A reading list for next generation sequencing

Cavan Reilly

November 14, 2017

Early Publication

Wang, Sandberg, Luo et al. (2008) "Alternative isoform regulation in human tissue transcriptomes", Nature, 456, 470–476.

Useful web resource

SEQanswers: seqanswers.com

A typical RNA-seq example: the cow data set

McCabe MS, Waters SM, Morris DG, et al. (2012), "RNA-seq analysis of differential gene expression in liver from lactating dairy cows divergent in negative energy balance", *BMC Genomics*, 13.

Relation to microarrays

Marioni, Mason, Mane, et al. (2008), "RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays", *Genome Research*, 18, 1509–1517.

Su, Li, Chen, et al. (2011) "Comparing next-generation sequencing and microarray technologies in a toxicological study of the effects of aristolochic acid on rat kidneys", *Chemical Research in Toxicology*, 2011, 1486-93.

Bowtie

Burrows, M. and Wheeler, D.J. (1994), "A block-sorting lossless data compression algorithm"

Ferragina, P. and Manzini, G. (2000), "Opportunistic data structures with applications"

Langmead B, Trapnell C, Pop M, et al. (2009), "Ultrafast and memory-efficient alignment of short DNA sequences to the human genome", *Genome Biology*, 10:R25.

Langmead B, Salzberg SL (2012), "Fast gapped-read alignment with Bowtie 2", Nature Methods, 9(4):357–359.

SAM file specification

Li H, Handsaker B, Wysoker A, et al. (2009), "The sequence alignment/map format and SAMtools", *Bioinformatics*, 25, 2078–2079.

SAMtools website: http://samtools.sourceforge.net/ and http://www.htslib.org/.

detailed reference: http://samtools.sourceforge.net/SAM1.pdf

RNA-Seq data analysis: TopHat, Cufflinks and more

Trapnell C, Pachter L, Salzberg SL (2009), "TopHat: discovering splice junctions with RNA-Seq", *Bioinformatics*, 25, 1105–1111.

Trapnell C, Williams BA, Pertea G, et al. (2010), "Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation", *Nature Biotechnology*, 28, 511–515.

Trapnell C, Roberts A, Goff L, et al. (2012), "Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks", *Nature Protocols*, 7, 562–578.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R and Salzberg SL (2013), "TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions", *Genome Biology*, 14:R36.

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT and Salzberg SL (2013), "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads", *Nature Biotechnology*, doi:10.1038/nbt.3122.

Kim D, Langmead B and Salzberg SL (2015), "HISAT: a fast spliced aligner with low memory requirements", *Nature Methods*, 12, 357-360.

Pertea M, Kim D, Pertea GM, Leek JT and Salzberg SL (2016), "Transcript-level expression analysis of RNA-seq experiments with HISAT, Stringtie and Ballgown", *Nature Protocols*, 11, 1650–1667.

Bray N, Pimentel H, Melsted P and Pachter L (2016), "Near-optimal probabilistic RNA-seq quantification", *Nature Biotechnology*, 34, 525-527.

Fu J, Frazee AC, Collado-Torres L, Jaffe AE and Leek JT (2017). ballgown: Flexible, isoform-level differential expression analysis. R package version 2.10.0.

RNA-Seq data analysis with negative binomial based methods: edgeR, DESeq and DEXSeq

Robinson MD, Smyth GK (2007), "Moderated statistical tests for assessing differences in tag abundance", *Bioinformatics*, 23, 2881–2887.

Robinson MD, McCarthy DJ, Smyth GK (2009), "edgeR: a Bioconductor package for differential expression analysis of digital gene expression data", *Bioinformatics*, 26, 139–140.

Anders S, Huber W (2010), "Differential expression analysis for sequence count data", Genome Biology, 11:R106.

McCarthy DJ, Chen Y, Smyth GK (2012), "Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation", *Nucleic Acids Research*, 40, 4288–4297.

Anders S, Reyes A, Huber W (2012), "Detecting differential usage of exons from RNA-seq data", Genome Research, 22, 2008–2017.

Love MI, Huber W, Anders S (2014), "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2", *Genome Biology*, 15:550.

DNA-Seq data analysis: GATK and Genome STRiP

McKenna A, Hanna M, Banks E et al. (2010), "The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequence data", *Genome Research*, 20, 1297–1303.

DePristo M, Banks E, Poplin R, et al (2010), "A framework for variation discovery and genotyping using next-generation DNA sequencing data", *Nature Genetics*, 43, 491–498.

Handsaker RE, Korn JM, Nemesh J, et al. (2011), "Discovery and genotyping of genome structural polymorphism by sequencing on a population scale", *Nature Genetics*, 43, 269–276.

Nielsen R, Paul JS, Albrechtsen A et al. (2011), "Genotype and SNP calling from next-generation sequencing data", *Nature Reviews: Genetics*, 12, 443–451.

Van der Auwera GA, Carneiro M, Hartl C, Poplin R, del Angel G, et al. (2013), "From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline", *Current Protocols in Bioinformatics*, 43:11.10.1-11.10.33.

Microbiomics

Wang Q, Garrity GM, Tiedje JM, et al. (2007), "Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy", *Applied and Environmental Microbiology*, 73, 5261–5267.

Cole JR, Wang Q, Cardenas E, et al. (2008), "The ribosomal database project: improved alignments and new tools for rRNA analysis", *Nucleic Acids Research*, 37, D141–D145.

Edgar, R.C. (2013), "UPARSE: Highly accurate OTU sequences from microbial amplicon reads", *Nature Methods*, 10(10):996–998.