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Statistical models

Statistical models can be powerful tools for understanding complex
relationships among variables.

We will first suppose that we observe 2 continuous variables.

Typically we would start out by looking at a scatterplot: so let’s
look at an example.

Let’s read in some data from the genetic association study we
looked at in the previous lecture:

fms=read.delim("http://www.biostat.umn.edu/~cavanr/FMS_data.txt")



Statistical models

Then we can just use the plot command as follows.

> pdf("wght-hght.pdf")

> plot(fms$Pre.height,fms$Pre.weight,xlab="Height",ylab="Weight")

> dev.off()

It looks like the 2 variables increase together, but we clearly don’t
have an equation like:

Weight = β0 + β1Height,

for 2 constants β0 and β1.

Note: we look at the distribution of the response variable
conditional on the explanatory variable.



Correlation

A commonly used measure of the extent to which 2 continuous
variables have a linear association is the correlation coefficient.

The cor function in R allows one to compute this summary.

If it is positive then large values of one variable are generally
associated with large values of the other.

If it is negative then large values of one variables are associated
with small values of the other.

If the absolute value of the correlation coefficient exceeds 0.7 then
there is a strong association, if less than 0.3 then weak, otherwise
moderate.



Statistical models

A statistical model adds a random variable to this equation so that
it can be a true equality

Weight = β0 + β1Height + Error.

To make this more precise, let yi represent the weight of subject i
and xi that subject’s height, then our model is

yi = β0 + β1xi + εi

for i = 1, . . . , n.

We observe yi and xi , so given any values for β0 and β1, εi is
something we can compute.

β0 and β1 are called regression coefficients.



Statistical models

Some values of β0 and β1 will result in larger εi than others: in
ordinary least squares regression we choose β0 and β1 to minimize

∑
i

(yi − β0 − β1xi )
2

Once the problem is formulated in this fashion we can use calculus
to get expressions for β0 and β1 that just depend on the data.

In R we can get these estimates by typing

> m1=lm(fms$Pre.weight~fms$Pre.height)



Statistical models

> m1

Call:
lm(formula = fms$Pre.weight ~ fms$Pre.height)

Coefficients:
(Intercept) fms$Pre.height

-181.377 5.039



Statistical models

We can add these to our figure to see how well this works

> pdf("wght-hght.pdf")

> plot(fms$Pre.height,fms$Pre.weight,xlab="Height",ylab="Weight")

> abline(m1$coef)

> dev.off()

So that looks reasonable, but raises the question: if I have a
statistical model, how do I “get values for the unknowns”?

A parameter is an unknown number in a statistical model.

Statisticians would formulate the “get a value for” a parameter, as
“how to estimate” a parameter.



Statistical models

The statistical models we used in the previous lecture were so
simple that we didn’t even dwell on their existence.

But we still had models: for example, if I measure a dichotomous
random variable I might be assuming that everyone I measure has
the same chance of a success.

If I didn’t think that was the case then why would we summarize
those data with sample proportions from all subjects?

So in fact we had simple models in mind and these were very much
tied to the way I estimate the parameters in those models.



Maximum likelihood estimation

A number of general approaches to the problem of how to estimate
parameters in statistical models have been developed.

We will mostly discuss and use the method of maximum likelihood.

The likelihood is the probability of observing the data that was
observed: one will typically have a model for this.

One then expresses the likelihood in terms of the parameters of the
model and maximizes the likelihood with respect to the parameters.

If the sample size is sufficiently large the parameter estimates
one gets using these techniques have a number of desirable
features.



Maximum likelihood estimation

Estimators depend on the data, so they are also random variables.

As such we can talk about their expectation and their variance.

If the expectation of a parameter estimate is equal to the actual
parameter estimate then we say that the estimator is unbiased.

One can mathematically demonstrate that there is a lower bound
to the variance that one can obtain using an unbiased estimator.

In fact we have mathematical expressions for the lower bound.



Maximum likelihood estimation

One can demonstrate that as the sample size goes to infinity,
maximum likelihood estimators (MLEs) are unbiased and their
variance obtains this lower bound.

