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Here we investigate the clustering of simian immunodeficiency virus (SIV)-infected cells in a lymphatic tissue sample taken from a
rhesus macaque to test a spatial proximity model of the spread of infection. We see that standard methods for analysis of the clustering
of point processes are not entirely satisfactory for this application, so we define a novel statistic to understand the clustering in the data.
This statistic examines how events spread out from certain points deemed cluster centers. Using this statistic, we can demonstrate the
statistical significance of the clustering and examine over what distances this clustering is witnessed. We use Bayesian methods to fully
assess the uncertainty in the estimation of this statistic by positing a model for the process. (We assume the process is a nonhomogeneous
Poisson process with an intensity that is a linear combination of Gaussian densities.) We see that the distances at which clustering is
present are consistent with a simple model of SIV spread within the lymph node.
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1. INTRODUCTION

Research over the nearly 3 decades of the AIDS epidemic
has provided a clearer picture of the pathogenesis of human
immunodeficiency virus (HIV), yet questions remain regarding
such fundamental issues as how virus spreads and infection
is propagated in the host. After the virus gains access to a
host, it travels through the blood and eventually reaches other
compartments. One particularly important compartment is the
lymphatic system. Because AIDS is fundamentally a disease
of the immune system, the mechanisms by which HIV gains
access to the lymphatic tissues and the manner in which it
replicates therein are crucial components to the developing
picture of the pathogenesis of HIV (see Haase 1999 for a
recent review).

The spread of infection is mediated by the ability of the
virus to gain access to cells and its ability to use these cells for
producing more virus. HIV can infect various cells, but its pri-
mary targets are activated CD4 4T lymphocytes. These cells
are the most efficient hosts for HIV production. Much research
has been conducted in vitro to investigate the mechanisms by
which HIV gains access to a cell’s reproductive machinery
and exploits this machinery for its own ends, yet the dynam-
ics of infection in vivo have been much harder to investigate.
Two basic models have been proposed for the spread of HIV
in the host; following Grossman, Feinberg, and Paul (1998),
we call these proximal activation and transmission (PAT) and
long-range transmission (LRT). The PAT model of transmis-
sion is characterized by local spread of infection from one
cell to other cells in the vicinity of that cell. The LRT model
maintains that infection is sustained by a cell-free virus con-
tinually infecting new cells. Grossman et al. argued that both
varieties of transmission occur during the course of infection,
but because LRT needs a large quantity of cell-free virus to
be self-sustaining, it can only be the dominant source of trans-
mission during the final stages of disease.
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The possibility of PAT was first noticed by Tenner-Racz
et al. (1988), who reported foci of infected cells in lymphatic
tissue. Further evidence was obtained by Wain-Hobson and
colleagues (Cheynier et al. 1994), who noticed that HIV devel-
oped into genetically distinct quasi-species in spatially distant
regions of spleen tissue obtained from HIV-infected individu-
als. Reinhart et al. (1998) observed a similar phenomenon in a
variety of tissue samples taken from rhesus macaques infected
with simian immunodeficiency virus (SIV), a virus very sim-
ilar to HIV in pathogenesis. The PAT model implies that one
should observe clustering of infected cells in tissue samples,
and whereas some have claimed to witness such clustering
(e.g., Tenner-Racz et al. 1988; Grossman et al. 1998), these
tissue sample images have never been submitted to statistical
analysis.

To examine the spread of virus in vivo, we devised an exper-
iment that hopefully would allow us to document the propa-
gation of infection during the initial stages of the disease. The
basic idea was to infect rhesus macaques with SIV and then
examine tissue samples from these animals over the course
of a few weeks. If in the early stages of infection, infection
spreads according to the PAT model, then we would expect to
see infected “progeny” clustered about infected “parent cells.”
Later we refer to the model of local spread instead of the PAT
model, because we have not attempted to determine whether
the infected cells are activated. (This is an important compo-
nent of the PAT model as put forth by Grossman et al. 1998
about which we say more later.)

1.1 Clustering of Random Point Patterns

Assessing the extent of clustering present in a realization
of a point process is a common problem. Many methods have
been proposed to test the hypothesis that the dataset is a real-
ization of a homogeneous Poisson process. Although each has
its merits and shortcomings, the most widely used and sup-
ported method is based on the K function (see Ripley 1976).
The estimated K function plots how many points are separated
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by a given distance against distance. If more points are sep-
arated by some distance than is compatible with the sample
realization being from a homogeneous Poisson process, then
one concludes that there is clustering.

For the tissue sample analyzed here, we know the date of
the initial infection; hence the distances at which we find
clustering are informative about the time lag between initial
infection and distribution of the virus to the lymphatic tissues
under the local spread model. We can make this connection
because the life cycle of HIV (and SIV) is relatively well
understood; the half life of productively infected T cells is 1
to 2 days (Perelson et al. 1996). Hence our goal is not simply
to determine whether there is clustering in the tissue sample
analyzed. We also want to assess the distances over which we
find clustering in the data and to examine whether these dis-
tances are compatible with the local spread model. We see that
the K function is not the most useful statistic for investigation
of this aspect of the data, and we suggest another approach
that tests the model more satisfactorily. This summary com-
plements the K function in a way that is informative about the
manner in which clustering is present.

