
STUDY DESIGNS
IN BIOMEDICAL RESEARCH

INDIRECT BIOASSAYS



DIRECT BIOASSAYS
 In direct assays, the doses of the standard and test 

preparations are “directly measured” for (or until) an 
“event of interest”. Response is fixed (binary), dose is 
random.

When an event of interest occurs, e.g.. the death of the 
subject, and the variable of interest is the dose required 
to produce that response/event for each subject. The 
value is called “individual effect dose” (IED).

For example, we can increase the dose until the heart 
beat (of an animal) ceases to get IED.



INDIRECT BIOASSAYS
 In indirect assays, the doses of the standard and test 

preparations are applied and we observe the 
“response” that each dose produces; for example, 
we measure the tension in a tissue or the hormone 
level or the blood sugar content. For each subject,
the dose is fixed in advance, the variable of interest 
is not the dose but the response it produces in each 
subject; The response could be binary or continuous.

Statistically, indirect assays are more interesting 
(and, of course, also more difficult).



AN EXAMPLE: LUNG TUMORIGENESIS 

A group of mice were injected with NNK  (a toxin 
from tobacco products) dissolved in saline when 
mice are 6 weeks old. 

About 16-20 weeks after treated by NNK, most 
mice have lung tumors; there will be an average 
of 10 surface tumors per lung, an average total 
tumor volume per lung = 400 mm3 +/- 100 (SD) 



A DOSE-RANGING EXPERIMENT
Among a group of NNK-treated mice (with tumors 

after 16 weeks), say n=50, 10 mice are selected and 
sacrificed to measure tumor volumes – serve as 
baseline (or data for controls)

The other 40 mice are randomized into 10 groups of 4 
mice each treated by 10 different doses of a cancer 
agent/drug; the doses are spread over a very wide 
range from very low to very high 

Aim is to calculate the dose for 50% reduction of 
tumor volume (ED50) , the “median effective dose” 
which characterizes the agent’s potency.



DATA SUMMARIES

Let “d” be one of the doses; x = log (d)
v0 = average tumor volume of control group
vx = average tumor volume of group treated 

with dose “d”; and
px = (v0-vx)/v0 the per cent of tumor reduction 

to treatment with dose d.



A REGRESSION MODEL
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After estimating intercept and slope, β0 by “b0” 
and β1 “b1”, we can calculate the median 
effective dose by setting px = .5:
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Where Does This Model, a Logistic 
Regression model,  Come From?
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MEASUREMENT SCALE
Depending on the “measurement scale” for 

the response (of indirect assays), we have:
(1) Quantal assays where the response is 

binary: whether or not an event (like the 
death of the subject) occurs,

(2) Quantitative assays where measurements 
for the response are on a continuous scale.



Anyway, “Dose Ranging Experiment” is a 
“Quantal Bioassay”; it allows us to obtain a 
measure of potency. However, the result (ED50) is 
not relevant in product/drug development … yet 
because potency measures such as ED50 are 
dependent on the biological system use. For 
example ED50 for cats is not the same as ED50 
for mice. Eventually, we want to know or to 
measure the strength of the agent for human use.



To complete the process, one needs to 
conduct a similar dose ranging 
experiment for a standard agent, if not 
yet done; then take the ratio of the two 
ED50’s to obtain the Relative Potency 
which is system independent.



The common indirect assay is usually one in 
which the ratio of equipotent doses is estimated
from curves relating quantitative responses and 
doses for the two preparations. The shape of 
these “curves” further divides quantitative 
indirect assays into:

(1) Parallel-line assays are those in which the 
response is linearly related to the log dose,

(2) Slope-ratio assays are those in which the 
response is linearly related to the dose itself.



PARALLEL-LINE ASSAYS
Parallel-line assays are those in which the 

response is linearly related to the log dose.
From the definition of “relative potency” ρ, the 

two doses are related by DS = ρDT.
The model: E[YS|XS=log(DS)] = α +βXS, for 

Standard and, for the same dose we have  
E[YT| XS=log(DS= ρDT)]= (α + βlogρ) + βXT

We have 2 parallel lines with a common slope 
and different intercept.



The primary aim of a statistical analysis is to 
estimate the “relative potency” ρ of an agent or 
stimulus ; a point estimate as well as confidence 
limits (i.e. 95% confidence interval). We can 
estimate logρ, called M, by subtracting the 
intercepts and divided by the common slope :

E[YS|XS] = α +βXS
E[YT| XS]= (α + βlogρ) + βXT



EXAMPLE
In this example, test and standard preparations 

of the agent are tested at the same three dose 
levels (.25, .50, and 1.0 mg/cc); and there are 8 
replications at each dose of each preparation.

