
STUDY DESIGNS
IN BIOMEDICAL RESEARCH

BIOMARKER RESEARCH



The Complete Healthcare Process



An important part of the healthcare process, 
an crucial station, is Disease Diagnosis. It is 
part of Translational Research – the 
intersection between Basic Science and 
Clinical Science (Medicine). Some of us in 
Statistics and Biostatistics called a section 
of this part “Biomarker Research”.



Diagnostic Biomarkers
Definition: A defined characteristic that is measured as an indicator of normal 
biological processes, pathogenic processes, or responses to an exposure or 
intervention, including therapeutic interventions 

Types: Molecular, histologic, radiographic, or physiologic characteristics
Examples: 

1. Prostate specific antigen (PSA) for prostate cancer (Molecular)
2. Estrogen receptor (ER), Progesterone receptor (PR), and HER-2 for 

breast cancer (Molecular)
3. Gleason score for prostate cancer (histologic)
4. Mammogram score (BI-RADS) for breast cancer (radiographic)
5. Blood pressure for high blood pressure (physiologic characteristics)
6. BMI for obesity (physiological characteristics)

Common data features: Either CONTINUOUS or ORDINAL 



ROC CURVE



Diagnostic tests have been presented as always having 
dichotomous outcomes. In some cases, the result of the 
test may be binary, but in many cases it is based on the 
dichotomization of a continuous biomarker – some 
factor correlated to the absence or presence of the 
disease.

To deal with a continuous biomarker, we need a well-
known graph called the Receiver Operating  
Characteristic curve or “ROC curve”.



A SIMPLE MODEL & DICHOTOMIZATION

Biomarker Y is normally distributed with the same variance, but 
different means; no matter where you “cut”, both errors result! 
Also, specificity & sensitivity are functions of the “cutpoint” y.

cutpoint T=+T=-



ASSUMPTION FOR SIMPLIFICATION
 In the case of many diseases, the larger values of the biomarker 

Y are associated with the diseased population; e.g. blood 
glucose for diabetes, PSA for prostate cancer),

 For many others, the smaller values of the biomarker Y are 
associated with the diseased population; static admittance for 
Otitis Media, TSH for hyperthyroidism).

 We will assume, without loss of generality, that larger values of Y 
are associated with the diseased population; If, in fact, smaller 
values of Y are associated with the diseased population, 
methods presented here could be applied by simply reversing 
the roles of “cases” (subjects with the disease) and “controls” 
(subjects without the disease).



SENSITIVITY
With our assumption that larger values of Y are 

associated with the diseased population, sensitivity
Pr(T=+|D=+), associated with cut-point Y=y is:

S+(y) = Pr(Y>y|D=+) = “true positive rate”
= 1 - Pr(Y≤y|D=+) =  1 - F+(y)

where F+(y) = Pr(Y≤y|D=+) is the cumulative 
distribution function (cdf) of Y for the diseased 
population (or population of cases).

Sensitivity is a Survival Function



SPECIFICITY
With our assumption that larger values of Y are 

associated with the diseased population, the 
specificity, Pr(T=-|D=-), associated with cut-point 
Y=y is:

S-(y) = Pr(Y≤y|D=-) = F-(y), or
1 - S-(y) = 1 - F-(y) = “false positive rate”
where F-(x) is the cumulative distribution function 

(cdf) of Y for the non-diseased or healthy population.
 (1-Specificity) is another Survival Function



ROC FUNCTION & ROC CURVE
A function “R” from [0,1] to [0,1] that “maps”  false 

positive rate (1-specificity, on horizontal axis) to true 
positive rate (sensitivity, on vertical axis), is called the 
“ROC function”:

R[1-F-(y)] = 1-F+(y) or R[1-S-(y)] = S+(y)
The graph of R(.) is called the “ROC curve”
The ROC curve, the graph of sensitivity versus (1-

specificity), is generated as the “cutpoint” y moves 
through its range of possible values. 



0

1

1

(1,1)

sensitivity = S+(y)

(true positive rate)

1-specificity = 1-S-(y) 

“ROC” Curve
(false positive rate)



The “ROC function” maps “sensitivity against 
(1-specificity)” or “true positive rate against false 
positive rate”. It maps a survival function against 
another survival function. 
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PROPORTIONAL HAZARDS MODEL
Since what we have on the axes of the ROC 
curve are two survival functions, one possible 
model is the “Proportional Hazards Model” 
(The only parameter is the “Hazard Ratio” or 
“Relative Risk”:
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Index for DIAGNOSTIC ACCURACY
 ROC curve is a graphical device to show all possible 

combinations of sensitivity and specificity but, for simplicity, it 
is desirable to reduce an entire curve to a single quantitative 
index of diagnostic accuracy.

