STUDY DESIGNS
IN BIOMEDICAL RESEARCH
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FIELLER’'S THEOREM FOR
THE ESTIMATION OF RATIO OF PARAMETERS



THE GAP

» Most teaching and learning programs in Statistics
and Biostatistics focus on the differences and the
sums of parameters, statistics, or random variables.

» However, in many applications we have to deal with
ratios of parameters, statistics, or random variables.

» That Is, Statistics puts more emphasis on “additive
models”; most plausible biological and biomedical
models are “multiplicative”.

» The following are a few examples:



RELATIVE RISK

» Relative Risk has been a popular parameter in
epidemiology studies; a concept used for the
comparison of two groups or populations with
respect to an unwanted event.

» It is the ratio of incidence rates or disease
prevalences; usually, one group is under standard
condition against which the other group (exposed
group) is measured.

» Relative Risk is a ratio: Risk Ratio, it is a ratio of
two proportions.




ODDS RATIO

» When incidence and prevalence are low (rare
diseases), the Relative Risk and the Odds Ratio are
approximately equal.

» Odds Ratio is more popular because it is estimable
In retrospective designs; in practice, we calculate
Odds Ratio and interpret it like Relative Risk.

» But Odds Ratio is still a ratio of parameters; maybe
it’s a different kind of ratios — a ratio of ratios



DIAGNOSTIC TESTS

» Some of the indices of diagnostic accuracy are the
“Likelihood Ratios”, each is the ratio of two
probabilities

» Both are expressible as functions of sensitivity and
specificity.
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COMPARISON OF SCREENING TESTS
WITH BINARY ENDPOINT

We can perform two separate Chi-square
tests or McNemar Chi-square tests —
depending on the design, one for cases and
one for controls; for an overall level of a,
each test is performed at a /2. That is, we
compare sensitivities and we compare
specificities separately: No Problem here.



MEASURING DIFFERENCES

» If the difference between two diagnostic
tests are found to be significant; the level
of difference should be summarized and
presented.

» The two commonly used parameters are the
ratio of two sensitivities (RS*) and the ratio
of two specificities (RS-); ratios of two

proportions.




DIRECT ASSAYS

» In direct assays, the doses of the standard
and test preparations are “directly measured”
for an “event of interest” (with intra-subject
dose escalation).

» When an event of interest occurs, e.g.. the
death of the subject, and the variable of
interest is the dose required to produce that
event for each subject. The value is called
“individual effect dose” (IED).

» We have 2 independent samples



Since the “concentration” and the “dose” are
inversely proportional - when concentration is high,
we need a smaller dose to reach the same response.
In other words , we define the “relative potency” or
“ratio of concentrations” of the test to standard as
the “ratio of doses” of the standard to test:

That 1s a '""Ratio of Means"



QUANTITATIVE ASSAYS

» A common approach for parallel line assays and
slope ration assays is pooling data from both
preparations and using “Multiple Regression”.

» Dependent Variable: Y = Response;
Two Independent Variables are: X = Dose (Slope
ratio) or log(Dose) (Parallel line) & P = Preparation
(a “dummy variable” coded as P = 1 for “Test” and
P =0 for “Standard”)



PARALLEL-LINE ASSAYS
Multiple Regression Model :

E(Y)=p,+ X+, P
B, 1s the common slope and

B, 1s the "difference of intercepts”;

That 1s " Ratio of Regression Coefficients"



SLOPE-RATIO ASSAYS

Multiple Regression Model #1 :
E(Y)=p,+ b X+ b,PX

B, 1s the common intercept and

That mmvolves a ""Ratio of Regression Coefficients"




QUANTAL ASSAYS

Quantal Assays and Dose-ranging Experiments
are modeled by Logistic Regression with drug
used on the log scale (implied by the Median
Effects Principle). Setting the proportion of
response equal to 0.5, we can determine EDS0, a
measure of potency; it is a function of the ratio
of slope to intercept:






How do we estimate the ratio of two
parameters, e.g. ratio of two
population means in Direct Bioassays?
Numerator and denominator can be
estimated by method such as
Maximum Likelihood (MLE).



POINT ESTIMATE

Both statistics, A and B, are

asymptotically distributed as

"normal'" with "estimable variances"



A and B could be sample means

(direct assays), proportions (relative risk), or

regression coefficients (quantitative assays)

What about Confidence Intervals, such as
95% Confidence Interval?



First, we need Standard Error of the point
estimate. For example, ne can assume that
r is normally distributed, obtain the
variance and standard error by the Delta’s
method (also called error propagation),
then form confidence intervals for p the
usual way (r is an estimate of p).



