
An introduction to Genomic Data Structures

Cavan Reilly

October 23, 2019

Table of contents

Object Oriented Programming

The ALL data set

ExpressionSet Objects

Environments

More on ExpressionSet Objects
Annotated Data Frames
MIAME Objects

Object Oriented Programming

There has been extensive development of R based tools for
managing and storing microarray data.

These approaches have relied heavily on object oriented approaches
to computing.

As the name implies object oriented approaches are centered on
various objects, and these objects have well described features and
collections of functions for manipulation and information
extraction.

Object Oriented Programming

There are also general high level functions that act in different
ways for different types of objects: e.g. summary.

There will frequently be operators that have different functionality
depending on the object(s) in question: overloaded operators, e.g.
+ adds numbers and matrices.

The ALL data set

Acute lymphoblastic leukemia (ALL) is a type of cancer.

There are 2 subtypes that we distinguish: a B cell type and a T
cell type.

There are multiple types of these too: among the B cell type there
are some that have the Philadelphia chromosome also called the
BCR/ABL mutation.

The Philadelphia chromosome is a genetic abnormality in which a
part of chromosome 22 gets switched with part of chromosome 9:
this creates a protein that promotes uncontrolled cell division.

There are other known mutations at work in this cancer and some
cancers don’t have any observed cytogenic abnormality.

The ALL dataset

First we read in some libraries and set up commands to extract
those samples that either have the Philadelphia chromosome or no
observed cytogenic abnormality.

> library(Biobase)
> library(ALL)
> library(genefilter)
> data(ALL)

> bcell=grep("^B",as.character("ALL$BT"))
> types=c("NEG", "BCR/AB")
> moltyp=which(as.character(ALL$mol.biol) %in% types)
> ALL_bcrneg=ALL[,intersect(bcell,moltyp)]

The ALL dataset

Then we tidy things up by getting rid of levels that aren’t used in
our subset of data.

> ALL_bcrneg$mol.biol=factor(ALL_bcrneg$mol.biol)
> ALL_bcrneg$BT=factor(ALL_bcrneg$BT)

ExpressionSet Objects
If we type the name of the dataset we see that it is a special kind
of object.

> ALL_bcrneg
ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 42 samples
element names: exprs

protocolData: none
phenoData
sampleNames: 01010 04007 ... 68001 (42 total)
varLabels: cod diagnosis ... date last seen (21 total)
varMetadata: labelDescription

featureData: none
experimentData: use ’experimentData(object)’
pubMedIds: 14684422 16243790

Annotation: hgu95av2

Non-specific filtering

Not all genes are expressed in every cell type.

Some genes display so little variation that there is little hope of
finding that such genes differ across groups.

For these reasons, genes are frequently dropped from further
consideration during the analysis of microarray data.

There is really no rigorous way to do this, so fix these criteria prior
to seeing the data.

If we don’t then it will be tempting to try lots of different criteria
and then there is concern for type I errors.

Non-specific filtering

Here is an example where we filter out genes based on the
interquartile range.

> filt_bcrneg=varFilter(ALL_bcrneg, var.func=IQR,
+ var.cutoff=0.5, filterByQuantile=TRUE)

> dim(filt_bcrneg)
Features Samples

6312 79
> dim(ALL_bcrneg)
Features Samples

12625 79

Environments

We often access information in Bioconductor using environments.

An environment is like a list but the entries aren’t numbered, there
are simply key value pairs.

Here we use an environment that maps Affymetrix probe set
identifiers to chromosomal locations.

> BiocManager::install("hgu95av2.db")
> library("hgu95av2.db")
> hgu95av2MAP$"1001_at"
[1] "1p34-p33"

Environments

We can use the eapply function like the other apply functions to
apply an operation to an environment.

For example, suppose we wanted to find all probes that map to the
p arm of chromosome 17.

> myPos=eapply(hgu95av2MAP, function(x)
+ grep("^17p",x,value=T))
> myPos=unlist(myPos)
> length(myPos)

Environments

One can create one’s own environment with the command
new.env.

Here we create a hash table, which is a common data structure
that associates keys with values.

> e1=new.env(hash=T)
> e1$a=1:10
> e1$b=2:20
> e1$a

ExpressionSet Objects

Bioconductor has taken the approach that microarray experiments
need a particular data structure to hold all of the relevant
information.

This is unusual insofar as no other features of R are prescriptive
about the manner in which you manage and store your data.

