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REGRESSION ANALYSIS 

Instructor: Chap T. Le, Ph.D. 
Distinguished Professor of Biostatistics 

             Review #1: 

        Biostatistics &  Statistical Inference 
 



GOAL OF FIRST LECTURE 
• Overview of the course, its objectives and 

contents, & its organization . 
• A brief review of “Biostatistics & Statistical 

Inference”  
• There are two more review sessions, one 

on Simple Regression and Correlation, and 
one on Introductory Experiment Design. 

• These reviews are rather non-
mathematical; there are homework 
assignments but they may or may not be 
linked directly to the three review lectures; 
they are aimed to review basic methods & 
computer implementation (t-test, ANOVA, 
Simple Regression & Correlation, & SAS). 



DEFINITION 
BIOSTATISTICS is the Biomedical Version 

of the TRIAL BY JURY. It is “the science 
of dealing with uncertainties using 
incomplete information.” Obviously, it is 
an essential component of Biomedical 
Research; we have to face uncertainties 
and, most of the times, we have to rely 
on incomplete information. 



AREAS OF BIOSTATISTICS 
Research is a three-step process: 
(1) Sampling/design: Find a way or ways to collect 

data (going from population to sample). 
(2) Descriptive statistics: Learn to organize, 

summarize and present data which can shed light 
on the research question (investigating sample). 

(3) Inferential statistics: Generalize what we learn 
from the sample or samples to the target 
population and answer the research question 
(going from sample to population). 



THE IMPORTANT PHASE 

Just as in the case of “Trial by Jury”, the most 
important stage of the “Research Process” 
is the DESIGN:  How & How Much data 
are collected! Also, It dictates how data 
should be analyzed. May be it’s not the 
question of “how” to collect your data 
but the decision on “when to do what”! 



EXPERIMENTAL DESIGNS 
There are three different Designs (methods 

for data collection) depending on the 
timing (present, past, and future) and the 
focus (disease or exposure): 

• Cross-sectional, e.g. surveys 
• Case-Control (retrospective) 
• Cohort (prospective); clinical trials are of 

an important special form. 



Cross-Sectional Design 

The cross-sectional designs are very popular in social/behavioral 
studies, e.g. teen surveys. As for health research data, since 
diseases are rare, fundamental designs are case-control and cohort. 

 Factor 
Present 

Factor 
Absent 

 

Disease    

No Disease    

   Take One 
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Case-Control Design 
 Factor 

Present 
Factor 
Absent 

 

Disease   Sample 1: 
Cases 

No Disease   Sample 2: 
Controls 

 

 

Retrospective Studies gather past data from selected cases 
(with disease) and controls (without disease) to determine 
differences, if any, in exposure to a suspected risk factor. 
Advantages: Economical & Quick. Major Limitations: 
Accuracy of exposure histories & Appropriateness of controls 



A CLINICAL TRIAL 
Study Initiation                                 Study Termination 
                              No subjects enrolled after π1 

π1 π2 0 

Enrollment Period, 
e.g. three (3) years 

Follow-up Period, 
e.g. two (2) years 

OPERATION: Patients come sequentially; each is enrolled 
and randomized to receive one of two or several treatments, 
and followed for varying amount of time- between π1 & π2 



SOME TERMINOLOGIES 
• Research Designs: Methods for data 

collection 
• Clinical Studies: Class of all scientific 

approaches to evaluate Disease Prevention, 
Diagnostics, and Treatments. 

• Clinical Trials: Subset of clinical studies 
that evaluates Investigational Drugs; they 
are in prospective/longitudinal form (the 
basic nature of trials is prospective). 



CANCER TRIALS 
• Phase I: First human trial to focus on safety 
• Phase II: Small trial to evaluate efficacy 
• Phase III: Large controlled trial to 

demonstrate efficacy prior to FDA approval 
• Phase IV: Optional, post-regulatory approval, 

to provide the medicine’s more comprehensive 
safety and efficacy profile 



DESCRIPTIVE STATISTICS 

Tasks: To organize, to summarize, and to 
present collected data. There are three 
different categories: 

• Tabular Methods: Tables 
• Graphical Methods: Graphs, Charts 
• Numerical Methods: Few Statistics.  
Aims: To communicate more effectively 



EXAMPLE 
• A study was conducted to determine whether the use 

of  Electronic Fetal Monitoring (EFM) during labor 
affects the frequency of Caesarian Section delivery: 
 
 
 

• Contingency tables, or two-way tables, are popular 
methods for presenting data which are intended to 
show a possible relationship between two factors: 
exposure  & outcome. 

