
STUDY DESIGNS
IN BIOMEDICAL RESEARCH

DIRECT BIOASSAYS



Drug development is the process of finding and 
producing therapeutically useful 
pharmaceuticals and turning them into 
effective and safe medicines. It is a complex 
process starting with screening chemicals to 
identify a lead compound, going through lots of 
works in toxicology, pharmacodynamics, and 
pharmacokinetics, and phases of clinical trials.



A successfully completed development and 
testing program results in lots of information 
about appropriate doses and dosing intervals, 
and about likely effects and side effects of the 
treatment. It is a process carried out by 
“sponsors” (mostly pharmaceutical companies 
but also including major medical centers) and is 
ultimately judged by “regulators” (e.g. FDA of 
the United States).



Steps to New Drug Discovery

Get idea for drug target

Develop a bioassay

Screen chemical compounds in assay

Establish effective and toxic amounts

File for approval as an  Investigational New 
Drug (IND) (leads to clinical trials)



There is no aspect of drug development and 
testing without participation and 
contributions from biostatisticians. 
Statisticians and biostatisticians are also 
becoming more active in the shaping of the 
pharmaceutical projects. 

Bioassays or “Biological Assays” are the first 
step of the long process.



There are many steps of the process but we cover 
only two topics in this design-oriented course:

(1) Biological assays which are used in screening 
chemicals or agents to identify a candidate 
compound; and

(2) Early phase clinical trials. Phase I Clinical Trials
follow a dose escalation plan in which lower 
doses are tried first and cautiously increased 
until a maximum tolerated dose (MTD) maybe 
established. In Phase II Clinical Trials, the MTD 
found are tested for efficacy.



Laboratory 
Research

Clinical Research Population 
Research

T1 T2

Translational Research is the component of 
basic science that interacts with clinical 
research (T1) or with population research (T2).



We often emphasize more on the first area of 
translational research, T1; they are research efforts 
and activities needed to bring discoveries in the 
laboratories to the bed sides. 

And it is hard to pinpoint precisely the 
starting point of “T1”; many believe that 
translational research starts with “biological 
assays” – or bioassays, but some could point 
to In Vitro or In Vivo which are pre-clinical. 



DEFINITION
“Biological assays” or “bioassays” are 

methods for estimating the potency or strength 
of an “agent” or “stimulus” by utilizing the 
“response” or “effect” or “reaction” caused by 
its application  to biological material or 
experimental living “subjects”.

Simple examples:                                           
(1) Six aspirin tablets can be fatal to a child; 
(2) Certain dose of a lethal drug can kill a cat.



COMPONENTS OF A BIOASSAY
The subject is usually an animal, a human 

tissue, or a bacteria culture,
The agent is usually a drug, a chemical
The response is usually a change in a 

particular characteristic or even the death of 
a subject; responses can be binary or 
measured on continuous scale.



(1) There are deterministic or non-stochastic assays; 
but they are not  subjected to statistical analyses. 

(2) An assay is stochastic if potencies are influenced 
by factors other than the preparations; i.e. 
extraneous factors which cannot be completely 
controlled or explained. In other words, the 
response is subjected to a random error; e.g. either 
the “dose” or the “response” is a “random variable” 
– depending on the design.



BASIC PROCESS
For stochastic assays, our only targets, we 

refer to the relationship between stimulus 
level and the response it produces as “a 
regression model”.

A test preparation of the stimulus - having an 
unknown potency - is “assayed” to find the 
response.

We find the dose of the standard preparation –
with known potency - which produces the 
same response (as that by test preparation).



There are two types of bioassays:

(1) direct assays and                         
(2) indirect assays.

They are both stochastic, resulting 
from different experiment designs.



DIRECT BIOASSAYS
 In direct assays, the doses of the standard and test 

preparations are “directly measured” for (or until) an 
“event of interest”. Response is fixed (binary), dose is 
random.

When an event of interest occurs, e.g.. the death of the 
subject, and the variable of interest is the dose required 
to produce that response/event for each subject. The 
value is called “individual effect dose” (IED).

For example, we can increase the dose until the heart 
beat (of an animal) ceases to get IED.



Typical Experiment:
A group of subjects (e.g. animals) are randomly 
divided into two subgroups and then IED of a 
standard preparation is measured in each subject of 
group 1; the IED of the test or unknown preparation 
is measured in each subject of group 2. The aim is to 
estimate the “relative potency”, that is the “ratio of 
concentrations” of the test relative to standard to 
produce the same biological effect/event.



Since the “concentration” and the “dose” are 
inversely proportional - when concentration is 
high, we need a smaller dose to reach the 
same response. We define the “relative 
potency” or the “ratio of concentrations” of 
the test to standard or as the “ratio of doses”
of the standard to test:
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When the relative potency  ρ > 1, the Test 
Preparation is stronger (we need a larger 
dose of the Test in order to produce the 
same response) – and vice versa. Pairs 
of doses that give the same response are 
termed “equipotent”, meaning “same 
strength”. 