While unusual this helps to ensure that data is collected and stored
in a format that is compliant with data reporting standards in the
microarray analysis literature.

This required format is called MIAME for minimal information
about a microarray experiment.

ExpressionSet Objects

We saw an ExpressionSet object above, and there we saw that
these objects hold information about

1. assayData: this is the expression data

2. metadata: this is data about the biological source of the data
and the microarray

3. experimentData: this is data about the experiment

To take advantage of the features that Bioconductor makes
available for microarray analysis, the first task is to manipulate
your data into an ExpressionSet object.

You will need the Biobase package to have access to these sorts
of objects.

ExpressionSet Objects

If you’ve read your data into R and gotten it into a dataframe
called object, sometimes you can convert to an ExpressionSet
object via the following:

> library(convert)
> as(object, "ExpressionSet")

If this fails then you need to extract and assign the relevant
information from object to the appropriate elements of an
ExpressionSet object.

ExpressionSet Objects

Frequently microarray data resides in a tab delimited file where
each row corresponds to a “gene” (or a feature in more general
terms) and each column corresponds to a sample.

This is the transpose of a data matrix.

As we’ve seen, such data sets can be read into R using
read.delim or read.table.

For example, here we read in some expression data as a matrix.

> dataDirectory=system.file("extdata",package="Biobase")
> exprsFile=file.path(dataDirectory, "exprsData.txt")
> exprs=as.matrix(read.table(exprsFile, header=T,
+ sep="\t",row.names=1, as.is=T))

ExpressionSet Objects

Covariate data is essential for analysis of microarray data so
ExpressionSet objects collect this information too.

Here we read this data in as a dataframe and check that the row
names match the column names of the expression data.

> pDataFile=file.path(dataDirectory, "pData.txt")
> pData=read.table(pDataFile, row.names=1, header=T,
+ sep="\t")
> rownames(pData)==colnames(exprs)

ExpressionSet Objects

An important component of good data management strategies is
to create a data dictionary that provides details about the variables
in one’s data set.

ExpressionSet objects have slots to hold such information: here we
will create a dataframe with this information for our example.

> metadata=data.frame(labelDescription=c("Patient gender",
"Case/control status", "Tumor progression on XYZ scale"),
row.names=c("gender", "type", "score"))

Annotated Data Frames

An annotated dataframe is a data structure that allows for easy
manipulation of tabular data.

One can be created, and information can be extracted, as follows

> adf=new("AnnotatedDataFrame", data=pData,
+ varMetadata=metadata)

> pData(adf)

gender type score
A Female Control 0.75
B Male Case 0.40
C Male Control 0.73
D Male Case 0.42
...

MIAME Objects

One can also directly construct objects to record information for
proper annotation of microarray experiments and extract
information as follows:

> expData=new("MIAME", name="Pierre Fermat", lab="G Lab",
+ contact="pfermat@lab.not.exist", title="Cancer Test",
+ abstract="An example MIAME object",
+ url="www.lab.not.exist",
+ other=list(notes="Created from text files"))
> abstract(expData)
[1] "An example MIAME object"

ExpressionSet Objects

We can use a similar approach to create our own ExpressionSet
objects:

If we are using a standard microarray we can supply the name of
the type of array when we create the ExpressionSet object.

This will allow easy access to information about the probes on the
array.

> egSet=new("ExpressionSet", exprs=exprs, phenoData=adf,
+ experimentData=expData,
+ annotation="hgu95av2")

Note: this will return an error if the components are inadequate,
e.g. your experiment data is not a MIAME object.

ExpressionSet Objects

Sometimes one just wants access to some of the functionality of
Bioconductor packages without detailed data management-one can
create ExpressionSet objects with empty slots.

> minSet=new("ExpressionSet", exprs=exprs)

ExpressionSet Objects

There are a number of functions that allow one to extract
information from ExpressionSet objects:

1. featureNames

2. sampleNames

3. varLabels

4. exprs-extracts the matrix of expression vales

5. phenoData-extracts the phenotypic data

ExpressionSet Objects

A useful feature of these objects is that one can subset them and
the result automatically inherits its class.

> males=egSet[,egSet$gender=="Male"]

> males

	Object Oriented Programming
	The ALL data set
	ExpressionSet Objects
	Environments
	More on ExpressionSet Objects
	Annotated Data Frames
	MIAME Objects