1.1.1 Clustering and Models for Point Processes. Ironi-
cally, as far as we know, there have not been any applications
of the usual methods of cluster analysis (and its close relative,
mixture modeling) to the analysis of clustering of point pro-
cesses, although there is clearly a close connection. We think
that the analysis of point processes can benefit from this con-
nection, because in the cluster analysis literature, clustering
algorithms usually can be interpreted as procedures informed
by model choices (see Banfield and Raftery 1993). Different
algorithms lead to different cluster assignments for the data
points, and the right choice of the cluster assignment rule
can be determined by deciding which is the more appropri-
ate model. Similarly, by assessing the extent of clustering for
a point process in the context of a specific model, we can
draw conclusions about the clustering in the data while incor-
porating our knowledge about the scientific context (which is
incorporated in our model). The value of using a model is
most readily appreciated when one realizes that there most
likely is not a uniformly most powerful test of the hypoth-
esis of complete spatial randomness, so we should construct
our test to be sensitive to alternatives of substantive inter-
est. As an added benefit, our test statistic is constructed so
that departures from the null are informative about the spread
of infection, whereas, as we argue later, departures from the
null for the K function are not necessarily as informative.
Additionally, with a specific model, we can use the tools of
model selection and diagnostics to ascertain the quality of the
fit. A number of other researchers have fit parametric models
to two- and higher-dimensional inhomogeneous Poisson pro-
cesses (see, e.g., Kooijman 1979; Lawson 1988; Ogata and
Katsura 1988).

First, we explain in greater detail how the data was col-
lected. Then we perform the standard analysis for assessing
clustering. Next, we develop our new statistic and compare the
results to the standard analysis. Finally, we describe a refined
model-based analysis that does not use some shortcuts that we
use to expedite estimation of the novel statistic. This analy-
sis is somewhat complicated, but we describe the procedure
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in detail because the primary difficulties are related to fitting
parametric models for inhomogeneous Poisson processes, and
we think that this topic holds interest beyond the application
to our specific problem.

2. DATA ACQUISITION AND STRUCTURE

Because animal models provide the easiest method for
understanding the spread of disease immediately after infec-
tion, we analyzed the distribution of productively infected
cells in axillary lymphatic tissue taken from a rhesus macaque
infected intravaginally with SIV (the macaque equivalent to
HIV) 12 days before the tissue sample was taken. The axillary
lymph nodes are infected by systemic spread of SIV through-
out the host’s immune system. The use of SIV as an animal
model for HIV is widespread because of extensive common-
alities in viral replication and pathogenesis.

In these cross-sectional studies, productively infected cells
had not been detected in the lymph nodes at 7 days but had
been detected at the next time point of 12 days. Assuming
a mean life cycle of 1.5 days would allow for three “gener-
ations” of infection in the lymph node if the virus reached
the lymph nodes on about the seventh day. To identify pro-
ductively infected cells, operationally defined as those with at
least 20 copies of viral RNA, we hybridized a digoxygenin-
labeled virus-specific probe to a 5-micron-thick section of
the lymph node sample. After hybridization and washing, the
viral RNA-positive cells that bound the digoxygenin-labeled
probe were stained immunohistochemically with antibodies to
digoxygenin. The stained cells vary in size; some are actually
collections of five or six cells that are not differentiated indi-
vidually due to the relatively low magnification used for this
analysis.

Once the sample was on a slide under the microscope, an
imaging program (Metamorph) was used to turn the image
into data amenable to statistical analysis. To accomplish this,
the user selects a threshold level that distinguishes stained
cells from background. Then the program determines the area
and centroid of viral RNA positive cells. Here we ignore the
area (which measures the relative concentration of intramolec-
ular viral RNA) and use the centroids as the locations of the
diseased cells. Because the average lymphocyte has a diame-
ter of about 10 microns, if two average-sized cells have cen-
troids separated by about 10 microns, then the cells are basi-
cally touching one another (if we ignore the thickness of the
sample).

As alluded to previously, we suppose that the infection
propagates locally. To simplify the analysis, we further assume
that the infection spreads to nearby cells in a spherically sym-
metric fashion. Under this model, we would expect to find
approximate rings of infected cells formed around the parent
cells in a cross-section. Actually, because a parent cell might
have moved or died before the time the sample was taken, or
the parent cell could be in an adjacent slice, we should not be
surprised if the parent cell is not at the center of one of these
rings. Because there is a considerable time lag between infec-
tion and the date the data were obtained, we actually could
have the results of several generations of infected cells. If this
is the case, then the spherical symmetry of the distribution of
infected cells about a parent will be difficult to discern. In
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Figure 1. Location of SIV-Infected Cells. The axes are in microns.

addition, we would expect some cells to be newly infected
and have not yet infected their neighbors. In short, whereas
infected cells should form rings around certain parent cells
under the local spread model, in actuality, observations from
a tissue sample would not be expected to correspond exactly
to this ideal model.

Figure 1 is a map of all events (the centroids of the stained
cells). The dots represent infected cells. A cursory examina-
tion suggests clustering of the infected cells; moreover the
shapes of these clusters do not appear greatly at odds with the
spherical symmetry assumption.

