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Proteomics

Proteomics is the study of all proteins and their various forms
much like genomics is the study of genes.

Standard assays exist for measuring individual proteins, so what
makes proteomics distinct is that we use some method for studying
all of the proteins in some biological context, or what is called the
proteome.

What the various methods of proteomics research have in common
is an attempt to separate a collection of proteins in a way so that
one can quantify that which one has separated.



Proteomics

Proteins frequently undergo post-translation modifications and
these changes can have a dramatic impact on the function of the
protein.

For example, phosphorylation is the addition of a phosphate group
(PO4) to a protein and this can have a dramatic impact on the
function of the protein.

Some proteins can undergo phosphorylation at multiple sites and
the site at which they are phosphorylated can determine the
activity of the protein (e.g. the RNA binding molecule CELF1).



Proteomics

Hence much like investigating if different isoforms of the same
gene are present at different levels in a biological sample,
proteomics researchers are interested in the extent to which
proteins exhibit different post-translational modifications.

As there is at least one protein for each gene, there are at least
22,000 proteins in humans, but when one considers the number of
different gene products produced via alternative splicing and if one
distinguishes between the various post-translational modifications
of a protein (as one should) the magnitude of the human proteome
is enormous.



Proteomics

There is also a huge range of protein concentrations in human
samples:

IL-6 levels in human serum samples have been reported at 2 pg/ml
(Lai R, et al., 2002, Cancer, 95, 1071-1075),

while albumin has been found as high as 50 mg/ml (Ritchie RF, et
al. (1999) J Clin Lab Anal, 13, 280-286) giving a more then 10
orders of magnitude range of concentrations.



2 dimensional gel electrophoresis

A number of different technologies have been developed for
separating complex mixtures of proteins.

One method is 2 dimensional gel electrophoresis.

Typically, one first separates by isoelectric focusing (which depends
on the charge state of the protein), then by mass.

To compare samples one needs to align the 2 images one obtains
after separating then quantify the darkness of the spot.

2-D DIGE (fluorescence 2 dimensional differential gel
electrophoresis) is an alternative that uses multiple dyes to label
samples thus avoiding the need for aligning if one only compares 2
samples.



2 dimensional gel electrophoresis

To best make use of this approach for realistic clinical applications
one should use an internal control as a reference and run all of
one’s samples with this internal control.

One can identify the proteins at a spot in a gel via Edman
sequencing or mass spectrometry.

The use of gels has a long history and the use of multivariate
statistical techniques that are now common for the analysis of
microarrays dates back to the early 1980s in the gel electrophoresis
literature.

Unfortunately, over the last 15 years it has become apparent that
multiple proteins can reside at the same spot on a gel and not all
proteins are labeled by the reagents used for identifying proteins in
this system.



2 dimensional gel electrophoresis

There is an R package called digeR that can be used for analysis of
these types of data sets.

This package expects data in a file with x and y coordinates of the
spots and the spot volume for each sample (so it does not have
warping functionality).

Most image analysis software (e.g. Progensis and Metamorph) is
capable of producing files of this type from images.

This package is unlike the others we have used in class thus far: it
is driven by a graphical user interface.

Its functionality doesn’t go much beyond things we’ve already seen
how to do using the command line in R and isn’t nearly as flexible.



Protein microarrays

Some researchers have successfully bound proteins to substrates
(typically highly engineered slides that have, for example, nanowells
or microfluidic channels).

One can then screen proteins for various properties, such as the
tendency to bind to other molecules-these are functional protein
microarrays.

For example, in Zhu H, et al. (2001), “Global analysis of protein
activities using proteome chips”, Science, 293, 2101-2105.

Protein microarrays were used to screen yeast proteins for binding
activity to calmodulin (a protein that is part of many cellular
processes due to its ability to bind to calcium ions).



Protein microarrays

Others have developed protein microarrays that are more like
genomic microarrays by binding protein specific probes (e.g.
antibodies) to a substrate then exposing that substrate to a sample
of proteins.

See for example Sreekumar A, et al. (2001), “Profiling of cancer
cells using protein microarrays: discovery of novel
radiation-regulated proteins”, Cancer Research, 61, 7585-7593.

The latter type of microarray is called a analytical protein
microarray.

Cross-hybridization seems to be more of an issue than is the case
with arrays with bound nucleic acid sequences.



Protein microarrays

These and other microarray applications in proteomics entail the
same sorts of considerations we dealt with in the context of
genome microarray, namely

I normalization: if we think that most spots shouldn’t show a
signal then there shouldn’t be any systematic deviations in
plots like an MA plot

I confounders: are there differences among the samples that
should be accounted for when testing for differences between
groups, e.g. age

I multiple hypothesis testing

I pathway analysis



Mass spectrometry

Most contemporary researchers use mass spectrometry in some
form to do proteomics.