 Possibilities include the difference between means of Y for the 
two populations divided by SD (effect size), those with disease 
and those without; and the ratio of variances. However, the 
most popular one has been the area under the  ROC curve.

 The area under the curve has a powerful interpretation and it is 
related to other well-known statistics making it easier to learn 
its statistical properties.



Suppose  that an observation y1 is randomly sampled from the 
diseased population and another random observation Y0 is 
independently sampled from the non-diseased population; and 
let Pr(Y1>Y0) denote the probability of the event that the Y1
observation is larger than the Y0 observation; we have:

curve ROCunder  Area
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AN ALTERNATIVE INDEX

Biomarker Y is normally distributed with the same variance, but different 
means; no matter where you “cut”, both errors result! The sizes of these 
errors depend on the “standardized distance”

cutpoint T=+T=-

)/σμ(μd HD −=



Are the two indices “A” and “d” related?

These are different numerical values but “statistically 
equivalent”. If we let “Φ-1(.) denote  “inverse of the 
standard normal cumulative distribution function”, for 
example Φ-1(.975) = 1.96, then Simpson and Fitter (1973) 
showed that:

(A) d 12 −Φ=

The index “d”, often called the “Effect Size”, has a 
very powerful interpretation in terms of disease 
development!



LOGISTIC REGRESSION
The probability of disease development and the 
value Y=y of the biomarker Y are related by the 
“Logistic Regression Model”:
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USE OF BAYES’ RULE
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RESULT
Suppose Y is normally distributed with the same variance, 
different means for Pr(Y=y|D=+) and Pr(Y=y|D=-), we have:
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INTERPRETATION OF “d”
Under logistic model and Suppose Y is normally distributed with 
the same variance but different means for Pr(Y=y|D=+) and 
Pr(Y=y|D=-), then:

σβ1=d
The value of Index “d” is equal to the log(Odds Ratio) 
due to a change of “one SD” in the value of the marker Y 
(that’s the Odds for disease development)



THE OPTIMIZATION PROBLEM
(Dichotomization of a Biomarker)



Diagnostic tests have been understood by patients as 
dichotomous outcomes but most biomarkers are on 
continuous scale; PSA for prostate cancer is typical case.

For practical application (the main objective of 
translational research and medicine), the biomarker under 
investigation needs to be dichotomized. After tested, the 
Doctor needs to tell the patient if he/she has the disease; 
or at least, he/she likely has the disease. One cannot call 
some process a “test” unless one can make a decision.



We all know that, for example, high PSA likely indicates 
prostate cancer; but how high it is to classify a man as 
having prostate cancer? To form a diagnosis, we need 
to dichotomize this continuous biomarker.

If we set the cut-point too high, we would miss cases 
– that is “low sensitivity”; if we set the cut-point too 
low, we would have many false positives – that is 
“low specificity”!



We need an “optimal cutpoint” ; but what do we 
mean by “optimal”? “Good”, but what it is good 
for? May be more than one solution because there 
are different criteria. 

For a continuous biomarker such as “PSA”; the 
basic question is “How high is high?” or “How low 
is low?”. In practice, cutpoints are formed 
arbitrarily because we fail to form and justify a 
criterion or criteria.



True Positive (TP)

a

False Positive (FP)

b

False Negative (FN)

c

True Negative (TN)

d

Disease No Disease

Positive Test 
Result

Negative 
Test Result

We can arrange data into a 2x2 table after a 
dichotomization at certain cut-point:

At this cut-point: Sensitivity S+ = a/(a+c)
Specificity S- = d/(b+d)



To judge the “value” of a biomarker at 
this cut-point, we need to measure the 
strength of the relationship between 
Disease D and Test T; an useful statistic 
must be independent of disease 
prevalence (so that it does not depend 
on the numbers of cases and controls in 
the sample which are set arbitrarily)



There are a number of possibilities, 
some have been investigated elsewhere 
in literature; they are all expressible as 
functions of sensitivity and specificity. 
And there is a good possibility that they 
are all equivalent when used in the 
search for an optimal cut-point 



RESPONSE DIFFERENCE (RD)
The first index is the difference (RD) between 
response rates from the cases and the controls 
– on the “additive scale”. It turns out that RD is 
identical to the Youden’s Index J introduced in a 
previous lecture.