3. ANALYSIS WITH THE K FUNCTION

To statistically investigate clustering, it is standard practice
to estimate the K function. The K function is defined as

K(d) = A"'"E(number of events within distance
d of an arbitrary event),

where A is the intensity of the process and the expectation is
with respect to the measure induced by the point process; fur-
thermore, K(0) = 0 rather than K(0) = 1. If the process is a
homogeneous Poisson process in the plane, K(d) = wd?, and
if the process exhibits clustering at some distance, d*, then
K(d) > wd? for d > d*. An easier function to visually inter-
pret is L(d) = \/K(d)/ﬁ, because L(d) = d for a homoge-
neous Poisson process. If the intensity or the expectation is
not constant over the sampled region (so that A and the expec-
tation are a function of location), then interpretation of K is
difficult. For these reasons, if the K function indicates that
the process is not a homogeneous Poisson process, then the K
function may not be the most useful data summary.

Given a realization of a point process with N points,
Sis...,8y, Where s; is a point in the sample region A (later
we use s to denote the collection of all these sites), it is stan-
dard to estimate K(d) by

M=

N
K(d)=A""3 3" Lgos a1/ N
i=1 j=1

.
zll

1

where A = % with |A| = the area of the region over which

we have our sample. There has been considerable interest in
examing the effects of edges, and although these can be sub-
stantial, we ignore this because we look at the K function
over distances that are rather small compared to the size of
the sample region. Monte Carlo is usually used to obtain an
upper and lower bound for K(d) under the assumption that
the process is a homogeneous Poisson process, and these lim-
its are then used to asses statistical significance of departures
of i(\(d) from 7d? (see, e.g., Cressie 1993).

3.1 The Derivative of the K Function

One feature of the K function (and L) that makes it diffi-
cult to interpret is its cumulative nature. This poses a prob-
lem, because if there is clustering at some small distance, this
raises the level of the K function (and L function) for all
distances greater than this small distance, although the effect
decays as distance increases. The result is that one must try to
compare the slope of the L function to a y = x line to deter-
mine whether there is clustering at higher distances as well.
(Clearly, the problem is even worse for the K function.) Much
like the practice of working with probability density func-
tions rather than working with cumulative distribution func-
tions, we prefer to work with the derivative of L(k), which



is closely related to the pair-correlation function. (See Stoyan,
Kendall, and Mecke 1995 for more on this function and other
summaries of the second-order behavior of point processes.)
We would expect L'(h) to be 1 if the sample were from a
homogeneous Poisson process. Here we simply estimate this
derivative with discrete differences from binned estimates of
K (using 100 bins), although we can imagine smoothed esti-
mates that have lower mean integrated squared error and more
refined methods for determining the number of bins. But we
do not try to develop such estimates here.

3.2 Shortcomings of the K Function
for the Current Application

Although the K function (and quantities derived from it)
is certainly useful and informative, the continued reuse of
the data can introduce misleading features for the current
application. Suppose that the infection propagates locally in
a spherical pattern infecting some constant proportion of all
susceptible cells, as mentioned in Section 2. For concreteness,
suppose that six cells are infected and form an approximate
ring with a radius of 10 microns around the parent cell. Such
a configuration would give rise to six pairs of cells separated
by a distance of 10 microns from the parent. If these infected
cells are spread out uniformly around the parent cell, then we
would also have three pairs of infected cells separated by a
distance of approximately 20 microns. If this pattern of con-
tagion was present throughout the entire sampled region, then
one could conclude that there is clustering at distances of 10
and 20 microns, although the clustering at 10 microns is the
aspect of the data that is informative about the spread of infec-
tion (if we already assume the spread is in a spherically sym-
metric pattern). Furthermore, if the parent cell died before col-
lection of the sample, then we would see the clustering only
at 20 microns.

Figure 2(a) illustrates a hypothetical example of the sort of
data that we could obtain from the spatial proximity model
of viral spread, and 2(b) depicts the associated L function.
This point pattern was generated by setting points at (2, 2),
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(2,-2), (-2,2), (=2, —2), then generating 50 draws from a
homogeneous Poisson process over annuli with inner radius
.6 and outer radius 1.0 situated about these four parent points.
We would like to find clustering at a distance of about .8, but
this is completely lost due to the structure of the data. Instead,
we witness clustering at distances less than .4 (which is sen-
sible given the width of the annuli), a little clustering in the
1.5-1.8 range, and then a considerable drop off (spatial inhi-
bition, due to the separation of the four rings) from 1.8 to 2.5.
Ironically, we conclude there is clustering at short distances,
but the only points separated by such short distances are actu-
ally drawn from a homogeneous Poisson process. This last
phenomenon is due to the role of the estimate of A for the
process; the estimate of the intensity is too low for the points
separated by short distances, because there is a great deal of
area with no events taking place outside of the annuli. Hence
there appears to be clustering at these distances relative to
what occurs outside of the annuli. Whereas the K function is
useful because it investigates clustering at all distances simul-
taneously, this same feature can make it misleading as a data
summary if there is clustering at some distance.