A mass spectrometer consists of 3 basic components:

1. an ion source

2. a mass analyzer

3. a detector

There are many choices available for these components leading to
a host of different approaches.



Mass spectrometry

Most researchers purchase the machines from one of a small
number of manufacturers, so there are frequently issues with
proprietary methods and software.

Nonetheless there are some standardized data formats such as the
mzXML and netCDF file formats (the Bioconductor package mzR
has functions for reading these files into R and manipulating such
files).

MS versus tandem MS (i.e. MS/MS): latter is for sequencing ions.

The development of 2 ionization methods, matrix assisted laser
desorption ionization (MALDI) and surface enhanced laser
desorption/ionization (SELDI), allowed for the use of mass
spectrometry for the analysis of complex biological samples.



Mass spectrometry

These are typically used in conjunction with time of flight (TOF)
mass analyzer.

These determine the mass by measuring the amount of time it
takes for the ion to travel through a tube with known length.

Once the ion hits the detector the charge is determined and the
mass over charge is computed for that ion.



Shotgun proteomics

In shotgun proteomics one first digests the sample containing
proteins so as to generate a set of fragments.

Typically trypsin is used for this, and upon digesting a protein with
trypsin generally 30-50 different peptides will be created.

One then uses a mass spectrometer to examine the spectrum of a
sample.

Many have explored the use MALDI-TOF and SELDI-TOF for
analysis of the trypsin digested samples.

Others have pursued the use of LC-MS/MS for analysis of the
resulting mixture.



Shotgun proteomics

The use of MALDI-TOF and SELDI-TOF produces tens of
thousands of data points which represent the intensity
corresponding to each ion mass to charge ratio.

As these methods mostly produce singly charged ions we can
roughly think of the data as quantity of each mass.

One problem is that the intensities have not proved as reproducible
as many chemists would expect.



Shotgun proteomics

This has been explained by

I the exact chemical composition of the sample

I differences in the substrate used

I other poorly understood factors

For this reason some think of shotgun proteomics as not really a
quantitative approach, I tend to think of it as signal corrupted by
noise (like all the data I see).



Analysis of MS data in R

There are several packages available for the analysis of
MALDI-TOF and SELDI-TOF data.

These include IPPD, PROcess and MassSpecWavelet.

We will examine the MassSpecWavelet package as an example of
what is involved.

Here is an example of a SELDI-TOF spectrum from a patient
sample.
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Analysis of MS data in R

The continuous wavelet transform of a signal s(t) depending on
value t is defined for a pair of scales and positions a and b
respectively by

C (a, b) =

∫
s(t)ψa,b(t) dt

where

ψa,b(t) =
1√
a
ψ

(
t − b

a

)
.

and ψ(t) is the mother wavelet.

We will use the Mexican hat wavelet as the mother wavelet: it is
proportional to the second derivative of the standard normal
density.



Analysis of MS data in R

C (a, b) measures the extent to which your signal is similar to the
mother wavelet near position b at scale a.

The idea behind the algorithm used in the MassSpecWavelet
package is that if a portion of the spectrum is similar to our
mother wavelet at some scale then there is a peak at that location.

Wavelets are used throughout all areas of science for this sort of
signal filtering property.

It is an extension of Fourier based techniques: the primary
difference is that we allow the frequency composition of a signal to
vary over t, which for us is mass/charge value.



Analysis of MS data in R

To use the MassSpecWavelet, first get the continuous wavelet
transform using the cwt function.

> library(MassSpecWavelet)
> data(exampleMS)
> scales <- seq(1, 64, 3)
> wCoefs <- cwt(exampleMS, scales=scales,
+ wavelet="mexh")
> wCoefs <- cbind(as.vector(exampleMS), wCoefs)



Analysis of MS data in R

We can then make a plot to examine the coefficients.

> xTickInterval <- 1000
> plotRange <- c(5000, 11000)
> image(plotRange[1]:plotRange[2], scales,
+ wCoefs[plotRange[1]:plotRange[2],2:23],
+ col=terrain.colors(256), axes=FALSE,
+ xlab="m/z index", ylab="CWT coefficient scale",
+ main="CWT coefficients")
> axis(1, at=seq(plotRange[1], plotRange[2],
+ by=xTickInterval))
> axis(2, at=c(1, seq(10, 64, by=10)))
> box()
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Analysis of MS data in R

The method is based on searching the collection of wavelet
coefficients for local maxima in the position at each scale, then
connecting these to identify ridges.

