate of the number of copies of the minor allele for that sample.
- Note: we could filter out a SNP for QC then impute data for that SNP.
Imputation method

Strand checking and flipping with PLINK

Phasing with SHAPEIT2

Imputation using IMPUTE2 with 1000Genome phase3 as reference

Note: This analysis pipeline is implemented in the genipe tool. (Lemieux Perreault et al. 2016. Bioinformatics)
SNP QC and Imputation Summary

Genotyped SNPs → 770,558

Filter SNPs

Chromosome Y, Mt: 1,085
Affy not recommended: 71,251
Excluded duplicate: 61,901
Excluded multiallelic: 4,404

Clean SNPs → 681,576 (88.45%)

Imputed SNPs → 12,723,861*

* Following imputation, SNPs are filtered to include those with an IMPUTE2 INFO score > 0.8 (confidently imputed) and to remove duplicates.
VCF is a text file format (most likely stored in a compressed manner). It contains meta-information lines, a header line, and then data lines each containing information about a position in the genome. The format also has the ability to contain genotype information on samples for each position.

1.1 An example

```plaintext
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 C A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 01:48:1:51,51 110:48:8:51,51 1/1:43:5;...
20 17330 . T A 3 q10 PASS NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 01:48:3:58,50 01:3:5:65,3 0/0:41:3
20 1110696 rs6040385 A GT 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=GT;DB GT:GQ:DP:HQ 112:21:6:23,27 211:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 01:54:7:56,60 01:2:8:61,51 0/0:61:2
20 1234567 microsat1 GTC G,GCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
```
START Genotype Data Files

- All samples and controls passing sample QC. No SNP filters.
 - Binary variant call format file (bcf): START.AffyAAS.bcf
 - PLINK format files: START.AffyAAS.bed, START.AffyAAS.bim, START.AffyAAS.fam

- Control samples removed and annotations added for dbSNP RS ID, gene symbols (+/-5kb) and SNP filters.
 - Binary variant call format file (bcf): START.ann.bcf

- Control samples removed and SNPs failing QC removed.
 - PLINK format files: START.auto.clean.bed, START.auto.clean.bim, START.auto.clean.fam

- Imputed genotype files
 - PLINK format files: START.chr#.imputed.bed, START.chr#.imputed.bim, START.chr#.imputed.fam
Mendelian randomization

- One of Mendel’s laws is *independent assortment*: the alleles at distinct genomic locations are transmitted to offspring independently
 - So if I know both copies of the genome you have and I know which allele one of your sex cell’s has at some position on chromosome 1, I have a 50% chance of predicting the allele you have at a position on another chromosome where you are heterozygous
 - One can exploit the independence of a genotype from other genetic factors under a number of assumptions
 - This is equivalent to using a technique called *instrumental variables* that is common in econometrics with a genetic variant playing the role of the instrument
Mendelian randomization

- A famous example: what is the role of alcohol consumption (a modifiable risk factor) in the development of cardiovascular disease (CVD)?
- There are many potential confounders: age, gender, on and on
- However there is a genotype that is known to have a large impact on alcohol consumption: the ADH1B gene.
- If this
 - Only impacts cardiovascular disease risk through alcohol consumption
 - Is unrelated to the confounders
- We can use the instrumental variable estimator to obtain a method for testing for an association between alcohol consumption and risk for CVD
Instrumental variables

- The instrumental variables estimator is given by the ratio of
 - The regression coefficient from regressing the outcome (CVD) on the instrument (ADH1B genotype)
 - The regression coefficient from regressing the explanatory variable (alcohol consumption) on the instrument (ADH1B genotype)
 - Can get a standard error via a number of methods
- The trick in applying this technique is finding the instrument!
- We need to find a gene that is only related to the outcome via its impact on the explanatory variable
Mendelian randomization, HIV and CVD

• Suppose we knew of a genotype that was associated with contracting HIV
• Suppose we were interested in determining the impact of being HIV positive on the development of CVD
• If the genotype only impacts the development of CVD through its impact on contracting HIV, then such a genotype could be used as an instrument
 – We would need data on the genotype and CVD for HIV negative subjects to compute the instrumental variable estimator
 – But we could assess the relationship between HIV and CVD without worrying about confounders
Haplotypes

- A haplotype is a set of alleles that are on the same chromosome.
- Haplotypes can not be observed with data from conventional hybridization based genotyping platforms.
- However they can sometimes be deduced.
- If we can detect an association between a haplotype and a phenotype then we may have a more specific measure of risk than that based on a single SNP.
Haplotypes: an example

- Consider 2 SNPs that each take 2 values
 - SNP 1 has the 2 alleles A and a
 - SNP 2 has the 2 alleles B and b
 - The possible haplotypes are:
 - (A, B), (A, b), (a, B) and (a, b)
 - Everyone has 2 haplotypes: 1 from one’s mother and the other from one’s father: for example (A, B) and (a, b)
 - This person’s genotypes at these 2 markers would be (A, a) and (B, b) - this is the genotypic data one would have
 - If someone’s genotypic data was (A, A) and (b, b) then we know someone has 2 copies of the haplotype (A, b)
Haplotypes: an example

- However there are pairs of SNP genotypes that don’t allow unambiguous determination of haplotypes
 - For example if someone’s genotypes are (A, a) and (B, b) then the possible haplotypes are (A, B) and (a, b) or (A, b) and (a, B)
- Model-based approaches to haplotype estimation have been developed-these typically assume the markers are in Hardy-Weinberg equilibrium
- There also model-based techniques for estimating the risk associated with having haplotypes when haplotypes are not known for everyone with certainty (as is usually the case)
Summary

• There are a variety of statistical tests one can use, however the regression based trend test is common in GWAS

• These regression based tests are easy to extend to accommodate confounders
 – Frequently include principle components to account for ethnicity

• Type I error is a serious problem with large numbers of tests: typically a rather drastic Bonferroni correction is used
 – FDR control can be more powerful and may be more appropriate for exploratory research
Summary

- Some investigations with INSIGHT data have been conducted
 - There is more to do and the data is available in multiple forms
- Contemporary approaches frequently use imputation to obtain data for more SNPs
 - One should probably use a stricter cut-off for statistical significance, but this is not what is commonly done
- One can do more than just test for associations between SNPs and traits
 - Using Mendelian randomization one can investigate causality in the presence of confounders
 - By testing for associations between haplotypes and traits one may be able to develop more specific genetic risk factors
Acknowledgements

- INSIGHT Patients and Site Coordinators

- University of Minnesota
 - James Neaton
 - Shweta Sharma Mistry
 - Jacqueline Nordwall
 - Deborah Wentworth
 - Greg Thompson

- Advanced BioMedical Laboratories
 - Marie Hoover
 - Norman Gerry

- CHIP, Centre of Excellence for Health, Immunity and Infections
 - Jens Lundgren
 - Man-Hung Eric Tang
 - Christina Ekenberg

- NIAID, NIH
 - Clifford Lane
 - Julia Metcalf

- Leidos Biomedical Research, Inc.
 - Michael Baseler
 - Tomozumi Imamichi
 - Xiaojun Hu