3.3 The K Function for Our Dataset

If the virus gained access to this lymph node on the first day
of infection and replicated there continuously with each gener-
ation replicating in 2 days, then after 12 days we would have
clusters spreading out about 60 microns (because the aver-
age lymphocyte has a diameter of about 10 microns). There-
fore, we do not expect any clustering beyond 60 microns,
and hence we estimate L’(%) up to 62 microns for our sam-
ple. The result is shown in Figure 3. Similar conclusions are
reached if one uses the K function. Also shown in Figure 3
are 95% confidence bands (obtained via simulation) for L'(k)
under the assumption that our process is a realization from a
homogeneous Poisson process. It appears that there is cluster-
ing in the 1.9-2.5 micron, 3.1-3.7 micron, 14.8-15.5 micron,
and 25.3-26 micron ranges, with borderline results for the
7.4-8 micron, 8.7-9.3 micron, and 39.6—40.2 micron ranges.

(b)
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Figure 2. A Hypothetical Example Point Process (a) and Its L Function (b). Although the example is extreme, we see that the L function is
potentially misleading when the process is not a homogeneous Poisson process.
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Figure 3. Derivative of the L Function for Our Dataset With 95% Confidence Bands (------ ) Under the Assumption That the Process is a
Homogeneous Poisson Process. There appears to be clustering at short distances.

Clearly, we can not conclude that there is significant cluster-
ing at all of these distances (because this would not control
the overall type I error), but it does appear that there is some
clustering at the very short distances. Given that the borderline
clustering occurs roughly at distances 8 i for i =1,2,3,5,
one may wonder whether these bumps are due to the phe-
nomenon illustrated in the previous section.

4. AN ALTERNATIVE TO THE K FUNCTION
FOR ASSESSING CLUSTERING

Rather than examine how all of the points are separated
from one another, we really would like to examine how points
spread out from the parent cells. This leads us to examine a
different function,

H’ (d) =number of clusters x E(number of events separated
by at least d — 8, but no more than d + 6 from
the cluster center within an arbitrary cluster),

where the expectation is with respect to the measure induced
by the point process. The greatest difference between H and
K is the designation of certain points in the sample region as
cluster centers. (Such points need not actually be sites where
there was an event.) A plot of H(d) by d [for d =8(2i—1)
where i = 1,...,1)], indicates at what distances clustering
occurs and at what distances this clustering drops off. Also
note that each point gets used only once in the construc-
tion of H}; that is, when we estimate H, we assign points
to clusters, find the distance from the cluster center to each
point in that cluster, then sum over all clusters. Rather than
work directly with H*(d), we work with a normalized ver-
sion, H*(d), where the normalization ensures EH*(d) =0 and
var H*(d) =1 for all d if the process is a homogeneous Pois-
son process. (The expectation is with respect to the measure

induced on A under the homogeneous Poisson assumption
conditional on the cluster centers and assignments.) Finally,
we note 6 is a user-defined tolerance that should be selected
with reference to the application.

An approach similar in spirit to our proposed method has
been developed by Besag and Newell (1991) in the spatial
epidemiology literature. In that approach, one determines how
far a disk must be extended around each point until a certain
predetermined number of events, k, are contained in the disk.
Although Besag and Newell have demonstrated the usefulness
of their method, we prefer an approach that does not require
the specification of the number of events in a cluster, k. In
addition, our method does not require that an event be at the
center of a cluster (although we do enforce this requirement
for the simple estimate of the next section), and Besag and
Newell recognize this as a weakness of their method.

Finally we note that there is a connection between the H*
function and Ripley’s K function. Consider the multivariate
point process obtained by joining the “offspring” process with
the “parent” process. This parent process is a hidden, unob-
servable point process, whereas the observed data constitute
a realization from the offspring process. In this context, the
H* function for distances smaller than the minimal distance
between a cluster center and another point in any other cluster
is nothing more than the cross-K function for this multivari-
ate process (for the cross-K function, see, e.g., Cressie 1993).
For larger distances, the cross-K function would also consider
distances between cluster centers and points in other clusters,
but the H* function excludes these distances.

4.1 A Simple Method of Estimating H*

A simple method of estimating H* is as follows. Use a
hierarchic clustering algorithm on the coordinates of the sam-
pled points that assumes that the clusters are spherical but of



variable size (because we expect the clusters to be of this
form) (see, e.g., Banfield and Raftery 1993). We determine
the number of clusters using the approximate Bayes factor
method of Banfield and Raftery (1993). Next, designate the
point that minimizes the average distance to all other points
within each cluster as the center of that cluster. (To allow for
cluster centers that are not locations of events, one could use,
for example, the centroid of the convex hull of the cluster.)
Finally, find the distances within clusters from cluster centers
to each point in the cluster and sum over all clusters to obtain
Y, fori=1,...,1. Thatis, if we let u, represent the cluster
centers for k=1,..., K, and

ay={s € A:lls— el [d,— 8. d;+8)),

where d, =6(2i—1) fori=1,...,1, then

Yi = Z I{SjGUszl ai}:

J=1

This yields an estimate of Hf(d) for d = 6(2i —1). Next,
normalize the Y;s so that they have zero mean and unit vari-
ance under the assumption that we have a realization of
a homogeneous Poisson process. Because Y; ~ Poi();) with
A; = M| UL_, ay;|, where A is intensity of the process over the
entire region A, this standardization is straightforward once
we estimate A with N/|A|. For now, we use the further sim-
plification that |}, ay| = K|a,;| = 4mK&*(2i — 1), which is
correct only if the annuli a,; do not overlap and are strictly
within the boundaries of A. In general, these annuli can over-
lap and intersect the boundary, making the exact calculation
of |UL_, ay;| more difficult, but at this point we ignore this
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potential complication. The normalized variables are then
, _ YA
1 \/TI *
We then plot Z; by d; to obtain our estimate of H*.