Moreover they are approximately normal random variables and
there are formulae we can use for their variance.

This makes it easy to test if a parameter is equal to some
hypothesized value, say θ0, since, if θ̂ is the MLE and se(θ) is its
estimated standard deviation we just compute

T =
θ̂ − θ0
se(θ)

and use that to get a p-value.

We can also get 95% confidence intervals with: θ̂ ± 1.96se(θ).



Maximum likelihood estimation

So for large sample sizes MLEs are about as good estimators as
one can expect.

It transpires that many estimators that are quite natural are in fact
MLEs for certain models.

For example, if I suppose that I have independent measurements
on a Bernoulli random variable, then the sample proportion is the
maximum likelihood estimate of the probability of success.

If I assume I have independent measurements from a normal
distribution then the MLE of the expectation of that distribution is
given by the sample mean.



Maximum likelihood estimation: an example

If I observe xi where each xi is zero or one all with the same
probability, then I have a collection of independent Bernoulli
observations.

Since the observations are independent I can compute the
likelihood by taking the product over all subjects, so I just need the
likelihood for each subject.

If the probability of success is π this is given by πxi (1− π)1−xi ,
why?

Now maximize the likelihood over all subjects. What do you get?



Maximum likelihood estimation: linear model

It also turns out that if I specify the following model:

yi = β0 + β1xi + εi

where εi are independent observations from a normal distribution
with mean zero, the maximum likelihood estimates of β0 and β1

are the same as what we obtain by ordinary least squares
regression.

While this is interesting, the real value of MLEs is that we have
standardized tools for statistical inference which can be adapted to
new models.



Linear models

Suppose we observe more than one explanatory variable for each
subject: then we might entertain models like

yi = β0 + β1x1i + β2x2i + εi

where εi is normally distributed as before.

Such models are called multiple regression models and have many
uses.

For example, suppose I observe race for each subject and in my
data set it takes 3 levels (say Caucasian, African American and
Asian).



Linear models

I could create an xi variable that has values 1, 2, and 3 and fit a
model like

yi = β0 + β1xi + εi

but such a model makes a very strong assumption about the
difference in the mean of yi across the levels of race-what is that
assumption?



Linear models

A better approach is to create 2 indicator variables, for example,
let x1i be 1 if subject i is African American and 0 otherwise and let
x2i be 1 if subject i is Asian and 0 otherwise, then

yi = β0 + β1x1i + β2x2i + εi

is a more general model that allows for distinct differences between
the means of the racial groups. For example, restricting attention
to these 3 groups:

> x1=c(fms$Race=="African Am")

> x2=c(fms$Race=="Asian")

> m1=lm(fms$Pre.height~x1+x2, subset=c(fms$Race=="African Am"

+ | fms$Race=="Asian" | fms$Race=="Caucasian"))



Linear models

> summary(m1)

Call:

lm(formula = fms$Pre.height ~ x1 + x2, subset = c(fms$Race ==

"African Am" | fms$Race == "Asian" | fms$Race == "Caucasian"))

Residuals:

Min 1Q Median 3Q Max

-11.0526 -2.7276 -0.0526 2.4474 10.9474

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.0526 0.1289 520.349 < 2e-16 ***

x1TRUE -1.2958 0.5607 -2.311 0.02105 *

x2TRUE -1.2742 0.3895 -3.272 0.00111 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.62 on 927 degrees of freedom

(365 observations deleted due to missingness)

Multiple R-squared: 0.01591, Adjusted R-squared: 0.01378

F-statistic: 7.492 on 2 and 927 DF, p-value: 0.0005922



Linear models

But couldn’t one do that with ANOVA, yes and we get exactly the
same result:

> a1=aov(fms$Pre.height~fms$Race, subset=c(fms$Race=="African Am"

+ | fms$Race=="Asian" | fms$Race=="Caucasian"))

> summary(a1)

Df Sum Sq Mean Sq F value Pr(>F)

fms$Race 2 196 98.15 7.492 0.000592 ***

Residuals 927 12145 13.10

So multiple regression generalizes ANOVA (and 2 sample t-tests) by allowing
us to consider categorical and continuous predictors simultaneously.