So we next get local maxima and ridges, then plot these local
maxima (the set of ridges looks the same).

> colnames(wCoefs) <- c(0, scales)
> localMax <- getLocalMaximumCWT(wCoefs)
> ridgeList <- getRidge(localMax)
> plotLocalMax(localMax, wCoefs, range=plotRange)
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Analysis of MS data in R

We then use the ridgeList to identify the major peaks.

We will also allow for small peaks near larger ones.

> SNR.Th <- 3
> nearbyPeak <- TRUE
> majorPeakInfo <- identifyMajorPeaks(exampleMS,
+ ridgeList, wCoefs, SNR.Th = SNR.Th,
+ nearbyPeak=nearbyPeak)
> peakIndex <- majorPeakInfo$peakIndex
> plotPeak(exampleMS, peakIndex, range=plotRange,
+ main=paste("Identified peaks with SNR >", SNR.Th))
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Analysis of MS data in R

We can do all of these steps at once using the peakDetectionCWT
function.

This is a wrapper function that calls all of the routines we have
used.

> nearbyPeak <- TRUE
> peakInfo <- peakDetectionCWT(exampleMS,
+ SNR.Th=SNR.Th, nearbyPeak=nearbyPeak)
> majorPeakInfo <- peakInfo$majorPeakInfo
> peakIndex <- majorPeakInfo$peakIndex



Analysis of MS data in R

Sometimes improvements are possible by using the initial set of
peaks as a starting point.

We will now look at the entire spectrum.

> plotRange <- c(5000, length(exampleMS))
> betterPeakInfo <- tuneInPeakInfo(exampleMS,
+ majorPeakInfo)
> plotPeak(exampleMS, peakIndex, range=plotRange, log="x",
+ main=paste("Identified peaks with SNR >", SNR.Th))
> plotPeak(exampleMS,betterPeakInfo$peakIndex,
+ range=plotRange, log="x",
+ main=paste("Identified peaks with SNR >", SNR.Th))
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Analysis of MS data in R

One can get peak locations and heights by accessing the peakIndex
object.

> peakIndex

1 106 1 143 1 175 1 231 1 265 1 336 1 498 1 563 1 694 1 1314

106 143 175 231 265 336 498 563 694 1314

...

1 5401 1 6950 1 7248 1 7547 1 7947 1 8013 1 8086 1 8874 1 8920 1 10653

5401 6950 7248 7547 7947 8013 8086 8874 8920 10653

...

1 24720

24720

To check this, let’s examine the spectrum around the peak at
location 8086.

> exampleMS[8076:8096]

[1] 2295 2471 2471 2664 2882 2999 3192 3356 3494 3721 3743 3606 3509 3514 3425

[16] 3520 3281 3142 3007 2935 2984

So that does appear to be a local maximum.



Analysis of MS data in R

We can also generate a list of peaks and the intensity at that peak.

> cbind(peakIndex, exampleMS[peakIndex])
peakIndex

1 106 106 1784
1 143 143 1387
1 175 175 1068
1 231 231 1161

...
1 17526 17526 1109
1 20716 20716 1084
1 24720 24720 1177

So one can process the samples separately to get a sample specific
peak list.



Testing for differences in proteomics

When you combine data across samples, one needs to allow some
deviations in the m/z value.

Usually there will be many zeros after combining as certain peaks
in one sample will have no corresponding peak in another sample.

This has led to a number of approaches to developing 2 sample
tests that outperform existing methods as they have been
developed specifically for the case of many zeros.

What these tests do is combine a test for the difference in the
sample proportions with a test for a difference in the non-zero
values to obtain a single test statistic.

Such tests are usually based on the theory of likelihood ratio tests.



Analysis of MS data in R

The IPPD package has similarly functionality but uses an extension
of the normal distribution to model the shape of the peaks.

The generalization allows for some skewness in the shape.

The PROcess package has a set of tools for baseline subtraction,
smoothing and peak picking.

This package requires lots of user specification of parameters.



iTRAQ

iTRAQ is the name of a system that is used to label peptides with
one of up to 8 different tags.

The tags are designed so that the ions resulting from them during
MS/MS differ in mass by 1 weight unit.

The tags reflect different biological samples (some tags can be
used as internal controls so that one can compare across more
than 8 samples).

The different tags are designed to not alter the relative mass of
different peptides so that the tagged peptides with the same
identity but different tags all have the same mass.