We can assess the statistical significance of any departure
of the set of Z, from 0 as follows. Under the hypothesis that
we have a realization from a homogeneous Poisson process,
all of the Z,’s have zero mean, unit variance, and, provided

that all of the cluster centers are sufficiently far apart, they are
also independent. Hence we define the test statistic

T =max Z,.
1<i<I
We then have
LA,»+U\%J /\/
i _—A
Py {T <ty=[] > —e
=1 j=0 J

and so we can easily calculate the value of the maximum of
H*, which allows us to reject the null hypothesis of complete
spatial randomness with any desired « level.

4.1.1 Application to Our Dataset. Figure 4 depicts the
H* function along with a horizontal line indicating the cut-
off for statistical significance at the .05 level. This plot indi-
cates that H* exceeds the cutoff level for the maximum
at distances in the 7.4-8.7 micron range and in the 14.9-
16.1 micron range (which is approximately one and two cell
diameters). By computing the joint distribution of the two
largest values of H* under the null hypothesis (which is ele-
mentary because the values of H* are approximately indepen-
dent although not identically distributed), we find that the p
value associated with the largest and second largest values of

normalized H
0
|

T T T I
30 40 50 60

microns

Figure 4. The H" Function. The horizontal line indicates the cutoff level for the maximum for statistical significance at the .05 level. Note the

clustering at distances of 8 and 15 microns.
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H* (simultaneously) is less than .001 (one can also use the
parametric bootstrap). Furthermore, the clustering drops off at
distances greater than about 30 or 40 microns. These find-
ings are consistent with the life cycle of HIV and infection of
a “parent” and two generations of progeny. As mentioned in
Section 2, these findings are what we expect under the spatial
proximity model.

4.2 Why the Simple Method Needs Refinement

Although the previous method is simple to implement, it
has a number of shortcomings. First, the hierarchic cluster-
ing methods that we use are not appropriate for the data. The
clustering algorithms available in commercial statistical soft-
ware packages typically assume that the measurements (i.e.,
the coordinates of the points) are from a multivariate normal
distribution, and those that do not explicitly make this assump-
tion can usually be construed as making some sort of assump-
tion along these lines (see Banfield and Raftery 1993). This
assumption is also used for selecting the number of clusters.
A more reasonable model than assuming that the coordinates
are normal mixture deviates is to assume that our data are a
realization of an inhomogeneous Poisson process. Later we
present a method for clustering in this context.

Another problem with this method is the test is conditional
on the output of the clustering algorithm. Because we use the
data to do the clustering, there is uncertainty in the cluster
assignments and the locations of the cluster centers; therefore,
our p value needs to be adjusted to include this uncertainty.

Finally, the previous algorithm assumes that the cluster cen-
ter is in the sample. As noted before, this is not necessarily
the case. The parent cell could have moved, died, or be in an
adjacent slice of tissue.

5. A BAYESIAN ALTERNATIVE TO H*

If one treats the cluster centers as unknown parameters, then
one is faced with the problem that with a single realization of
the process (as is necessary due to the destructive nature of
the sampling), there is not really any replication in the data
that can be used to directly determine the location of these
cluster centers. For this reason, we assume that our sample is
a realization of an inhomogeneous Poisson process, and we
parameterize this process in a manner that allows us to exploit
replication present due to the parameterization. This modeling
strategy is rooted in the observation (first reported in Bartlett
1964) that from a single realization of a point process, one can
not distinguish inhomogeneity from clustering. In particular,
we suppose that the intensity of the process is given by a
linear combination of bivariate Gaussian densities with zero
correlation and identical standard deviations in both directions
(circularly symmetric),

K w 1
A(x,y>=za—§exp{—

37 (= Ra) + (= p0)’] }
k=1 9k 3

Hence there are 4K parameters if there are K clusters. With
this parameterization, the spread of infected cells about the
cluster centers is informative about the location of the cluster
centers.

Given values for all of these parameters, we then treat
the points (u,, m,.) as the cluster centers and assign points
to clusters based on which cluster center to which they are
closest. This clustering algorithm is basically a parametric
version of the K-means approach to clustering (see Mac-
Queen 1967). Finally, given the cluster centers and the clus-
ter assignments, we construct the H* function as before. To
indicate that H* depends on a vector of parameters, 6 =
(@015 015 Bes Boyps -+ - » Wgs Oks ok Myg ), We now denote it
by H*(d; 0).

If we treat parameter estimation in a Bayesian fashion, then
we can incorporate uncertainty about the locations of the clus-
ter centers and the cluster assignments into the construction of
the H* function. Let p(6|s) denote the posterior distribution
of the vector 6 given the collection of observed sites s. We
then define the H function via

H(d) = / H*(d; 0)p(8]s) d.