Data are very simple: two (2) independent 
samples, the type you usually have for two-
sample t-test or Wilcoxon test; but we will 
not compare them using a test of 
significance. We want to estimate “Relative 
Potency”, the ratio of means:



Recall that we define the “relative potency” 
as the “ratio of concentrations” of the test to 
standard, or the “ratio of doses” of the 
standard to test: ratio of means; point 
estimate is easy.
The more difficult part is obtaining its 
precision and forming confidence interval; 
we would need a Statistical Model.



INDIRECT BIOASSAYS
 In indirect assays, the doses of the standard and test 

preparations are applied and we observe the 
“response” that each dose produces; for example, 
we measure the tension in a tissue or the hormone 
level or the blood sugar content. For each subject,
the dose is fixed in advance, the variable of interest 
is not the dose but the response it produces in each 
subject; The response could be binary or continuous.

Statistically, indirect assays are more interesting 
(and, of course, also more difficult).



CHEMICAL CONSTITUENTS
Indirect assays are also divided into “analytic 

dilution” or “comparative dilution”.
(i) Analytic dilution assays are such that the test and 

standard preparations behaved as though they are 
identical (same constituents), except for the 
concentration,

(ii) In Comparative assays, the two preparations are 
not the same; For example, the concentration of 
one protein is estimated by using a different 
protein as standard.



For analytic dilution assays, the only 
difference between preparations is 
“concentration”; the constant relative 
potency is the reciprocal of the “dilution 
factor”. In other words, its 
existence/solution is global – that is, a 
solution always exists and is a constant.



For comparative dilution assays, the 
response-producing constituents in the two 
preparations are only qualitative similar; 
value of the relative potency may not be 
constant. In other words, its existence is 
“local”. Statistical analyses are mostly the 
same; however, the existence or solution for a 
relative potency may depend upon the 
particular experiment, material, or techniques.



Unless we know the chemical/biological 
system well, most of the times it is 
impossible to tell a analytic dilution 
assay from a comparative assay from 
the resulting data. The exception is 
perhaps Direct Assays.



A MODEL FOR DIRECT ASSAYS

It is commonly assumed that the test doses 
and the standard doses follow two normal 
distributions with the same variance:
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RESULTS
The following results can be obtained 
approximately by Taylor’s expansion:
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Two things should be noted here: 
(1) We do not have the “exact” variance, we 
approximate it using the Delta method;  
(2) The variance of the estimated relative 
potency r can be easily obtained, at least 
approximately, but the normal distribution 
for r, the ratio of sample means, may fit very 
poorly – especially when the sample sizes 
are often rather small. 



HOMOGENEITY OF VARIANCES
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We have assume that the standard and test 
responses have equal variances; and this can 
be tested using F = sS

2/sT
2 which distributed 

as F(nS-1,nT-1) under the null hypothesis



ANALYTIC DILUTION ASSAYS
Analytic dilution assays are those for which 

the test and standard preparations behaved as 
though they are identical, except for the 
concentration; that is  XS = ρXT

It can be seen that the homoscedascity 
assumption is no longer valid because Var(XS) 
≠ Var(XT) if ρ≠1, the cases that we are 
interested in; previous method does not apply.



EXAMPLE: Unpaired Design 
A standard preparation and an unknown or test preparations of a 
lethal drug are infused into cats. The (measured) response is the 
amount of this drug (in cc) per kilogram of body weight of the cats 
needed to produce cardiac arrest.

Standard Test
2.42 1.55
1.85 1.58

2 1.71
2.27 1.44
1.7 1.24

1.47 1.89
2.2 2.34

Total 13.91 11.75
Mean 1.987 1.679
Variance 0.1136 0.1265

Perhaps the case of a 
comparative assay
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POSSIBLE SOLUTION FOR
ANALYTIC DILUTION ASSAYS
 From XS = ρXT, taking the log we get: log XS = log ρ + log 

XT; then we can preserve the homogeneity variances for 
log doses.

 But that is like assuming the dosages are distributed as 
log-normal with equal variability.

 The advantages of doing analysis on log dosages are     
(i) variance estimates can be pooled to have more precise 
estimation and (ii) relative potency is obtained as the 
antilog of the difference of means rather than the ratio, an 
easier procedure.