It is designed with 8 dishes/plates, each 
contains 6  identical bacterial cultures - one in a 
“well” (randomized complete block design), 
also called “6-point assay”; the response was 
the amount of decrease in growth.



Dose (D; mmgcc) 0.25 0.50 1.00 0.25 0.50 1.00
X = log10(Dose) -0.602 -0.301 0.000 -0.602 -0.301 0.000
Response (Y; mm) 4.9 8.2 11.0 6.0 9.4 12.8

4.8 8.1 11.5 6.8 8.8 13.6
4.9 8.1 11.4 6.2 9.4 13.4
4.8 8.2 11.8 6.6 9.6 13.8
5.3 7.6 11.8 6.4 9.8 12.8
5.1 8.3 11.4 6.0 9.2 14.0
4.9 8.2 11.7 6.9 10.8 13.2
4.7 8.1 11.4 6.3 10.6 12.8

Preparation
Standard Preparation Test Preparation


Sheet1

				Preparation

				Standard Preparation						Test Preparation

		Dose (D; mmgcc)		0.25		0.50		1.00		0.25		0.50		1.00

		X = log10(Dose)		-0.602		-0.301		0.000		-0.602		-0.301		0.000

		Response (Y; mm)		4.9		8.2		11.0		6.0		9.4		12.8

				4.8		8.1		11.5		6.8		8.8		13.6

				4.9		8.1		11.4		6.2		9.4		13.4

				4.8		8.2		11.8		6.6		9.6		13.8

				5.3		7.6		11.8		6.4		9.8		12.8

				5.1		8.3		11.4		6.0		9.2		14.0

				4.9		8.2		11.7		6.9		10.8		13.2

				4.7		8.1		11.4		6.3		10.6		12.8









MULTIPLE REGRESSION
The simple approach is pooling data from both 

preparations and using “Multiple Regression”;
Dependent Variable: Y = Response;                                        

Two Independent Variables are:                    
X = log(Dose) &                                               
P = Preparation (a “dummy variable” coded as 
P = 1 for “Test” and P = 0 for “Standard”)
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DOSE-RESPONSE RELATIONSHIP
 We view “dose-response curve” simply as a description of 

experimental results; necessary but mysterious!.
 There is a dosage D and a biological response Y, and we 

assume that experimental results are described by a well-
behaved dose-response curve of the form y=f(D).

 There may be some physical or chemical principle behind 
this process, but in traditional bioassay, determination of this 
“f” is entirely “empirical”.

 Given the data one can go to search for a relationship 
between response variable Y to the fixed dosage D. One 
could plot Y versus X=D, Y versus X=log(D), or Y=X=(1/D) 
etc…That’s how we found parallel lines!



To compensate for a lack of theory behind the dose-
response relationship, we make some efforts to 
check for the model’s validity. In the Multiple 
Regression approach, we set Dependent Variable: 
Y = Response; two Independent Variables are:                             

X = log(Dose) &                                                                  
P = Preparation (a binary “dummy variable” coded 
as P = 1 for “Test” & P = 0 for “Standard”)

One can simply include an interaction term X*P to 
check for parallelism, or quadratic terms to check for 
linearity of each of the two lines.



SLOPE RATIO ASSAYS
Slope-ratio assays are those in which the 

response is linearly related to the dose itself.
From the definition of “relative potency” ρ, the 

two doses are related by DS = ρDT.
The model: E[YS|XS=DS)] = α +βXS, for same dose

E[YT| XS=DS]= α + βρXT; the lines have the same 
intercepts - the mean response at zero dose.

We have 2 straight lines with a common 
intercept and different slopes.



The primary aim of a statistical analysis is 
to estimate the “relative potency” ρ of an 
agent or stimulus ; a point estimate as well 
as confidence limits (i.e. 95% confidence 
interval). In this model, we have straight 
lines with a common intercept but different 
slopes; We can obtain ρ, the relative 
potency, as the ratio of two slopes.



MULTIPLE REGRESSION
The simple approach is pooling data from both 

preparations and using “Multiple Regression”;
Dependent Variable: Y = Response;                                        

Two Independent Variables are:                      
X = Dose &                                                         
P = Preparation (a “dummy variable”  coded as 
P = 1 for “Test” and P = 0 for “Standard”)
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MULTIPLE REGRESSION #2
Let Y be the response, XS and XT the doses. 
Consider the following model in which for any 
observation on S, set XT=0, for any observation 
on T, set XS=0; the model may include control 
observations for which we set XS= XT= 0:
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In the Multiple Regression approach, we set 
Dependent Variable: Y = Response;                                        
Two Independent Variables are:    X = log(Dose) &                                                         
P = Preparation (a binary “dummy variable” coded 
as P = 1 for “Test” & P = 0 for “Standard”).