Readers familiar with the theory of spatial point processes
may wonder why we do not use one of the more common
point process models that allow for clustering, such as the
Poisson cluster process. First, because the likelihood for the
Poisson cluster process model is not useful for computations
(see, e.g., Ripley 1988), one must fit these models by match-
ing the K function for the model to the observed K function.
But because the K function does not uniquely determine the
point process (for an example, see Baddeley and Silverman
1984), this is a rather questionable practice. Second, if we fit
one of these models, then we cannot determine the locations of
the centers of the clusters, but can determine only the number
of clusters and the properties of these clusters (such as, e.g.,
the radii of the clusters), and this information is not sufficient
to calculate H*. Finally, we suspect that a very wide range
of spatial point processes can be approximated by inhomoge-
neous Poisson processes; hence there is little lost in using this
family, provided that the scientific context suggests a suitable
parametric form for the intensity, as here.

5.1 Application to the Lymph Node Sample

Figure 5 displays a representation of the posterior mode of
the intensity when there are seven clusters (We discuss choos-
ing the number of clusters in Sec. 6.2.) The two closest cluster
centers at the posterior mode are separated by 105 microns.
Figure 6 shows the cluster assignments made using the algo-
rithm outlined earlier based on the posterior mode for the
intensity. Figure 7 shows the H function for the data along
with 95% pointwise credible intervals for the values in the
bins. The posterior probability that H is greater than O for
the second bin is .978; hence this provides substantial evi-
dence that there is clustering in the 6—12 micron range. In
addition, the probability that the H function is greater than
zero in the 18-24 micron range is .971, and the probability
that H is positive at both distances (simultaneously) is .95.
Note that we find clustering at the distances of approximately
one and two cell diameters (but not at the intermediate dis-
tances). These findings are consistent with the simplified esti-
mate in Section 4.1.1, and they are consistent with what we
would expect to find under the spatial proximity model of viral
spread.



8 Journal of the American Statistical Association, December 2002

100 150 200 250
| | | |

50

0 100 200 300 400

Figure 5. A Representation of the Intensity of the Inhomogeneous Poisson Process at the Posterior Mode Along With the Locations of SIV
RNA-Positive Cells.
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Figure 7. The H Function Averaging Over the Uncertainty in the Clustering and Cluster Centers. The bars represent the extent of 95% probability

intervals.

6. COMPUTATIONAL ASPECTS OF CONSTRUCTION
OF THE BAYESIAN ALTERNATIVE

We use simulation to calculate the H function. We first
obtain draws from the posterior distribution p(8|s), then cal-
culate the H* function for each draw. This provides samples
from the posterior distribution of the H function. Obtaining
simulations from the posterior p(6|s) is somewhat compli-
cated. For the likelihood portion of the posterior, as is usually
done, we condition on the total number of points in the sample
and use the Janossy density as our likelihood, L(6). Hence

L(6) = exp{— fA A(s) ds} f[l/\(sl-),

where the integral is over the sample region, A, in the plane
(see Daley and Vere-Jones 1988 for details on this likeli-
hood). Given the smooth form of A, Gaussian quadrature is
the method of choice for carrying out this numeric integration.

6.1 Priors for the Model Parameters

Unfortunately, much as is the case for fitting mixture mod-
els, this likelihood is unbounded (see, e.g., Titterington, Smith,
and Makov 1985). For this reason, we must provide some sort
of prior structure for the parameters. Although we do not need
informative priors for the locations of the cluster centers (i.e.,
we suppose that these priors are uniform over the sampled
region), we must constrain the weights, w,, and the standard
deviations, o;, so that they do not drift to infinity or 0. Rather
than specifying priors for the values of these parameters (as
done in Gelman and King 1990), we specify priors for the
ratios of the largest weight to the smallest weight and a prior
for the ratio of the largest standard deviation to the small-
est standard deviation (which is in the spirit of Box and Tiao

1968, Gelman and Rubin 1992, and Belin and Rubin 1995,
although in all of these analyses there were only two compo-
nents and the ratio of the variances of the components was
fixed). Furthermore, we take these priors to be independent
gamma distributions,

i1~ gam(.7,7.0)

max
i,j
' J

(0]

and

max T~ gam(2.3,23.0).
ij o

These priors assume that we expect both of these ratios to
be 1.1, but the variance of the ratio of standard deviations
is much smaller (by about a factor of 10) than the variance
of the ratio of the weights. In practice, we find that we can
specify weaker priors when we have a few clusters but must
specify stronger priors as the number of clusters increases to
prevent the standard deviations from drifting to 0. Hence we
use priors sufficiently strong to obtain acceptable results for
up to 12 clusters. In this way we use the same prior structure
for all of the models when we select the number of clusters.
It transpires that for the number of clusters we finally select
(namely, seven), one can specify very vague priors (priors too
vague to be useful when there are 12 clusters). Nonetheless,
our final model with seven clusters uses the priors defined
earlier.

6.2 Choosing the Number of Clusters

Although it is tempting to treat the number of clusters as a
parameter and estimate it from the data, this is not identifiable
as a parameter (jointly with 0) without a prior on the number
of clusters (an approach that we do not favor) or some sort
of prior on the cluster centers that specifies that they cannot
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get too close. One may think that because the lymphocytes
have an average diameter of 10 microns, cluster centers can
not be closer than 10 microns. But in fact the tissue sample
is 5 microns thick; hence cells can be closer because they do
not both have centers in a plane parallel to the cross-section.
Thus we do not favor putting a prior on the minimum dis-
tance between cluster centers. Rather than take either of these
approaches, we adopt the method used by Gelman, Carlin,
Stern, and Rubin (1995)—namely, we use as few clusters as
is possible to make certain features of the posterior predictive
distribution match the same features of the posterior distri-
bution.

