STAT 8311/PUBH 8401 HW 10

Due Nov. 30, 2022

Exercise 1. Show that if \mathcal{E} is a linear subspace of \mathbb{R}^{n} where $\mathcal{E}=\mathcal{E}_{1}+\mathcal{E}_{2}$ for 2 linear subspaces \mathcal{E}_{1} and \mathcal{E}_{2}, then if P_{X} is the usual projection onto $X, P_{\mathcal{E}_{1}} P_{\mathcal{E}}=P_{\mathcal{E}_{1}}$.

Exercise 2. Using the result from the previous exercise show that $Q_{\mathcal{E}_{1}} Q_{\mathcal{E}}=Q_{\mathcal{E}}$, where Q is the usual orthogonal projection.

Exercise 3. Suppose we have a model where the vector y depends on a p-level factor and a collection of continuous predictor variables Z_{i} for $i=1, \ldots, m$. So we can write

$$
y=X \beta+Z \gamma+\epsilon
$$

Let \mathcal{E}_{1} be the space spanned by the columns of X and \mathcal{E}_{2} the space spanned by the columns of Z and suppose both β and γ are estimable. If $\mathcal{E}=\mathcal{E}_{1}+\mathcal{E}_{2}$ then show that

$$
Q_{\mathcal{E}} y=Q_{\mathcal{E}_{1}} y-Q_{\mathcal{E}_{1}} Z \hat{\gamma} .
$$

(Hint: use the result from the previous problem.)
Exercise 4. Continuing with the previous problem, show that

$$
Z^{T}\left(Q_{\mathcal{E}_{1}} y-Q_{\mathcal{E}_{1}} Z \hat{\gamma}\right)=0
$$

Exercise 5. From the previous exercise, show that if $Z^{T} Q_{\mathcal{E}_{1}} Z$ is full rank then $\hat{\gamma}=$ $\left(Z^{T} Q_{\mathcal{E}_{1}} Z\right)^{-1} Z^{T} Q_{\mathcal{E}_{1}} y$.

Exercise 6. Using the result from the previous exercise, find an explicit expression for $\hat{\gamma}$ if there is a single z variable and the experiment is balanced for the factor encoded by X.
(Hint: using notation like $\left(y_{i j}, z_{i j}\right)$ for group i and replicate j for the ANOVA part of the design makes this a little simpler.)

Exercise 7. Show that $Z^{T} Q_{\mathcal{E}_{1}} Z$ has the same rank as $Q_{\mathcal{E}_{1}} Z$. Show that the latter matrix is full rank if Z is full rank.