Two issues of goodness-of-fit: (1) Two straight lines 
with equal slopes & (2) Two lines with equal 
intercepts.

GOODNESS-OF-FIT
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& One can simply include quadratic terms to 
check for linearity of each of the two lines, if 
there are ‘enough” data.



QUANTAL ASSAYS
Quantal response assays belong to the class of 
qualitative indirect assays. They are characterized 
by experiments in which each of a number of pre-
determined levels of a stimulus (e.g. dose of a drug) 
is applied to n experimental units; r of them respond 
and      (n - r) do not response. That is “binary” 
response (yes/no). The group size “n” may vary 
from dose to dose; in theory, some n could be 1 (so 
that r = 0 or 1).



DIRECT ASSAYS
 In direct assays, the doses of the standard and test 

preparations are “measured” for an “event of 
interest”; intra patient adjustment is needed.

When an (pre-determined) event of interest occurs, 
e.g.. the death of the subject, and the variable of 
interest is the dose required to produce that 
response/event for each subject.

That is, the dose is measured right at the time the 
event occurs; it is not possible to do it if the dose is 
fixed in advance (indirect assays). 



QUANTAL ASSAYS VS. DIRECT ASAYS
It is assumed that each subject has its own tolerance
to a particular preparation.  In a direct assay, the 
amount of stimulus needed to produce the response 
in each individual subject can be measured, called 
IED. In quantal bioassays, we cannot measure IEDs 
because only one fixed dose is given to a group of n 
subjects;  (1) if that dose is below some particular 
IED, the response does not occur; (2) Subjects who 
response are those with IEDs below the given fixed 
dose.



QUANTAL ASSAYS VS QUANTITATIVE ASSAYS
 Quantal bioassays are qualitative; we observe occurrences of 

an event - not obtain measurements on continuous scale.
 Because the event is well-defined, we can estimate agent’s 

potency. The most popular parameter is the level of the 
stimulus which result in a response by 50% of individuals in a 
population. It is often denoted by LD50 for median lethal 
dose, or ED50 for median effective dose, or EC50 for median 
effective concentration.

 However, measures of potency depend on the biological 
system used; the estimates of LD50’s for preparations of the 
same system can be used to form the relative potency –
which would be more likely independent from the system.



The most popular parameter LD50 (for median lethal 
dose), or ED50 (for median effective dose), or EC50
(for median effective concentration) is the level of the 
stimulus which result in a response by 50% of 
individuals in a population.
(1) It is a measure of the agent’s potency, which could 
be used to form relative potency.
(2) It is chosen by a statistical reason; for any fixed 
number of subjects, one would attain greater 
precision as compared to estimating, say, LD90 or 
LD10 or any other percentiles.



THE ASSAY DESIGN
The usual design consists of a series of dose levels

with subjects completely randomized among/to the 
dose levels. The experiment may include a standard 
and a test preparations; or maybe just the test.

The dose levels chosen should range from “very low” 
(few or no subjects would respond) to “rather high” 
(most or all subjects would respond).

The objective is often to estimate the LD50; the 
number of observations per preparation depends on 
the desired level of precision of its estimate – sample 
size estimation is a very difficult topic.
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The proportion pi is the estimate of some (unknown) 
probability Pi. This dependent variable is a 
proportion, a number bounded between 0 and 1. In 
order to perform “regression analysis”, we first need 
a transformation to turn that proportion into a 
number, unbounded, on the continuous scale.



Four-step Process:

(1) A transformation from Pi to Yi which is 
unbounded and on a linear scale,

(2) Put in a linear regression model relating Yi
to xi, say E(Yi) =  α + βxi,

(3) Estimating the parameters α and β,

(4) Estimating LD50 or ED50 from the results 
for α and β in step #3.



Let P be the probability of response at a particular 
dose - where the log dose is X, it is estimated by  p = 
r/n. The “first step” in the analysis process is to 
obtain “the equivalent deviate of P” using the 
following transformation (P → Y): 
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C represents background response (noise); but, 
for simplicity we often set C=0.

A value of P or of Y determines the other uniquely; 
both are results of input x (which is log(dose)).



In theory, any probability density function 
can be used. We can choose one either 
by its simplicity and/or its extensive 
scientific supports. And we can check to 
see if the data fit the model (however, it’s 
practically hard because we need lots of 
data to tell).



A VERY SIMPLE CHOICE
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Result (for one covariate X) is:
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That is to model the “log” of the probability as 
a “linear function” of covariates.



The advantage of the approach of 
modeling the “log” of the probability as a 
“linear function” of covariates, is easy 
interpretation of  model parameters, the 
probability is changed by a multiple 
constant (i.e. “multiplicative model” 
which is usually plausible) 



Besides the Unit Exponential probability 
density, one can also use of the Standard 
Normal density in the transformation of π:

A HISTORICAL CHOICE
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This “Probit Transformation” leads to the 
“Probit Model”; Y* is called the “probit” 
of π. The word “probit” is a shorten form 
of the phrase “PROBability unIT” (but it 
is not a probability), it is a standard 
normal variate.