To this end, we define a set of realized residuals by divid-
ing the rectangular region into an R by R array of equal-sized
rectangles then counting how many sample points, s;, are in
each rectangle. This yields a collection of R* counts x;. Next,
we transform these counts into standardized residuals, as fol-
lows. Given a value for the parameter vector, 6, we integrate
the intensity over each rectangle to get R* £,’s. We then stan-
dardize the counts with the integrated intensities to get a set of
approximately standardized realized residuals for each param-
eter draw r; = (x; — &) /\/ £, (This is only an approximate
standardization, because we have conditioned on N.) These
residuals depend on 6, so we can simulate their posterior dis-
tribution by taking draws from the posterior of 6, say 6¢, for
£=1,...,L, and then calculating the residuals, rf, for all L.
To obtain a similar set of residuals from the posterior predic-
tive distribution, we first simulate a draw from the inhomoge-
neous Poisson process with intensity A(6%) to obtain §¢, and
then compute the residuals as if the simulated data §° were
actual data (using the same 6° as the parameter vector when
we compute the &;’s). We then compare the sets of residuals
to determine whether the number of clusters is adequate. Note
that for each parameter vector we get a set of realized residuals
from the observations and a set of posterior predictive residu-
als (using the simulated data based on the parameter draws).

The choice of R is important for our ability to differentiate
between models. If we choose this value too low, then we
will miss differences on small scales, whereas if we choose
it too large, then we find that all of the counts are Os and
1s, which will not be very informative unless we consider
the spatial distribution of these residuals. Because we prefer
simple measures of model misfit (e.g., the maximum of the
absolute value of the standardized residuals), we choose R so
that the counts, x;, range from about 5 to 10. If we set R = 10,
then we achieve this aim.

After experimenting with several measures of misfit, we
find that the maximum of the absolute value of the residuals
appears to be the most useful approach for model discrimi-
nation with the range of number of clusters considered here
(i.e., 4-12 clusters). As the number of clusters rises above
12, the clustering algorithm starts finding clusters with only
several events in them; hence this set an upper bound on the
number of clusters that we allowed. The method of Banfield
and Raftery used for constructing H* found 11 clusters, some
of which were quite sparse. Figure 8 displays scatterplots of
the realized residuals against the residuals under the posterior
predictive distribution for several different numbers of clus-
ters. We always find that the maximum of the absolute value
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of the realized residuals is on average larger than the max-
imum of the absolute value of the residuals in the posterior
predictive distribution (as is expected), but the probability that
the maximum of the absolute value of the realized residuals
is larger than this statistic under the posterior predictive dis-
tribution varies with the number of clusters. If we have four
clusters, then the probability that the maximum of the abso-
lute value of the realized residuals is greater than the maxi-
mum of the absolute value of the posterior predictive residuals
is .013. With six clusters, this probability rises to .023; with
seven clusters, it becomes .091. As we increase the number of
clusters, this probability always exceeds .05, but it never rises
above .2 for the models that we considered. Because seven
clusters gives a reasonable fit by this criterion, and because
increasing the number of clusters above this number did not
improve the fit substantially, we use the seven-cluster model
for the purpose of evaluating the H function. Whereas the
choice of the number of clusters does influence the exact val-
ues of various posterior probabilities, the qualitative features
of H are not unduly sensitive to this choice.

6.3 Computational Details

We use the Metropolis algorithm to obtain simulations from
the posterior distribution of the parameters, p(6|s). The details
and complications are much like those of fitting mixture mod-
els (see e.g., Gelman et al. 1995), although here there is
another difficulty because we are fitting bivariate mixtures.
When implementing Markov chain Monte Carlo for unidi-
mensional mixtures, one must use some sort of convention
to uniquely identify the different components of the param-
eter vector. For example, consider a two-component univariate
Gaussian mixture model where each component is character-
ized by a mean and standard deviation. If 6, is the mean for
component 1 and 6, is the mean for component 2, then one
can uniquely identify the vector 6 by requiring 0, < 0,. If one
fails to implement this constraint, then the Markov chain will
travel back and forth between two (equivalent) modes, one
mode where 0, < 0, and the other where 0, < 6,. This can
cause difficulties in terms of the chain converging to its equi-
librium distribution, but these difficulties are purely for seman-
tic reasons. There is a similar problem with bivariate mix-
tures, but the effects are harder to overcome because the plane
cannot be ordered like the real line. That is, to identify the
vector 6, we must use some constraint—for example, that the
x-components of the cluster centers are increasing. The prob-
lem is that if two clusters have nearly identical x-components
but widely separated y-components, then there will be two
modes in the parameter space that are nearly equivalent as the
y-components switch. In such a case, the marginal distribution
of the y-components of the cluster centers will be bimodal. If
one attempts to identify 6 with a constraint on, say, the stan-
dard deviations of the clusters then the problem is even worse,
because then both the x and y components can be bimodal. In
practice, our Metropolis algorithm (which uses a multivariate
normal jumping kernel with covariance matrix given by the
negative inverse of the observed information at the posterior
mode scaled to obtain a 20%-30% acceptance rate) moves
fluidly between these modes, but long run times (in terms of
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Figure 8. Comparison of the Maximum of the Absolute Value of the Standardized Residuals Under the Posterior Distribution to the Posterior
Predictive Distribution of this Statistic for Six Different Numbers of Clusters.