There are two problems here:

(1) Delta method provides only an
approximation (this maybe a minor problem);

(2) The ratio of two normal variates is not
normally distributed; this could be serious.



logr=log A—log B

The more popular alternative is taking logs; in
forming confidence intervals for p (r is an estimate of
p), we obtain the variance and standard error of log(r)
by the Delta’s method, form confidence intervals for
log(p) the usual way. Then exponentiating the
endpoints of the confidence interval for log(p) to
obtain a confidence interval for p.



In doing so, we assume that log(A) and log(B)
are normally distributed which contradict the
fact that A and B themselves are normally
distributed. The result is based on inflated
variances (variance of lognormal distribution
is larger than variance of normal distribution)
which is inefficient because confidence
intervals are too long — unnecessarily.



Example: Focusing on Risk Ratio (ratio of
2 proportions, Lui (Contemporary Clinical
Trials, 2006) found that the log
transformation method could lead to
intervals which are many times longer
than those by competing methods - as
much as 40 times in some configurations
— an obvious loss of “efficiency”.



This lecture covers a method, called Fieller’s
Theorem, aiming to fill this gap. Fieller’s Theorem is
an efficient statistical method which directly provides
confidence intervals for ratios of two parameters —
without calculating standard errors:

Fieller, E.C. 1944. "A Fundamental Formula in the
Statistics of Biological Assay, and Some

Applications,” Quarterly Journal of Pharmacy and
Pharmacology, 17: 117-123.



FIELLER’S THEOREM

If r = A/B is an estimate of p, we consider the
statistic (A- pB) which is distributed as normal
because both A and B are normally distributed and
is p a constant. We derive mean and variance of that
statistics which lead to confidence limits for p.

Let C = A- pB, distributed as normal

We first find the mean & variance of C




Recall: C = A- pB is distributed as normal
We first find the mean & variance of C

E(C)=0
Var(C) = V; V 1s estimated by v

C/+/v is distributed as "t"
Pr(-t s < C /v <tg.)=.95;
Pr(C*/v<t;,)=.95

Pr(C* <vt,,.) =.95




Pr(C* <vt;,)=.95
Pr{(A— pB)’ <vt,,.)=.95;

Solve the " quadratic equation":
(A-pB)* = Vt.2975

to obtam lower and upper limits for p




The two solutions (or roots of
that quadratic equation) are the
lower and the upper endpoint of
the 95% Confidence Interval for
the (unknown) ratio p.



DIRECT ASSAYS: RATIO OF MEANS
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where t.g;; is the 97.5%" percentile of the t distribution
with (ng + n; - 2) degrees of freedom.

The two roots obtained by solving the quadratic

equation within the probability statement yielding the
95% confidence limits r, and ry,.




Recall:

When you have a quadratic equation ax?+ bx +c =0;
first step is checking b?-4ac. If it’s positive, 2 roots exist:
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sSuggested Exercise:
Try to fill in the details for the results

in the following slides



RESULTS FOR RELATIVE POTENCY

The first one is the 95% ClI directly from the Fieller’s
theorem, the second one Is an approximation
because the term “g” is often rather small.

‘“Exacf’

Approximation




The approximation is in more standard
form: point estimate plus/minus margin
of error.



EXAMPLE

Standard Test
2.42 1.55
1.85 1.58

2 1.71

227  1.44 s (12df) = 2.179

1.7 1.24 (6)(.1136) +(6)(.1265)
1.47  1.89 5 :\/ 12 -0

22 234 _1,(2.179)(3464)
Total 13.91  11.75 A 1.679

Mean 1.987 1.679 1 {l.lgi(2'179).3464\/1—.7029+(1.178)

Variance 0.1136 0.1265 1-.029 1.679
=(0.95,1.48)

12 = 029

j
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APPROXIMATE RESULT

Standard
2.42
1.85

2
2.27

1.7

1.47

2.2

Total 13.91
Mean 1.987
Variance 0.1136 0.1265

Test
1.55
1.58
1.71
1.44
1.24
1.89
2.34
11.75
1.679

{075 (12df) =2.179

;- (6)(.1136);; (6)(1265) _ 4,

2
118+ (2.179)>204 |1, AL18),

619V7 7
= (0.92,1.44)

vs. (.95,1.48)
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EPIDEMIOLOGY: RELATIVE RISK




C=p,—pp

VW(C):722(1—722)_|_IO2 w,(1-7m))
n, n

VClI"(C)—pz(l pz)_l_( )2p1(1 pl)

n, P n,

(p,—pp)°

o Zl—a/2

Var(C)

Two roots form (1—-a)100% C.I.forp

(Similar to approach in ratio of means:

we use estimated variance in last step)



Back to the introduction of Fieller’s
Theorem; noted that we estimate the
variance of C (which is a function of the
ratio to be estimated) before forming the
“t” statistic. The alternative Is using the
variance of C — instead of its estimate (This
would provide “exact” result/solution).



