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Data Analysis

One should start by examining what sorts of variables one has.

We distinguish between categorical and continuous variables: only
a few possible values for the first, and in principle, an infinite
number of possible values for the second.

Univariate summaries: simple summaries of each variable.

Example: tables, median and quantiles.



Data Analysis

Let’s read in some data from a genetic association study:

fms <- read.delim("http://www.biostat.umn.edu/~cavanr/FMS_data.txt")

> ls()

[1] "fms"

> dim(fms)

[1] 1397 347

Let’s take a look at the variable called Race

> table(fms$Race)

African Am Am Indian Asian Caucasian Hispanic Other

44 1 97 791 52 49



Data Analysis

but we don’t have this for all subjects

> table(is.na(fms$Race))

FALSE TRUE

1034 363

We also can see how 2 variables look together

> table(fms$apoe_c472t,fms$Race)

African Am Am Indian Asian Caucasian Hispanic Other
CC 6 0 9 101 3 6
CT 1 0 3 26 0 0



Uncertainty

If I collected a different data set I would produce different
summaries.

To provide a way to think about this, we think of the data we see
as a realization of a random process: the data set we have is only 1
of many we could have observed.

We model our observed data as values taken on by a random
variable.



Probability

Probability is a mathematical framework that allows one to make
statements about phenomena with uncertain outcomes.

For some experiment with an uncertain outcome (e.g. flipping a
coin) the sample space is the collection of all possible outcomes
(e.g. heads or tails).

The possible outcomes are called events and probability is a map
from the collection of events to a number in the interval [0, 1] in a
way that larger values indicate the event is more likely.



Probability

We use notation like A is an event and P(A) is the probability of
that event.

There are just a few rules that probabilities must satisfy

1. for all events, Ai , 0 ≤ P(Ai ) ≤ 1.

2. if S is the collection of all possible events, P(S) = 1.

3. if A1 and A2 are mutually exclusive (i.e. they can’t both occur
in one trial of the experiment) then
P(A1 or A2) = P(A1) + P(A2).



Probability

So, for example, if an experiment only has 2 possible outcomes and
they are equally likely then the probability of each is one half.

The odds on an event is the number of times you expect to see the
event happen for every time it doesn’t happen.

So if the probability of an event is k
N the odds on that event are k

to the N − k .

> table(fms$apoe_c472t)

CC CT
128 30

So the observed odds on CC is 128 to 30 and the observed
probability of seeing CC is 128/(128 + 30).



Conditional probability

Two events, A1 and A2 are independent if
P(A1 and A2) = P(A1)P(A2).

The conditional probability of event A1 given that event A2 has
occurred is given by P(A1 and A2)/P(A2) and is denoted
P(A1|A2).

So what is P(A1|A2) in terms of P(A2|A1)?

If 2 events are independent then P(A1|A2) = P(A1): this is the
intuitive basis for understanding what independence means.



Random variables

A random variable is a quantity that takes on certain values with
certain probabilities.

For example, if I toss a coin and assign X the value of 0 if there is
a head and 1 if there is a tail, then X is a random variable.

The distribution of a random variable is the values that the random
variable takes and the probability that it takes those values.

We model the data we observe as the result of a randomized
experiment and consequently as random variables.



Simulating random variables

We can simulate random variables in R.

Simulating 100 fair coins in R

> set.seed(234)

> rbinom(100,size=1,p=.5)

[1] 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1

[38] 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 1 0

[75] 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1

and 100 unfair coins,

> set.seed(234)

> rbinom(100,size=1,p=.05)

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0



Properties of random variables

The expectation of a random variable depends on its distribution
and can be calculated as follows:

if X is the random variable then its expectation is given by
EX =

∑
k kP(X = k).

while the variance of a random variable is given by
VarX =

∑
k(k − EX )2P(X = k).

So if X is 1 with probability p and is otherwise 0 what is its
expected value? Its variance?

There are a number of commonly used probability models that are
encountered, both discrete and continuous.



Discrete random variables

The Bernoulli distribution: a single success or failure random
variable. Distribution only depends on the probability of a success.

The binomial distribution: the number of successes in n
independent trials where each trial is a success or failure (and all
trials have the same success probability). Distribution depends on
the success probability and the total number of trials.

The multinomial distribution is a generalization of the Binomial
distribution to the case where each trial can have more than 2
outcomes. Distribution depends on success probabilities and
number of trials.