Caesarian EFM (%) No EFM (%) Total
Yes 358 12.6 229 7.7 587
No 2,492 2,745 5,237

Total 2,850 2,974 5,824



Pie Charts: a popular device to present data 
which are intended to show the decomposition 
of a total into several components. 

Causes of Death for Minnesota Residents
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Statistical Inference 
• The last step of the data analysis process is 

inferential statistics; statistical methods 
helping us to reach conclusions, using what we 
learn from sample(s) to apply to the target 
population. 

• There are two sub-categories:  
(1) Interval Estimation allows us to estimate a parameter 

(e.g. smoking rate, disease prevalence). 
(2) Hypothesis Testing allows us to test hypotheses, i.e., 

to compare parameters (as in treatment evaluation – 
clinical trials - or evaluation of public health 
intervention programs). 



SAMPLING DISTRIBUTION  
& STANDARD ERRORS 



VARIABLE & DISTRIBUTION 
• A function or rule that maps or 

associates with each element in a 
domain (e.g. outcome of an 
experiment) a number is called a 
variable. 

• A list of possible values of a variable, 
together with their corresponding 
probabilities, is called the distribution 
of that variable. 



VARIABLES IN ACTION 
• In applications, a variable represents a 

characteristic or a class of measurement. It takes 
on different values on different subjects/persons. 
Examples include weight, height, race, sex, SBP, 
etc. The observed values, or observations, form 
items of a data set. 

• On the micro scale, depending on the scale of 
measurement, we have different types of data 
(continuous, categorical, ordinal). 

• On the macro scale, we have observed variables 
and calculated variables; a calculated variable is 
a statistic. 



SAMPLING DISTRIBUTIONS  
& STANDARD ERRORS 

The distribution of a calculated variable or 
statistic, across all possible samples, is 
called a Sampling Distribution. We have, for 
example, sampling distribution of the mean 
and sampling distribution of proportion. The 
Standard Deviation of a sampling distribution 
is called the Standard Error of the 
corresponding statistic. The term “error” is 
used perhaps to emphasize the role of the 
statistic as an estimate/estimator. 
 



• For simplicity, consider 
a small population of 
size n = 6. 

• Values are listed in the 
second column. 

• The mean is 0.5.  

• There is nothing 
special (i.e., not normal) 
about the shape of the 
histogram. 

Example 1: A Hypothetical Population 
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Taking all possible samples of size n = 3: 
The mean of all sample means is equal to the 
population mean (0.5) 

Samples Number of 
samples

Value of 
sample mean

(D,E,F) 1 0
(A, D, E), (A, D, F), (A, E, F)
(B, D, E), (B, D, F), (B, E, F)
(C, D, E), (C, D, F), (C, E, F)
(A, B, D), (A, B, E), (A, B, F)
(A, C, D), (A, C, E), (A, C, F)
(B, C, D), (B, C, E), (B, C, F)
(A, B, C) 1 1

9 1/3

9 2/3

The mean of all possible 
sample means: 
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Subject Value
A 1
B 1
C 1
D 0
E 0
F 0



The mean of all possible sample means: 

 

 
We form a bar graph for this sampling distribution, 

The “shape” of the histogram representing the 
distribution of all possible sample means looks more 
“normal” than the one for the population! 
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• If n =  4, the  
mean of all 
sample means 
is still 0.5. 

• The shape is 
even more 
normal. 

Increase 
the value 
of “n” 

Samples samples sample mean
(A, D, E, F), (B, D, E, F), (C, D, E, F) 3 0.25
(A, B, D, E), (A, B, D, F), (A, B, E, F)
(A, C, D, E), (A, C, D, F), (A, C, E, F)
(B, C, D, E), (B, C, D, F), (B, C, E, F)
(A, B, C, D), (A, B, C, E), (A, B, C, F) 3 0.75
Total 15

9 0.5

The mean of all possible 
sample means: 

ND look at the bar graph: 
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•Blood glucose 
measurements from 7,683 
men in Honolulu. 

•Take 400 samples, 25 each. 
Sample means shown at left. 

•Means of two distributions 
are approximately the same 
(There are many more than 
400 possible samples). 

•Variance of the distribution 
of sample means is smaller. 