FIELLER’S THEOREM

If r = A/B is an estimate of p, we consider the
statistic (A- pB) which is distributed as normal
because both A and B are normally distributed and
is p a constant. We derive mean and variance of that
statistics which lead to confidence limits for p.

Let C = A- pB, distributed as normal

We first find the mean & variance of C




Recall: C = A- pB is distributed as normal
We first find the mean & variance of C

E(C)=0
Var(C) = V; V 1s estimated by v

C/+/v is distributed as "t"
Pr(-t s < C /v <tg.)=.95;
Pr(C*/v<t;,)=.95

Pr(C* <vt,,.) =.95




Pr(C* <vt;,)=.95
Pr{(A— pB)’ <vt,,.)=.95;

Solve the " quadratic equation":
(A-pB)* = Vt.2975

to obtam lower and upper limits for p




Pr(C* <Vt,,.)=.95
Pr{(4- pB)’ <Vt,,.)=.95;

Solve the " quadratic equation":

(A— PB)2 = Vt.2975

to obtain lower and upper limits for p
If we use the variance of C instead of its estimate,
the parameter is involved on both sides of the last

equation. The quadratic equation becomes more
complicated but we would get the real “exact” result

for the confidence interval.




EXAMPLE: RELATIVE RISK

C=p,—pp
Var(C) = w,(1-7,) +,02 m(1-7m,)
n, n,

(P, —pp)
Var(C)

Two roots form (1—-0a)100% C. I.for p
(L1u, Contemporary Clinical Trials 2006)

2
— Z1_g/2




The real exact result and the approximated
result (by first estimating the variance of C)
are often very close. Liu (CCT, 2006) used
variance and obtained exact result; he got
into a new problem: the resulting quadratic
equation may have no real roots in some
simulation configurations.



Lui (Contemporary Clinical Trials, 2006) applied
Fieller’s Theorem to study “Risk Ratio”; showed
that the use of Fieller’s Theorem/method would
lead to more efficiency (i.e. shorter intervals)
but, more important, it improves coverage
probability. | believe that the results apply to
quantitative and quantal bioassays— e.g. ratio of
regression coefficients . It was confirmed in a
Plan B (2018) for the case of Dose-ranging
Experiments.



The cases of ratio of means (in Direct
Bioassays) and ratio of proportions (Relative
Risk in Epidemiology) are more simple; A
(numerator) and B(denominator) come from
independent samples, so they are not
correlated. For the case of ratio of regression
coefficients (for example, in Indirect Bioassays),
we have to include the covariance of A and B.



RATIO OF REGRESSION COEFFICIENTS

C=A-pB
V = Var(C)
= Var(A) + p*Var(B) + 2pCov(A, B), estimated by
v= Var(A4) + (%)ZVar(B) + 2(%)6 ov(A, B)
The estimating equation becomes
0.95 = P[C? < vZ} o]
B2p? + 2ABp + A% — [Var(4) + (5)2Var(B) + 2(5)Cov(A, B)] 2} 475 = 0



ODDS RATIO

» Does Fieller’s Theorem work for Odds Ratio?

» Odds Ratio is a “ratio of ratios”; its estimated
numerator and denominator are not normally
distributed — more like log normal; is Fieller’s
Theorem-based method robust in this case?

» Maybe not, | do not know; at least I’'m not sure.

» Perhaps the “log transformation” method works
well for Odds Ratio; and it has been one of a few
ratios that we handle properly.



suggested Readings:

Search, find (and read) the article by Lui
in Contemporary Clinical Trials, 2006.



Suggested Exercise:

Given data from the following parallel-line bioassay;
use Fieller’'s Theorem to calculate a 95% confidence
interval for the Relative Potency.

Preparation
Standard Preparation Test Preparation
Dose (D; mmgcc) 0.25 0.50 1.00 0.25 0.50 1.00
X = log10(Dose) -0.602 -0.301 0.000 -0.602 -0.301 0.000
Response (Y; mm 4.9 8.2 11.0 6.0 9.4 12.8
4.8 8.1 11.5 6.8 8.8 13.6

4.9 8.1 11.4 6.2 9.4 13.4
4.8 8.2 11.8 6.6 9.6 13.8
5.3 7.6 11.8 6.4 9.8 12.8
5.1 8.3 11.4 6.0 9.2 14.0
4.9 8.2 11.7 6.9 10.8 13.2
4.7 8.1 11.4 6.3 10.6 12.8
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