RD = Pr(T=+|D=+) – Pr(T=+|D-)
= Pr(T=+|D=+) – [1-Pr(T=+|D=-)]
= S+ – (1- S-) = S+ + S- -1 = J



RELATIVE RESPONSE (RR) & ODDS RATIO (OR)
Relative Response (RR, similar to Relative Risk)  and 
Odds Ratio (OR) show the difference between response 
rates from the cases and the controls – on the 
multiplicative scale:
RR = Pr(T=+|D=+)/Pr(T=+|D=-)

= �𝑺𝑺+
(𝟏𝟏−𝑺𝑺−)

OR =
�𝑷𝑷𝑷𝑷(𝑻𝑻=+|𝑫𝑫=+)
𝟏𝟏−𝑷𝑷𝑷𝑷(𝑻𝑻=+|𝑫𝑫=+)

�𝑷𝑷𝑷𝑷(𝑻𝑻=+|𝑫𝑫=−)
𝟏𝟏=𝑷𝑷𝑷𝑷(𝑻𝑻=+|𝑫𝑫=−)

= (𝑺𝑺+)(𝑺𝑺−)
(𝟏𝟏−𝑺𝑺+)(𝟏𝟏−𝑺𝑺−)



DICHOTOMIZATION: EMPIRICAL SOLUTION

Given 2 independent samples, sample of cases and sample of 
controls, each subject with a value of the biomarker
Pool the two samples and arrange in increasing order
At each midway between two data points, form a 2-by-2 table 
and calculate the Sensitivity S+ and Specificity S-

At each cut-point (2-by-2 table), calculate all five indices: RD, 
RR, OR.

Locate the cut-point corresponds to max RD, max RR, max OR –
this cut-point is the optimal cut-point; as mentioned earlier, 
there is a good possibility that we would have the same optimal 
cut-point.



Now we have “an optimal cut-point” or maybe a few 
optimal cut-points if they are not identical. But can 
we justify or characterize the point we got; in other 
words what do we mean by “optimal”? “Good”, but 
what it is good for? 

Let try the Response Difference, RD = J.
Since the Youden’s Index (J = S+ + S- -1 = R(U) - U) is 
maximized when: 0 = R’(U) - 1, or R’(U) = 1.
The cut-point where J is maximized has “slope = 1”
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sensitivity = S+(y)

1-specificity = 1-S-(y) 

“ROC” Curve

Ii is likely that, at the point where slope = 1, distance “d” to top left corner (0,1) 
is minimized and distance “D” to lower right corner (1,0) is maximized.



Also, recall a result from “Prevalence Survey” in which 
we derived a new estimator for Disease Prevalence
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STANDARD ERROR, SE(p)
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Result: The “precision” of estimation of the prevalence 
depends only on the size of Youden’s index rather than 
any function of sensitivity and specificity. And this 
justifies the value of Youden’s index J, or Response 
Difference RD: The better test is the one with larger value 
of the Youden’s Index or Response Difference.
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MAXIMUM POTENTIAL OF A BIOMARKER



“Correlation” studies relationship; it is used for Risk 
Determination (Risk Assessment); “Regression 
Analysis” is for  prediction or “Diagnosis”.

The basic question is “How strong must the 
relationship be in order to have a meaningful or 
precise prediction?” – You cannot always say “you 
have lung cancer because you’re a smoker”!

A short answer would be “it depends on how 
precise you like your prediction be” or “it depends 
on how much error you could tolerate”



The “ROC function” maps a survival function against 
another survival function, a survival function for the 
diseased subpopulation and a survival function for 
the healthy subpopulation
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To simplify the derivation, let assume a model, 
the same model for both subpopulations.



LOG-LOGISTIC DISTRIBUTION
If ln(X) is distributed as logistic, X is distributed as log-
logistic; the log-logistic distribution is similar to log-
normal distribution but with thicker tails – so fits better 
“real” non-negative measurements.
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BOTH DISTRIBUTIONS ARE LOG-LOGISTIC
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MAXIMUM POTENTIAL OF A BIOMARKER

d S-=S+
1 62%
2 73%
3 82%
4 88%

d is called the “Effect Size”


Sheet1

		d		S-=S+

		1		62%

		2		73%

		3		82%

		4		88%







Back to the case case of “Diagnosis”. We all know that, 
for example, high PSA likely indicates prostate cancer; 
but how high it is to classify a man as having prostate 
cancer?