RESULTS FOR DILUTION ASSAYS
Let z’s be the means and sp the (pooled) standard 
deviation on the “natural log scale”, the point estimate 
and the 95% confidence interval for the relative 
potency ρ are, where t.975 is the 97.5th percentile of the 
t distribution with (ns+nT-2) degrees of freedom:
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EXAMPLE
If we approximate the sampling distribution of r by 
normal, we can form a 95% CI the usual way; but 
result is rather poor: 
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EXAMPLE

Standard Test
0.884 0.438
0.615 0.457
0.693 0.536
0.821 0.365
0.531 0.215
0.385 0.637
0.788 0.849

Mean 0.674 0.451
Variance 0.031 0.041

Same example, but on natural log scale:
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But this is a case where log transformation is not needed
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WHAT DO WE DO WITH RATIOS?
(1) We take the log of the point estimate
(2) Form Confidence interval on log scale
(3) Then exponentiating the endpoints
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ABOUT STEP #1
In general, by first taking log of the point 
estimate - log of ratio of sample means in the 
case of “Direct Assays”– then we treat the 
“log of numerator” and “log of denominator” 
as normally distributed. In other words, we 
treat the sample mean as log normal in the 
next step, contradicting the Central Limit 
Theorem. This may be more serious.



THE COMBINED RESULT
Together, the two-step procedure produce 

confidence intervals which are often too long.

Focusing on Risk Ratio (ratio of 2 proportions, Lui 
(Contemporary Clinical Trials, 2006) found that the 
log transformation method could lead to intervals 
which are many times longer than those by 
competing methods - as much as 40 times  in some 
configurations – an obvious  loss of “efficiency”.



LET START OVER
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Here the question is not an “if a log 
transformation is needed”; the question is 
“how should we do it right”? if not handled 
well, even the point estimate may be “off”.



“USUAL” ESTIMATION OF 
LOG NORMAL MEANS
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According to Land (Technometrics, 1972), result #2 
(constructing confidence intervals for ln(θ) then 
exponentiating endpoints) was proposed (in a 
personal communication to Land) by Cox and Land 
called it “Cox’s method”).

Zhou and Gao (Stat Med, 1997) showed that result #1 
(usual method) is inappropriate (very wrong
coverage) and recommended Cox method  (result #2) 
for moderate to large sample.

Think of cases with large σ2!



The ratio of these two “Corrected Geometric 
means” will serve as point estimate of “Relative 
Potency” using data from Direct Bioassays.
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CORRECTED RESULTS
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If the two samples have equal variances on the 
log scale, then the original estimate – the ratio of 
sample means – turns out accidentally correct!



Conclusion:

There are more than one way to 
estimate the relative potency, which is 
a ratio. It could be more interesting if 
the Standard and Test samples could 
be  assayed in the same individuals!



A tobacco product [D10]PheT can be administered in 2 
different ways: oral or smoking; these are given in random 
order to 16 healthy individuals. The substance is then 
monitored repeatedly from sample of blood and urine; with 
a long washout period between administrations. The next 
slides give these data; each number is a conventional 
pharmacokinetic parameter: Area under the Curve (AUC).

For each type of samples, blood or urine, the parameter of 
interest is smoking to oral ratio

EXAMPLE: Paired Design



Subject Oral Smoking
1 64041 87134
2 7179 6665
3 62820 64103
4 22169 23187
5 14598 29543
6 65769 91164
*7 80847 8034
8 27653 30794
9 62304 48984

10 33348 29549
11 50987 43037
12 25418 30611
13 34549 46114
14 102108 67506
15 56754 32400
16 76288 68793

Plasma 


Ratios CI

				Table 1. Ratios of two pharmacokinetic parameters for the oral and smoking administrations of 10 µg [D10]Phe to healthy smokers

				Subject		Plasma		Ratio of total urinary excretion				Hypothesis:		There is significant difference in plasma AUC and total urinary excretion of [D10]PheT between oral and smoking doses

				1		0.73		0.7

				2		1.08		0.66				Questions:

				3		0.98		0.98				1		95% CI and 90% CI of the ratio

				4		0.96		0.65				2		Is subject #7 a outlier?

				5		0.49		0.66						Could you explain the statistics method you are using to test the outlier?

				6		0.72		0.91

				*7		10.06		3.05				3. (next page)		pair t-Test

				8		0.9		0.77

				9		1.27		1.41

				10		1.13		1.03

				11		1.18		1.9

				12		0.83		1.09

				13		0.75		0.83

				14		1.51		1.33

				15		1.75		1.36

				16		1.11		1.02

				Mean±SD		1.59±2.28		1.15±0.61

				95% CI

				90% CI

				*Mean±SD		1.03±0.32		1.02±0.35

				*95% CI

				*90% CI

				* without subject 07





paired t-Test

		

						3		pair t-Test to compare oral vs. smoking for both plasma and urine data

								Could you explain the methods in detail, result, and the conclusion?