The Probit Model was popular in years past 
and had been used almost exclusively to 
analyze “bioassays” for many decades. 
However, there is no closed-form formula for 
Y* (it’s not possible to derive an equation 
relating π to x without using an integral sign):
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Since it’s not possible to derive an 
equation relating π to x without using an 
integral sign, the computation is much 
more complicated.

There is a SAS program (It’s PROC 
PROBIT) but the use of the Probit Model 
has been faded.



LOGISTIC TRANSFORMATION
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Result is:
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We refer to this as “Logistic Regression”



Advantages:

(1)  Also very simple data transformation:
Y = log{p/(1-p)} 

(2) The logistic density, with thicker tails 
as compared to normal curve, may be a 
better representation of real-life 
processes (compared to Probit Model 
which is based on the normal density).



A POPULAR MODEL
Although one can use the Standard Normal 

density in the regression modeling process (or 
any density function for that purpose),

The Logistic Regression, as a result of choosing 
Logistic Density remains the most popular 
choice for a number of reasons: closed form 
formula for π, easy computing (Proc LOGISTIC)

The most important reasons: interpretation of 
model parameter and empirical supports!



REGRESSION COEFFICIENTS
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β1 represents the log of the odds ratio associated 
with X, if X is binary, or with “an unit increase” in X if 
X is on continuous scale; β0 only depends on “event 
prevalence”- just like any intercept.



SUPPORTS F OR LOGISTIC MODEL
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The fit and the origin of the linear logistic model could be 
easily traced as follows. When a dose D of an agent is applied 
to a pharmacological system, the fractions fa and fu of the 
system affected and unaffected satisfy the so-called “median 
effect principle” (Chou, 1976):

where ED50 is the “median effective dose” and “m” is a Hill-
type coefficient; m = 1 for first-degree or Michaelis-Menten 
system. The median effect principle has been investigated 
much very thoroughly in pharmacology. If we set “ π= fa”, the
median effect principle and the logistic regression model are 
completely identical with a slope β1= m.
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There are several possible ways to transform 
the proportion p into some measurement Y 
on the continuous scale with an unbounded 
range. The most solid and popular one is the 
logistic transformation leading to the logistic 
regression model, mostly because of its 
strong empirical supports from the “median 
effect principle”:



USE OF “SAS”
PROC PROBIT
General model, C≠0; can include control group.
Can choose transformation for drug dose, 

including common choice: x = log10(dose)
May include other covariates
Three choices of density function: logistic, 

standard normal, and “extreme value”



PROC PROBIT covers three transformation –
including the popular Probit (standard normal 
density) and Logistic (logistic density) 
transformations. If you only prefer the logistic 
transformation, can use PROC LOGISTIC but 
it does not have a few options which are 
specific for bioassays; you can easily 
complete the job by hand.



Dose (D; mmgcc) 0.25 0.50 1.00 0.25 0.50 1.00
X = log10(Dose) -0.602 -0.301 0.000 -0.602 -0.301 0.000
Response (Y; mm) 4.9 8.2 11.0 6.0 9.4 12.8

4.8 8.1 11.5 6.8 8.8 13.6
4.9 8.1 11.4 6.2 9.4 13.4
4.8 8.2 11.8 6.6 9.6 13.8
5.3 7.6 11.8 6.4 9.8 12.8
5.1 8.3 11.4 6.0 9.2 14.0
4.9 8.2 11.7 6.9 10.8 13.2
4.7 8.1 11.4 6.3 10.6 12.8

Preparation
Standard Preparation Test Preparation

Suggested Exercise:
Use the following data set, fit the two parallel lines and 
calculate the Relative Potency – including its Standard Error, 
if you can.


Sheet1

				Preparation

				Standard Preparation						Test Preparation

		Dose (D; mmgcc)		0.25		0.50		1.00		0.25		0.50		1.00

		X = log10(Dose)		-0.602		-0.301		0.000		-0.602		-0.301		0.000

		Response (Y; mm)		4.9		8.2		11.0		6.0		9.4		12.8

				4.8		8.1		11.5		6.8		8.8		13.6

				4.9		8.1		11.4		6.2		9.4		13.4

				4.8		8.2		11.8		6.6		9.6		13.8

				5.3		7.6		11.8		6.4		9.8		12.8

				5.1		8.3		11.4		6.0		9.2		14.0

				4.9		8.2		11.7		6.9		10.8		13.2

				4.7		8.1		11.4		6.3		10.6		12.8
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