
A brief introduction to R

Cavan Reilly

September 4, 2019

Table of contents

Background

R objects
Operations on objects
Factors

Input and Output

Figures

Missing Data

Random Numbers

Control structures

Background

Most biostatisticians are trained in the use of R and SAS.

Academic statisticians increasing rely on R rather than SAS.

However SAS is still very widely used, especially in industry.

R is open source and there are no guarantees associated with its
use.

R is a programming language

R is based on a piece of commercial software called S.

S was developed by Bell labs and saw widespread usage in the
1990s.

There are many add on packages that increase the functionality of
“base R”.

Using R

There are a variety of ways to use R:

I create text files with R commands: can run at a linux
command prompt or run in an R window using source

I open an interactive R session (details of that are OS specific)

I use any of a number of graphical user interfaces designed for
using R (e.g. R Studio)

We will use method 2 for this tutorial, I use method 1 for serious
consulting work (most reproducible method).

R Objects

After installing, click on a program icon (or type R at linux
command prompt).

R holds a variety of objects in active memory during an R session:
use ls() to see.

While you can create your own types of objects, for typical
statistical applications the following are the most common

1. integers and floats (i.e. numbers)

2. vectors

3. matrices

4. character strings

5. factors

6. lists

Operations on objects

You can do different operations on different types of objects: you
can add numbers, vectors and matrices.

You can also create variables that hold these objects-here we use
the assignment operator and the c function to create a vector.

> 3+4
[1] 7
> a=3+4
> a
[1] 7
> b=c(4,7,3)
> b
[1] 4 7 3

Operations on objects

You can get information about and modify charater strings in a
variety of ways. Here is a vector that holds character strings: note
that we can use subscripts to access elements of the vector.

There are some functions that are useful for working with character
strings: here nchar gets the number of characters.

a=c("string 1","string 2")
> a[1]
[1] "string 1"
> a[2]
[1] "string 2"
> nchar(a[1])
[1] 8

Factors
A factor is a commonly used data type that is used to encode a
categorical variable.

We can create factors from character strings.

> gender <- c("Male","Male","Female","Female","Female")
> gender
[1] "Male" "Male" "Female" "Female" "Female"
> gender <- factor(gender)
> gender
[1] Male Male Female Female Female
Levels: Female Male

There are also functions that are specific to factors, for example
here is how to determine the number of levels of a factor.

> nlevels(gender)
[1] 2

Reading data into R

There are a variety of functions that can read data from an
external file.

R will attempt to read data in from its current working directory:
to find out what that is you can type

> getwd()
[1] "/home/merganser/faculty/cavanr/SIBS/SIBS2016"

You can also see what files are there by typing

> list.files()
[1] "2016-SIBS-Application.docx"
[2] "2016-SIBS-Application-File-Template.docx"

Reading data into R

If you have an excel file, first save it as a csv file in excel then read
into R using the read.csv function.

Other programs will allow you to save data as tab delimited data:
then use the read.delim function (there is also read.table).

Files with irregular formating can be difficult to read in: useful
functions in these cases are readLines and scan.

If you type

> ?readLines

you can read the help page for that function.

Dataframes

R uses dataframes to store datasets-the previous commands for
reading in data create a dataframe.

R will try to convert data from the file to the appropriate format:
there will frequently be conversions to factors and this can be
confusing

> as.numeric(factor(c("2","2","1","2","1")))
[1] 2 2 1 2 1
> as.numeric(factor(c("3","3","1","3","1")))
[1] 2 2 1 2 1

Writing results to file

You can write results to an external file using write, or the more
user friendly write.table:

> mat1=matrix(c(3,2,6,5,7,3),ncol=2)
> write.table(mat1,"temp-file.txt",row.names=F,
+ col.names=F,quote=F)

There is also a very useful package called xtable that allows
generation of nice tables using the text editor latex.

Generating figures

While using the interactive version of R from a window, one can
create plots directly.

> x1=c(4,7,2,5,4)
> x2=c(6,3,7,5,9)
> plot(x1,x2)

There are many types of figures (histograms, boxplots and
scatterplots) and even more ways to customize these figures.

Generating figures

I generally want to create a file that has a figure-this then gets
incorporated into another document.

To do this you first issue a command to start up a graphics device:
for example to create a pdf file with our previous file you type pdf
the use dev.off to generate the file.

> pdf("figure1.pdf")
> plot(x1,x2)
> dev.off()

Issuing these commands will create a pdf file called figure1.pdf in
your current working directory.

There are also similar commands for generating jpeg, tiff, bmp and
png files.

Missing data
In real life, data sets have missing values: in R this is represented
with the symbol NA.

This symbol is a special character that is not a character string:

> NA
[1] NA
> MA
Error: object ’MA’ not found

There is also the special character Inf:

> 1/0
[1] Inf
> Inf+Inf
[1] Inf
> Inf-Inf
[1] NaN

Random numbers

One can also create random numbers-this is useful for
randomization but also for scientific computing.

To simulate draws from a normal distribution you use rnorm, for
the t-distribution you use rt and for the binomial you use rbinom.

> mean(rnorm(10))
[1] -0.2722795
> mean(rnorm(100))
[1] -0.03682329
> mean(rnorm(1000))
[1] -0.03143072
> mean(rnorm(10000))
[1] -0.01100216
> mean(rnorm(100000))
[1] 0.003214296

Control structures

When you analyze data there are often a sequence of steps that
one follows to complete the process-these sorts of recipes are called
algorithms.

Control structures determine how an algorithm works.

For example: determining which subjects are eligible in PREVAIL
IV.

For eligibility, need at least 1 positive sample in last 42 days...

Control structures

1. Start with a list of participant IDs.

2. Get all visit dates for each participant.

3. Compute number of days from visit to date of randomization.

4. If this is less than or equal to 42 then the visit “counts”.

5. If a participant has 2 visits that count and at least 1 positive
sample, then add that participant’s ID to the list of eligible
participants.

Control structures

We can use a for loop to go through the list of PIDs.

We can use if statements to see if something is true.

evd_pcr=read.delim("http://www.biostat.umn.edu/~cavanr/

+ evd_pcr052016.txt")

tdy=as.numeric(as.Date("5/20/16",origin="01/01/70",format="%m/%d/%y"))

cnt=0

for(i in 1:length(unique(evd_pcr$PID))){

id=which(evd_pcr$PID==unique(evd_pcr$PID)[i])

dts=evd_pcr$SPECDT[id]

dts=as.numeric(as.Date(dts,origin="01/01/70",format="%m/%d/%y"))

tmsd=tdy-dts

if(length(tmsd)>1 & sort(tmsd)[1]<42 & sort(tmsd)[2]<42) cnt=cnt+1

}

> cnt

[1] 20

	Background
	R objects
	Operations on objects
	Factors

	Input and Output
	Figures
	Missing Data
	Random Numbers
	Control structures