How would you do a t-test using this sort of approach.



Confounding

Such models also allow us to potentially understand complex
relationships between more than 2 variables simultaneously.

When trying to deduce the nature of the association between 2
variables, a confounding variable is one that is related to both.

Such variables can make it difficult to interpret pairwise
associations: in particular they can make what appears to be an
association go away, or even change direction.

We try to statistically control for the effect of such variables by
incorporating them in regression models.

Randomization is the best way to avoid confounders.



Statistical adjustments

In observational studies we often want to make comparisons
between groups that differ in some way.

Ebola survivor study: we have survivors and contacts, but the
contacts are younger.

It appears eyesight is worse in survivors, but this could be due to
age.

I can fit regression models with survivorship status and age as
covariates and eyesight as the response variable.



Statistical adjustments

Let yi represent visual acuity, x1i represent age and let x2i

represent an indicator for survivorship status.

yi = β0 + β1x1i + β2x2i + εi .

If β̂i are the estimated regression coefficients then we could
compare eyesight for someone with the median age in the study
(28)

β̂0 + β̂1 × 28

to

β̂0 + β̂1 × 28 + β̂2

With such a model I could make predictions about the mean sight
of a survivor and a contact who are the same age.

I can also construct confidence intervals: contrasts.



Contrasts

As age adjustments make clear, we are frequently interest in linear
combinations of the regression coefficients.

If we use β to represent the vector of regression coefficients, then
the last application had us examine the inner product of this vector
with the vectors

c1 = (1, 28, 1)

c2 = (1, 28, 0).

The regression coefficients have a covariance matrix: this is a table
with as many rows and columns as there are regression coefficients.



Contrasts

Each element in the table either has the variance of a regression
coefficient (on the diagonal) or the covariance between 2 distinct
regression coefficients.

The covariance between 2 variables is the correlation between them
times the standard deviations of the 2 variables.

Represent this table (i.e. matrix) with Varβ = Σβ.



Contrasts

We had computed T = c1β: it turns out that the variance of this
expression is given by

VarT = c1ΣβcT
1 ,

where cT represents the transpose of a vector or matrix.

Contrasts arise in other settings: suppose we wanted to test if the
heights of Asians are different from the heights of African
Americans using our previous regression model.



Contrasts

I can compute the difference in the means as follows

> c(0,1,-1)%*%m1$coef
[,1]

[1,] -0.02153233

To get at the variance of this expression note that this gives us the
standard errors of the regression coefficients

> summary(m1)$sigma*sqrt(diag(summary(m1)$cov.unscaled))
(Intercept) x1TRUE x2TRUE

0.1288608 0.5606824 0.3894500



Contrasts

So the covariance matrix is given by

> (summary(m1)$sigma^2)*summary(m1)$cov.unscaled

and we can get a test statistic with the following

> c(0,1,-1)%*%m1$coef/sqrt((summary(m1)$sigma^2)*c(0,1,-1)%*%

+ summary(m1)$cov.unscaled%*%c(0,1,-1))

[,1]

[1,] -0.03272913

and so get a 2 sided p-value by

> 2*(1-pt(0.03272913,df=927))
[1] 0.9738976



Statistical interaction

Again consider the regression model that motivated the discussion
of contrasts: visual acuity is the response variable and age and
survivor status are predictors.

That model assumes that the association between age and visual
acuity is the same in both survivor groups, in contrast

yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi

is a model that allows the slopes that describe the relationship
between age and visual acuity to differ between survivors and
contacts.

Such a model has a statistical interaction between age and survivor
status.



Generalized linear models

Linear models have been generalized in a number of ways.

One way to think about a linear model is in terms of relating the
mean structure of a random variable to a collection of other
variables.

yi ∼ N(β0 + β1x1i + · · ·+ βpxpi , σ
2).

This form makes clear how we could allow for something other
than normally distributed data.



Logistic regression

For example, suppose I observe a binary response variable for each
subject yi and so

yi ∼ Ber(πi ),

where πi is the probability of success for subject i .