The multinomial distribution is a natural model for nucleic acid
sequences (since each position is one of 4 possible nucleotides).



The law of large numbers

Many possible models, none of which are particularly natural
except perhaps the normal distribution (also called the Gaussian
distribution).

Origin of the normal distribution: there are 2 critical results in
probability theory.

The law of large numbers: if I have an infinitely long sequence of
independent realizations of a random variable, then the sample
mean will converge to the expectation of the random variable.

Hence if I compute the difference between the expectation and the
sample mean it will go to zero.

> mean(rbinom(10,size=1,p=.6))
[1] 0.7



The central limit theorem

But, if I multiply this difference by the square root of the number of
samples, the resulting product will behave like a random variable.

In fact one can determine the distribution of this random variable:
this distribution is the normal distribution.

We often describe this in terms of the probability distribution of
the sample mean, which is called its sampling distribution:
x ∼ N(µ, σ2/n).

Here µ is the expectation of the individual observations, σ2 is their
variance and n is the number of independent observations.

Can you use the expression for the approximate sampling
distribution to verify the first claim on this slide?



Continuous random variables

For this reason, some argue, traits which are the outcome of many
different factors, each with a small impact, are well modeled as
normal random variables.

It frequently transpires that if the data are modeled as normally
distributed, calculations that are otherwise impossible become
“easy”.

Quantiles are typically used to summarize continuous variables.

> summary(fms$pre.BMI)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
15.50 21.26 23.35 24.36 26.45 48.82 365



Associations between variables

When you have 2 categorical variables, tables provide the most
convenient way to summarize the association.

> table(fms$resistin_c30t,fms$resistin_g540a)

AA GA GG
CC 75 281 356
CT 0 11 10

When should one use row or column percents? Does it matter
here?



Associations between variables

We frequently are interested in variables with 2 categories where
one category indicates health status (e.g. have cancer).

Often we would like to know if some other dichotomous variable
increases the likelihood that one has this health outcome (e.g.
smoking).

The risk is the probability that one has a particular health outcome.

If this risk is modified by another dichotomous variable, then we
are often interested in how the risk varies with this other variable.



Relative risk

One can look at the difference in risk,
P(cancer|smoke)− P(cancer|don’t smoke), but for rare health
outcomes this will always be a small number.

More commonly we look at the ratio rather than the difference-this
is called the relative risk.

To directly estimate P(cancer|smoke) we would need to set up a
study where we enrolled many smokers and follow them in a
prospective study.

This is expensive and time consuming, it is much easier to recruit
subjects with cancer and ascertain if they smoke: a retrospective
study.



Odds ratio

Much like the relative risk is a ratio of probabilities, the odds ratio
is a ratio of odds.

The big difference is that one can estimate the odds ratio using
data from a retrospective study.

Moreover the odds ratio and relative risk are approximately equal
when the event is rare.



Associations between variables

Let’s create a dichotomous variable that indicates if someone has a
BMI greater than 30 and see if this is related to having metabolic
syndrome.

> table(fms$Met_syn,fms$pre.BMI>30)

FALSE TRUE
0 688 53
1 37 39

How would you summarize this table?

Does a simple formula for the odds ratio exist?



Statistical inference

If I collected another data set in the same fashion as this one, do
you think we would find a positive association?

To address this question, we frequently pose the question as
follows: what is the probability that I would observe as big a
difference as I have observed if there was not an association
between these 2 variables?



Statistical inference

About 9% of the subjects have metabolic syndrome and about
10% of subjects have a BMI greater than 30, so if these 2 variables
are independent then the probability of both of these properties
being true is about 1%.

However we have observed about 5% of our subjects having a BMI
over 30 and having metabolic syndrome: is this simply too large to
call chance variation?



Statistical inference

Imagine simulating this table under the assumption of no
association.

To do so we will assume that the margins of the table are just as
we have observed them.

92 subjects have BMI greater than 30 and if there is no association
between the 2 variables about 9% of these subjects will have
metabolic syndrome, so conduct a few simulations

> rbinom(1,92,p=.09)
[1] 10
> rbinom(1,92,p=.09)
[1] 6
> rbinom(1,92,p=.09)
[1] 8



Statistical inference

These values are much smaller than our observed value of 39, in
fact looking at a million of these variables we are never even close
to the observed value of 39

> summary(rbinom(1000000,92,p=.09))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 6.000 8.000 8.278 10.000 24.000

So what we are seeing doesn’t even occur 1 in a million times if
these 2 variables are independent.