								Plasma								Urine

						Subject		Oral		Smoking				Subject		Oral		Smoking

						1		64041		87134				1		1439.4		2050.8

						2		7179		6665				2		71.7		109

						3		62820		64103				3		864.3		883.1

						4		22169		23187				4		340.9		527.6

						5		14598		29543				5		382.2		581.5

						6		65769		91164				6		1631.8		1800.2

						*7		80847		8034				*7		843.7		276.8

						8		27653		30794				8		483.2		631.2

						9		62304		48984				9		1354.9		964.4

						10		33348		29549				10		583.5		568

						11		50987		43037				11		1564.5		825

						12		25418		30611				12		440.8		405.3

						13		34549		46114				13		628.2		757.8

						14		102108		67506				14		1499.8		1126.1

						15		56754		32400				15		1141.4		842

						16		76288		68793				16		1077.5		1056.8

						* without subject 07
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Subject Oral Smoking
1 1439.4 2050.8
2 71.7 109
3 864.3 883.1
4 340.9 527.6
5 382.2 581.5
6 1631.8 1800.2

*7 843.7 276.8
8 483.2 631.2
9 1354.9 964.4

10 583.5 568
11 1564.5 825
12 440.8 405.3
13 628.2 757.8
14 1499.8 1126.1
15 1141.4 842
16 1077.5 1056.8

Urine


Ratios CI

				Table 1. Ratios of two pharmacokinetic parameters for the oral and smoking administrations of 10 µg [D10]Phe to healthy smokers

				Subject		Plasma		Ratio of total urinary excretion				Hypothesis:		There is significant difference in plasma AUC and total urinary excretion of [D10]PheT between oral and smoking doses

				1		0.73		0.7

				2		1.08		0.66				Questions:

				3		0.98		0.98				1		95% CI and 90% CI of the ratio

				4		0.96		0.65				2		Is subject #7 a outlier?

				5		0.49		0.66						Could you explain the statistics method you are using to test the outlier?

				6		0.72		0.91

				*7		10.06		3.05				3. (next page)		pair t-Test

				8		0.9		0.77

				9		1.27		1.41

				10		1.13		1.03

				11		1.18		1.9

				12		0.83		1.09

				13		0.75		0.83

				14		1.51		1.33

				15		1.75		1.36

				16		1.11		1.02

				Mean±SD		1.59±2.28		1.15±0.61

				95% CI

				90% CI

				*Mean±SD		1.03±0.32		1.02±0.35

				*95% CI

				*90% CI

				* without subject 07





paired t-Test

		

						3		pair t-Test to compare oral vs. smoking for both plasma and urine data

								Could you explain the methods in detail, result, and the conclusion?

								Plasma								Urine

						Subject		Oral		Smoking				Subject		Oral		Smoking

						1		64041		87134				1		1439.4		2050.8
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MODEL & STATISTICAL PROBLEM
Oral consumption would lead to measurement X, from 
plasma or urine, with negligible error because the whole 
amount was consumed where as smoking  would lead to 
a measurement Y or more considerable error because 
different people smokes differently. Therefore the data 
would be suitable to frame as a “Regression through the 
Origin” (no intercept). And the parameter of interest is the 
slope; the question is how would we obtain an optimal 
estimate:

βXY =



GENERAL SOLUTION
For each mode of administration, we have a “ratio” for 
each individual, ri = yi/xi with “variance” Var(ri); an optimal 
estimate of the ration across individuals is the “weighted 
average” of individual ratios – each is weighted by the 
inverse of the variance:
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We consider 3 cases: 
(1) Var(yi) is a constant, 
(2) Var(yi) is proportional to xi, and 
(3) Var(yi) is proportional to xi

2



Case #1: Var(yi) is a constant
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This is the “Least Squares” estimate of the 
slope in the regression model without intercept



Case #2: Var(yi) is proportional to xi
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This is the “ratio of the (sample) means”



Case #3: Var(yi) is proportional to xi2
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This is the “(arithmetic) mean of the ratios”



Suggested Exercises:
#1. For each type of assays, comparative and dilution, how do we test for null hypothesis   

H0: ρ=1? And what does the answer imply?
#2. The following table on the left gives the doses (cc per 100g of body weight) obtained 

from two groups of mice for two preparations of insulin, labeled as A and B. Estimate the 
relative potency (treating A as standard) and interpret the result, including testing for 
homodasticity.

#3. For the data in exercise B2, find the ratio of standard deviation estimator. How do we 
find the 95% confidence interval for relative potency using this estimator?

#4. The table on the right provide the data from three preparations; preparation C is the 
standard and A and B were compared with C, (a) Estimate the relative potency of A to 
C and B to C, including testing for homodasticity, (b) Is there any difference between A 
and B relative to C? Should we compare the estimates?

Standard(A) Test(B)
2.4 5.2
1.9 8

2 4.8
2.3 6.5
1.7 7

8.1
6

C A B
21 18 35.5
26 13 39
19 13.5 38.5
16 11.5 37
22 15 34
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