Hence in single MS mode one can extract a peptide, break it up,
then use tandem MS to determine the sequence of the peptide.



iTRAQ

During MS/MS the tag breaks off so that one gets reports on the
quantity of each tag (since the mass of the tag ions is known) at
the same time as one determines the sequence of the peptide.

The system for running the assay comes with some software (Pro
Quant), however there are a couple of R packages that allow for
exploratory examination of the data.

i-Tracker is a perl script that can be used to link the results from
the iTRAQ system to other peptide identification systems, such as
Mascot and Sequest.



iTRAQ in R

The R package MSnbase has a set of classes to enable analysis of
proteomics data sets in a manner that is similar to R packages for
analysis of microarrays (i.e. the eSet and Expression classes).

It can read in data in the mzXML, mzData, and mzML formats or
in the form of peak lists (in the mgf format).

It has tools to display the spectrum and a number of quality
checks and methods for cleaning up the data.



iTRAQ in R

The isobar package is designed with the same goal in mind,
however it currently has less functionality in terms of input files.

It implements a normalization method that computes a factor such
that the median intensity (across all peptides) for all reporter
channels are equal.

Other than this the MSnbase package has more tools for quality
assessment.



Metabolomics

A metabolite is a small molecule (less than 1000 Daltons) that is
involved in biological processes.

This includes many familiar biological molecules, e.g. sugars, lipids.

By measuring the molecules actually involved in a metabolic
process the hope is that we will develop more sensitive measures of
disease processes.

The 2 primary tools for this are nuclear magnetic resonance
spectroscopy and liquid chromatography coupled with mass
spectrometry (LC-MS).

We will examine the latter here.



Metabolomics

In LC-MS, one first separates the sample of interest via
chromatography, so that different peptides in the complex mixture
elute out of the column in a manner that depends on specific
properties of the peptides.

As the sample elutes, the sample is subjected to an MS run.

These data sets generate many spectra for each sample, the
Water’s based system used here with which I am most familiar
generates about 7.5 million observations per sample.

Thus the sample is separated into about 8 million “bins” so
hopefully each bin contains only one compound.

The file formats are the same as for proteomics, e.g. mzXML files.



Metabolomics

There is an R package called xcms that provides a complete
analysis strategy for these data sets.

Currently there is not much support for quality assessment and
remediation provided by this package.

We will discuss the package called xcms-it implements the original
algorithm (published in 2006) but allows for choices.

These methods have extremely limited functionality: basically they
can just test for differences between groups without any covariate
adjustment.



Metabolomics in R

The xcms package determines group membership based on the
directory structure from which it reads the data.

So in the directory mzXMLFiles I have a directory called testDir1
in which I put collections of files obtained under the same
conditions into 2 distinct subdirectories.

These subdirectories are called testDat1 and testDat2 and each
has 4 mzXML files obtained by applying markerWolf to the files
that come out of the Waters’s pipeline. For example

> tset1 <- xcmsSet("C:/mzXMLFiles/testDir1")



Metabolomics in R

> tset1
An "xcmsSet" object with 8 samples
Time range: 8.5-748.5 seconds (0.1-12.5 minutes)
Mass range: 50.5756-999.8372 m/z
Peaks: 26159 (about 3270 per sample)
Peak Groups: 0
Sample classes: testDat1, testDat2
Profile settings: method = bin

step = 0.1
Memory usage: 3 MB



Metabolomics in R

The XCMS algorithm is structured as follows

1. peak detection: slice the 2 dimensional m/z, rt space into strips
that are some fraction of a mass unit (e.g. 0.1 m/z) wide and then
for each pair of slices the maximum is computed for all time points
across the pair-this gives the extracted ion base-peak
chromatogram (EIBPC).

Then filter this with the second derivative of a Gaussian density
with sd=13 (the zero crossings of the density define the endpoints
used to compute the area and so no background correction is
performed).

Then keep peaks where the signal to noise ratio exceeds 10.



Metabolomics in R

2. peak matching: there is more variation in the retention time
axis, so use fixed 0.25 m/z bins to match peaks in the m/z axis
with overlapping bins (e.g. 100.0-100.25, 100.125-100.375).

Once peaks are matched across samples based on m/z, a
nonparametric density estimate is applied to the sets of retention
times.

The modes of the smoothed density are called meta-peaks.

Then meta-peaks are only retained when at least half of the
subjects are part of that meta-peak.



Metabolomics in R

3. Retention time alignment: From this one typically gets several
hundred “well behaved” peak groups (i.e. those that most samples
have a peak and very few have multiple peaks).

Then for each of these groups one computes a median and a
deviation from median.