Statistical inference

The process of using observed data to make statements about
unobserved data (e.g. data we will observe in the future) is called
statistical inference.

Frequently hypothesis tests are used to produce estimates of the
probability of observing something more extreme than what we
have observed.

Such probabilities are called p-values and when a p-value is less
than 0.05 we say that there is a statistically significant association.

To test for an association between 2 dichotomous variables one
uses a test procedure called Pearson’s χ2 test.



Pearson’s Chi-squared test

In R this is accomplished with the following code

> chisq.test(table(fms$Met_syn,fms$pre.BMI>30))

Pearson’s Chi-squared test with Yates’ continuity correction

data: table(fms$Met_syn, fms$pre.BMI > 30)

X-squared = 130.16, df = 1, p-value < 2.2e-16

Here the p-value is so small the software just reports that it is less
than a very small number.



Pearson’s Chi-squared test

If there were fewer observations it would be more difficult to assess
if there was an association:

> table(fms$Met_syn[1:40],fms$pre.BMI[1:40]>30)

FALSE TRUE
0 26 3
1 1 0

and if we conduct Pearson’s test we get a warning



Pearson’s Chi-squared test

> chisq.test(table(fms$Met_syn[1:40],fms$pre.BMI[1:40]>30))

Pearson’s Chi-squared test with Yates’ continuity correction

data: table(fms$Met_syn[1:40], fms$pre.BMI[1:40] > 30)

X-squared = 9.1766e-32, df = 1, p-value = 1

Warning message:

In chisq.test(table(fms$Met_syn[1:40], fms$pre.BMI[1:40] > 30)) :

Chi-squared approximation may be incorrect



Fisher’s exact test

Pearson’s χ2 test, like many techniques in statistics, ultimately
relies on the central limit theorem and so is only an approximation
that is appropriate when the sample size is large.

Often times there are other techniques which are more appropriate
when the sample size is small: here we can use a test called
Fisher’s exact test.



Fisher’s exact test

That is also simple to implement in R

> fisher.test(table(fms$Met_syn[1:40],fms$pre.BMI[1:40]>30))

Fisher’s Exact Test for Count Data

data: table(fms$Met_syn[1:40], fms$pre.BMI[1:40] > 30)

p-value = 1

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.0000 349.0909

sample estimates:

odds ratio

0

Why not just always use this test?



Associations between variables: one continuous variable

While we can always dichotomize a continuous variable and
conduct analyses as we have above, this is suboptimal as it
disposes of information.

Boxplots are convenient visualization tools for comparing 2 or more
continuous distributions.

pdf("bxplt-BMI.pdf")
boxplot(fms$pre.BMI~fms$Met_syn)
dev.off()

Causation: look at the distribution of the response variable as it
depends on the explanatory variable (this plot has this backwards).



Associations between variables: one continuous variable

We could test for a difference in the means across metabolic
syndrome status

> mean(fms$pre.BMI[fms$Met_syn==0 & !is.na(fms$Met_syn)],na.rm=T)

[1] 23.67998

> mean(fms$pre.BMI[fms$Met_syn==1 & !is.na(fms$Met_syn)],na.rm=T)

[1] 31.56039

A 2 sample t-test is an inferential procedure that tests for a
difference in the means of 2 sets of measurements.



Associations between variables: one continuous variable

Here is the syntax for a 2 sample t-test.

> t.test(fms$pre.BMI[fms$Met_syn==0 & !is.na(fms$Met_syn)],

+ fms$pre.BMI[fms$Met_syn==1 & !is.na(fms$Met_syn)])

Welch Two Sample t-test

data: fms$pre.BMI[fms$Met_syn == 0 & !is.na(fms$Met_syn)] and

fms$pre.BMI[fms$Met_syn == 1 & !is.na(fms$Met_syn)]

t = -13.631, df = 85.794, p-value < 2.2e-16



Associations between variables: one continuous variable

When the categorical variable has multiple levels and we are
interested in the hypothesis of no difference among the groups we
can use a technique called analysis of variance (ANOVA).

> a1=aov(fms$pre.BMI~fms$Race)
> summary(a1)

Df Sum Sq Mean Sq F value Pr(>F)
fms$Race 5 142 28.45 1.364 0.236
Residuals 1025 21388 20.87

The basic idea is to compare how much variability there is among
the means across the levels of the categorical variable to how much
variability one sees within the levels of the categorical variable.
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