We can see that it would take a lot to qualify as a 
good screening biomarker; maybe a difference of 3-4 
standard deviations between cases and controls.



PERSONALIZED DIAGNOSIS



The approach we took only consider the 
relationship between the continuous biomarker 
and the disease status, leaving out the subjects’ 
characteristics. For Example, PSA is positively 
associated with age.  Age should be 
incorporated to individualize the cut-point for 
PSA in the diagnosis of prostate cancer.  
It’s at an era of personalized medicine, 
characteristics of patients should be included to 
form an individualized diagnosis.



Let denote biomarker values as m1, m2, …, mk

For M = mi; at this cut-point, define “test”: 
Ti = 0 (or “-”, no disease) if m<mi
Ti = 1 (or “+”, diseased) if m>=mi

Let p = Pr(Ti=1)



The next step is fitting the Logistic Regression 
Model with 3 independent variables: D, X, and D*X 
and estimate all regression coefficients:

log 𝒑𝒑
𝟏𝟏−𝒑𝒑

= β𝟎𝟎 + β𝟏𝟏𝑫𝑫 + β𝟐𝟐𝐗𝐗 + β𝟑𝟑𝑫𝑫 ∗ 𝑿𝑿

Let the estimates be b0, b1, b2, and b3.



Consider a specific value X = x, we have for 
cut-point mi:

𝒍𝒍𝒍𝒍𝒍𝒍
𝒑𝒑

𝟏𝟏 − 𝒑𝒑
= 𝐛𝐛𝟎𝟎 + 𝐛𝐛𝟐𝟐𝐛𝐛 + 𝐛𝐛𝟏𝟏 + 𝐛𝐛𝟑𝟑𝐛𝐛 𝐃𝐃



MODEL #1: OR-based

For cut-point mi:
ORi = Odds Ratio relating Ti and D
ORi = exp[b1+b3x]

Changing cut-point from m1 to mk, and look for 
the cut-point with maximum value of OR.



MODEL #2: RD-based

For cut-point mi, we calculate:
RDi = Pr[Ti = +| D=+] – Pr[Ti =+ | D=-] 



Again, consider a specific value X = x, we have 
at cut-point mi:

𝒍𝒍𝒍𝒍𝒍𝒍
𝒑𝒑

𝟏𝟏 − 𝒑𝒑
= 𝐛𝐛𝟎𝟎 + 𝐛𝐛𝟐𝟐𝐛𝐛 + 𝐛𝐛𝟏𝟏 + 𝐛𝐛𝟑𝟑𝐛𝐛 𝐃𝐃

p =  𝒆𝒆𝒆𝒆𝒑𝒑[ 𝒃𝒃𝟎𝟎+𝒃𝒃𝟐𝟐𝒆𝒆 + 𝒃𝒃𝟏𝟏+𝒃𝒃𝟑𝟑𝒆𝒆 𝑫𝑫
𝟏𝟏+𝒆𝒆𝒆𝒆𝒑𝒑[ 𝒃𝒃𝒍𝒍+𝒃𝒃𝟐𝟐𝒆𝒆 + 𝒃𝒃𝟏𝟏+𝒃𝒃𝟑𝟑𝒆𝒆 𝑫𝑫]

= 𝑷𝑷𝑷𝑷[𝑻𝑻 = +|𝑫𝑫]



RDi = exp[ 𝑏𝑏0+𝑏𝑏1 + 𝑏𝑏2+𝑏𝑏3 𝑥𝑥]
1+exp[ 𝑏𝑏0+𝑏𝑏1 + 𝑏𝑏2+𝑏𝑏3 𝑥𝑥] −

exp[𝑏𝑏0+𝑏𝑏2𝑥𝑥]
1+exp[𝑏𝑏0+𝑏𝑏2𝑥𝑥]

Empirical Solution:
Changing cut-point from m1 to mk, and look 
for the cut-point with maximum value of RD.

For cut-point mi:



Suggested Exercises:

 #1 Refer to a dataset in file “Prostate Cancer” and suppose 
we focus on biomarker “Acid” in order to predict “nodal 
involvement”. Find a global optimal cut-point for Acid using 
the RD index and the optimal cut-point for subjects with 
positive X-ray result using the CD-based model.

 #2 We have a data set on prostate cancer diagnosis) which 
includes 50 controls (subjects without prostate cancer) and 
51 cases (subjects with prostate cancer); file name is “PSA-
data” which was use in the last Example. Find a global 
optimal cut-point for PSA using the OR index and for a 65-
year old subject using the OR-based regression model.
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