This typically results in a detailed nonlinear retention time
deviation as it depends upon retention time.

A loess curve is then fit to these data and this gives the alignment
function to use.

At the ends where there are no well behaved peaks the alignment
function goes to a constant.

Then one can use the corrected peak lists to do peak matching
again. Could do this over and over but just 2 groupings is what is
generally recommended.



Metabolomics in R

So let’s do the peak grouping.

> tset2 <- group(tset1)
> tset2
An "xcmsSet" object with 8 samples
Time range: 8.5-748.5 seconds (0.1-12.5 minutes)
Mass range: 50.5756-999.8372 m/z
Peaks: 26159 (about 3270 per sample)
Peak Groups: 3255
Sample classes: testDat1, testDat2
Profile settings: method = bin

step = 0.1
Memory usage: 3.42 MB



Metabolomics in R

Then we can do RT alignment as follows, here we try both options.

> tset3a <- retcor(tset2, family = "symmetric",
+ plottype = "mdevden")
Retention Time Correction Groups: 866
> tset3b <- retcor(tset2, family = "gaussian",
+ plottype = "mdevden")
Retention Time Correction Groups: 866

Then regroup using the retention time alignment.

> tset4a <- group(tset3a)
113 175 238 300 363 425 488 550 613 675 738 800 863
925 988
> tset4b <- group(tset3b)
113 175 238 300 363 425 488 550 613 675 738 800 863
925 988



Metabolomics in R

Then take a look at the resulting objects

> tset4a
An "xcmsSet" object with 8 samples
Time range: 8.4-748.6 seconds (0.1-12.5 minutes)
Mass range: 50.5756-999.8372 m/z
Peaks: 26159 (about 3270 per sample)
Peak Groups: 3257
Sample classes: testDat1, testDat2
Profile settings: method = bin

step = 0.1
Memory usage: 4.32 MB

And we see fewer peaks using the Gaussian family specification.



Metabolomics in R

> tset4b
An "xcmsSet" object with 8 samples
Time range: 7.4-748.7 seconds (0.1-12.5 minutes)
Mass range: 50.5756-999.8372 m/z
Peaks: 26159 (about 3270 per sample)
Peak Groups: 3240
Sample classes: testDat1, testDat2
Profile settings: method = bin

step = 0.1
Memory usage: 4.32 MB

Then after this last grouping we need to determine peak intensities
for those samples that don’t have a peak at one of the meta-peaks

> tset5a <- fillPeaks(tset4a)



Metabolomics in R

Finally we can generate a report which provides a test for
differences between groups.

Here we specify that we are willing to accept a mass difference of
0.15 when trying to determine the identity of a metabolite when
looking up the mass in the metlin database (a database for
identifying metabolites).

> r1a <- diffreport(tset5a, "testDat1", "testDat2",
+ metlin=0.15)

Then r1a is a dataframe whose fourth column holds the set of
p-values for testing for a group difference.

So we can look at a histogram and determine that there is not
much going on here.
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Biomarkers

A biomarker is a quantity that is measured in samples that
indicates a biological state.

Many of the things we have discussed in this course can be the
basis for developing biomarkers.

Some biomarkers are static while some are dynamic.

Some biomarkers are more invasive than others: the less invasive
the better.

The most common use of a biomarker is for guidance of treatment.



Biomarkers

For example, CD4 levels are a commonly used biomarker for HIV
positive subjects.

This is easily and reliably measured from blood samples.

CD4 levels are mechanistically linked to HIV progression, and this
is also highly desirable.

They change over time with a decline being associated with an
increased risk of developing opportunistic infections.

In the past CD4 levels were used to determine the time to initiate
anti-retroviral therapy.



Biomarkers

All of these features

1. easy to get

2. reliably measured

3. obvious link to disease

4. you can intervene to prolong patient survival

make CD4 levels an exemplary biomarker.



Biomarkers

CD4 levels are a surrogate marker for the health of one’s immune
system.

By using a well validated surrogate marker one can design studies
with endpoints other than “all cause mortality”.

There are complex practical and ethical issues involved in studies
that use surrogate endpoints.

For example, hard endpoints like “all cause mortality” require that
patients die however evaluation of outcomes is much more
straightforward.



Biomarkers

CD4 is a protein and a number of other proteins have been
suggested for other conditions.

One of the primary problems with biomarker identification in
proteomics and metabolomics is determining the identity of the
compound that differs between groups.

This is especially problematic for metabolomics as the databases
one must use to identify compounds based on m/z and retention
time are very much incomplete.

As compound identification is the last step of the entire procedure,
this can be frustrating.
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