STAT 8311/PUBH 8401 HW 9

Due Nov. 23, 2022

Exercise 1. Let x_{1} and x_{2} be 2 vectors in \mathbb{R}^{2} and let θ be the angle between them, measured counter-clockwise from x_{1} to x_{2}. Show that $\cos (\theta)=\frac{\left(x_{1}, x_{2}\right)}{\left\|x_{1}\right\|\left\|x_{2}\right\|}$ and deduce that x_{1} and x_{2} are orthogonal if and only if $\theta=90^{\circ}$ or $\theta=270^{\circ}$. (Hint: $\cos \left(\theta_{2}-\theta_{1}\right)=$ $\left.\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right).\right)$

Exercise 2. Suppose we have the model $y_{i j}=\mu_{0}+\beta_{i}+\epsilon_{i j}$ for $i=1, \ldots, p$ and $j=1, \ldots, n$ where $\epsilon_{i j}$ are independently distributed according to a 0 mean normal distribution with variance σ^{2}. We've seen that the OLS estimate of $\mathrm{E} y_{i j}$ is given by $\frac{1}{n} \sum_{j} y_{i j}$. Why can't one obtain unique estimates of μ_{0} and β_{i} for all i without additional constraints? If we assume $\beta_{1}=0$ provide unbiased estimates of μ_{0} and β_{i} for all i. If we assume $\sum_{i} \beta_{i}=0$ provide unbiased estimates of μ_{0} and β_{i} for all i.

Exercise 3. Show that the Kronecker product of 2 idempotent matrices is also idempotent.

Exercise 4. Show that the Kronecker product of 2 orthogonal matrices is also orthogonal.

Exercise 5. Let A and B be 2 matrices. Show that the singular value decomposition of $A \otimes B$ can be expressed in terms of the elements of the singular value decomposition of A and B, and use this to express the eigenvalues of $A \otimes B$ in terms of the eigenvalues of A and B.

Exercise 6. Consider the regression model $y_{i}=\beta x_{i}+\epsilon_{i}$ where ϵ_{i} are iid zero mean errors with variance σ^{2}. Find an expression for the F test of the null hypothesis that $\beta=0$.

Exercise 7. On page 115 of the course notes a reparameterization trick is introduced as a way to simplify a test of a null hypothesis that takes the form $A_{1} \beta=0$. The course notes state that if we construct A_{0} so that $A_{0}^{T} A_{1}=0$ then $Z_{0}^{T} Z_{1}=0$ and this leads to a simplification in the F test. Is the statement that $A_{0}^{T} A_{1}=0$ implies $Z_{0}^{T} Z_{1}=0$ true? If so prove it, otherwise provide a counterexample. If it is not true, is there a sufficient condition that makes this true?