the number of iterations) are necessary to get the Gelman—

Rubin \/ R diagnostic statistics below 1.2. (See Gelman and
Rubin 1992 for diagnosing convergence of Markov chains.)
For K in the range of 5-10, we used 8 chains and found that
typically 100,000 iterations were sufficient to obtain conver-
gence. For models with more than this number of clusters,
even more iterations were necessary to obtain convergence
(e.g., with K = 12, we used 4 chains and 200,000 iterations

to get \/ R < 1.2 for all of the parameters). Although this may
seem unbearable to those accustomed to having a substantial
matrix inversion to carry out for each iteration, the calcula-
tions are not excessively time-consuming, because the poste-
rior is easy to evaluate.

Given samples from p(0|s), it is relatively straightforward
to find the normalized version of H(d), but we must attend
a slight detail. As mentioned previously, when we standard-
ize, we must calculate what we think H(d) would be had
we a homogeneous Poisson process. For the simple method,
we simply used the area of the annuli and the total number
of points per unit area, but there is the possibility that these
annuli overlap and intersect the boundary. Therefore, for each
draw from the posterior, we must determine the area cov-
ered by the annuli that we set out around the cluster centers.
Because these annuli may overlap in arbitrarily complicated

ways, finding this area is not so straightforward. Our solution
is to use Monte Carlo integration. That is, we define a func-
tion over our sampled region that is 1 if the point is in some
annulus for a given distance and O otherwise, then draw many
points (we used 100,000) uniformly over the sampled region
and determine what percentage of these result in our function
returning 1. Note that this area depends on the locations of the
cluster centers and the distance at which we are estimating H;
hence we must repeat this calculation for each parameter draw
and distance (making the normalization somewhat computa-
tionally intensive). One could certainly add this refinement to
the construction of the H* function, but this would detract
from its simplicity.

7. DISCUSSION

Although the K function is useful for determining whether
a sample realization is from a homogeneous Poisson process,
if the process is of a different form, then we should use other
functions of the data as summaries. Whereas the H(d) func-
tion presented here is useful for the current application, we
see this not as an alternative to the standard methodology, but
rather as a supplement. We expect that different applications
will suggest different summaries for the exploration of point
process data. Although the Bayesian version of the H function
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is more defensible (because it integrates over all of the uncer-
tainty in the model specification), the simplified version is use-
ful because it is much easier to compute. For routine analyses,
the simplified estimate is most likely adequate.

Although the emphasis in this article is on the H function,
we also think that modeling point processes with inhomoge-
neous Poisson processes with intensities that are linear com-
binations of Gaussian densities is a useful general strategy for
analyzing point process data. Just how general such a param-
eterization is remains an open question. For some applica-
tions, more parsimonious parameterizations may be achieved
by using functions other than Gaussian densities. We used
the Gaussian density for two reasons: the assumed spheri-
cal symmetry of the spread of infection and the desire to
cluster points based on the intensity. Clearly, use of bicubic
splines (as in Ogata and Katsura 1988) would not suit either
of these requirements as naturally. Another strength of the
current method is the Bayesian formulation. This framework
saves us from having to work with models that are station-
ary (or confining our analysis to datasets that have replicate
observations on the point process), and it frees us from hav-
ing to be concerned with deriving consistency and asymptotic
normality results under the stationarity condition.

Although it has been suspected, based on images generated
by in situ hybridization, that infection spreads locally (at least
during some stages of infection), this has never been demon-
strated until now. The model of transmission put forward by
Grossman et al. (1998) seemed logical at the time, but some
aspects of that model have since been shown to be incorrect,
and hence that theory needs some rethinking. In their expla-
nation of PAT, Grossman et al. maintained that activation is
a crucial component of the model, because it was thought at
that time (based on in vitro studies) that T cells could not
be infected unless they were activated. Grossman et al. main-
tained that stochastic activation events driven by pathogens
unrelated to HIV provide the basis for sporadic local expan-
sion of the infection via the PAT mechanism, and these spo-
radic expansions provide the means for the long-term survival
of latent reservoirs of infected cells when no virus can be
detected in the blood. Zhang et al. (1999) unexpectedly found
that in vivo SIV (and HIV) replicates in nonactivated T cells
at low levels (which is not possible in vitro). Hence the activa-
tion aspect of the PAT model may be superfluous even though
the local spread aspect of the theory is defensible, at least in
the early stages of infection. The surprising result of Zhang
et al. was interpreted as evidence for a model of propagation
of infection in vivo in which the type of cell infected initially
is determined by the representation of the cell types in the
population and the spread of infection is to the nearest cells
in the vicinity of a productively infected cell. In the earliest
stages of infection, HIV and SIV must be able to use resting
T cells, because these cells are most available to the virus in
lymphatic tissues. The spatial pattern of infection predicted by
this model, which we have demonstrated here, is that produc-
tively infected cells will be clustered about an infectious “par-
ent” during the early stages of infection. Thus we have shown
that statistical approaches effectively complement traditional
investigations of fundamental problems in viral pathogenesis
in the complex in vivo setting by testing the spatial predictions
of hypothesized mechanisms.
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