If I then assume that for some function g ,

g(πi ) = β0 + β1x1i + · · ·+ βpxpi ,

then I have a model where the success probability is impacted by a
collection of other variables.



Logistic regression

If I suppose that g(x) has the form

g(x) = log

(
x

1− x

)
then we are using a technique called logistic regression.

We typically estimate the parameters in this model using the
method of maximum likelihood.



Logistic regression

The likelihood has the form∏
i

πyi
i (1− πi )

1−yi

and if we invert g we find that

πi =
eβ0+β1x1i+···+βpxpi

1 + eβ0+β1x1i+···+βpxpi
.

We then use numerical techniques to maximize this expression with
respect to the set of regression coefficients.



Logistic regression

These numerical techniques can sometimes fail and there is no
guarantee that a unique collection of estimated regression
coefficients will in general exist.

Suppose there is only 1 predictor variable and it is binary: then we
can show that regression coefficient is the log of the odds ratio
across the 2 levels of the binary predictor.



Logistic regression: an example

Here is the syntax that is necessary to conduct a logistic regression
analysis.

> m1=glm(fms$Met_syn~fms$pre.BMI>30,family=binomial)

Previously we found that the odds ratio was 13.68.



Logistic regression: an example

> summary(m1)

Call:

glm(formula = fms$Met_syn ~ fms$pre.BMI > 30, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.0502 -0.3237 -0.3237 -0.3237 2.4394

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.9229 0.1688 -17.320 <2e-16 ***

fms$pre.BMI > 30TRUE 2.6161 0.2702 9.684 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1



Logistic regression: an example

and we again find a huge odds ratio

> exp(2.6161)
[1] 13.68226

We can also see if there are SNPs associated with metabolic
disorder:

> table(fms$akt2_969531)

AA GA GG
98 495 614

> m1=glm(fms$Met_syn~c(fms$pre.BMI>30)+fms$akt2_969531+
+ fms$Gender,family=binomial)



Logistic regression: an example

> summary(m1)

Call:

glm(formula = fms$Met_syn ~ c(fms$pre.BMI > 30) + fms$akt2_969531 +

fms$Gender, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5128 -0.4557 -0.2373 -0.2049 3.1427

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.9309 0.7291 -6.763 1.35e-11 ***

c(fms$pre.BMI > 30)TRUE 2.6768 0.2960 9.043 < 2e-16 ***

factor(fms$akt2_969531)GA 1.3751 0.6928 1.985 0.0472 *

factor(fms$akt2_969531)GG 1.0784 0.6890 1.565 0.1176

fms$GenderMale 1.6399 0.2959 5.542 3.00e-08 ***

So hard to tell if this SNP is associated: we can fit a model without the SNPs
and compare fits



Logistic regression: an example

> m0=glm(fms$Met_syn~c(fms$pre.BMI>30)+fms$Gender,family=binomial,

+ subset=!is.na(fms$akt2_969531))

> anova(m0,m1)

Analysis of Deviance Table

Model 1: fms$Met_syn ~ c(fms$pre.BMI > 30) + fms$Gender

Model 2: fms$Met_syn ~ c(fms$pre.BMI > 30) + fms$akt2_969531 +

fms$Gender

Resid. Df Resid. Dev Df Deviance

1 785 378.70

2 783 373.55 2 5.1505

> 1-pchisq(5.1505,df=2)

[1] 0.07613479

So not quite significant.



Logistic regression: an example

We had included 2 covariates that are strongly related to our
outcome variable.

What happens if we had excluded these?

Do those results make sense?



Model selection

Choosing which variables should be in a model and how those
variables should enter are difficult problems.

Automated model fitting algorithms are popular but they are
frequently not very useful.

When analyzing studies that don’t employ randomized treatment
assignment, you can never really be sure which are the relevant
variables.

Trying to find the “best model” is probably not a good use of
one’s time: better to fix a data analysis plan prior to conducting
the data analysis.

I devise such plans when the experiment is being designed: I
strongly suggest you do too.
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