Example 2:  
A Larger Population 

Number of Sample means
Bllod glucose observations (n=25)
(mg/100ml) (frequency) (frequency)

30.1--45.0 2
45.1--60.0 15
60.1--75.0 40
75.1--90.0 210

90.1--105.0 497
105.1--120.0 977
120.1--135.0 1073 5
135.1--150.0 1083 62
150.1--165.0 849 201
165.1--180.0 691 109
180.1--195.0 569 23
195.1--210.0 440
210.1--225.0 343
225.1--240.0 291
240.1--255.0 153
255.1--270.0 115
270.1--285.0 82
285.1--300.0 60
300.1--315.0 38
315.1--330.0 18
330.1--345.0 26
345.1--360.0 19
360.1--375.0 20
375.1--390.0 9
390.1--405.0 13
405.1--420.0 11
420.1--435.0 6
435.1--450.0 5
450.1--465.0 4
465.1--480.0 24

Total 7683 400



Distribution of (Population) 
Blood Glucose Values 

µ = 161.52 

σ = 58.15 

Distribution of Blood Glucose Values from the 
Honolulu Heart Study Population (N=7683)
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Population distribution is not even symmetric! 



Distribution of 400 Sample Means 
Distribution of Means of Samples of Blood Glucose 

Values (n = 25) from the 
Honolulu Heart Study 
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µ = 
160.66 

σ = 
12.24 

The sampling distribution is a bit       
more symmetric & more normal! 



CENTRAL LIMIT THEOREM 
• Given any population with Mean μ and Variance σ2 

(Standard Deviation σ): The Sample Mean  is a 
“variable”; the (sampling) distribution of its 
possible values, with (large) sample size n being 
fixed, is normal with: 

 
 
• The standard deviation of this distribution 

measures the variation among possible values of 
the sample mean; it is called the “Standard Error” 
of the (sample) mean 

• You have just seen two examples/illustrations 
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Sample Proportion “p” is a 
special case of the Sample Mean 
(where measurements or 
sampled values are 0’s and 1’s if 
we use “1’ for success/presence 
and “0” for failure/absence). 
Therefore, Central Limit Theorem 
applies. 



Sampling Distribution of 
Sample Proportion 

• Let π be a “population proportion”, the Sample 
Proportion  is a “variable”; the (sampling) 
distribution of its possible values, with (large) 
sample size n being fixed, is normal with: 
 

 
 

• The standard deviation of this distribution 
measures the variation among possible values 
of the sample proportion; it is called the 
“Standard Error” of the (sample) proportion. 
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Can we “find” Sampling Distributions in action? 
How to “see” the impact of Sample Size n? 



If one counts deaths from brain cancer, 
one should find more of them in 
California, Texas, New York, and 
Florida. Are these places unsafe? Not 
necessarily, these states have the most 
brain cancer because they have the 
most people. There are more people, 
there are more people with cancer – of 
any kind. 
So, it’s better to study rates: deaths as 
a proportion of total population.                



Using proportion makes for a very 
different leaderboard. South Dakota 
takes the first place with 5.7 brain 
cancer deaths per 100,000 people per 
year (in 2008, compared to the national 
rate of 3.4).  South Dakota is followed 
on the ranked list by Nebraska, Alaska, 
Delaware, and Maine. Are these states 
unsafe that you should avoid? 
Neighbors South Dakota and Nebraska 
suggest something? 



Wait! 
Scrolling down to the bottom of 
the list, you would find Wyoming, 
North Dakota, Hawaii, and the 
District of Columbia; Vermont is 
nearby in this end. 
Why should South Dakota be 
prone to brain cancer and North 
Dakota nearly tumor free? Why 
would you be safe in Vermont and 
in trouble in its neighbor, Maine? 



The five states at the top have something 
in common, and the five states at the 
bottom do, too. And it’s the same thing in 
both ends: small states, small population 
sizes.  
Why size matter? 
Remember the sampling distribution of 
proportion; its variance is π(1-π)/n. The 
smaller n, the larger the variance, the 
more the proportion value swings (to 
both small and large ends). 



Here is another example. If you rank all 
NBA players by shooting efficiency, you 
would find “bench warmers” at both 
ends. They took only a few shots a year; 
some make all or nearly all shots (100% 
or near 100%) and some missed all or 
nearly all shots (0% or near 0%). The 
NBA restrict the rankings to players 
who’ve reached certain threshold of 
playing time (This helps to improve but 
not eliminating possible problem) 



And not everyone, every system are quantitative 
savvy. Many states institute incentive programs 
for schools that do well on standardized tests. 
For example, schools are ranked on the 
improvement of student test scores. Who win 
this kind of contest? Mostly smaller schools. 
One can argue that at smaller schools, teachers 
know the students and their families, and have 
time to craft and deliver individualized 
instruction. The fact is there are smaller schools 
at the other end of the ranking as  well. The 
smaller n, the larger the variance, the more the 
proportion value swings to both small and large 
ends. 



TEST OF SIGNIFICANCE 
OR 

HYPOTHESIS TESTING 



Many scientific questions can be boiled down 
to a yes or no answer: Is something going on, 
or not? Does a psychological intervention 
make you happier or does it do anything at all?  
The “does nothing” scenario is called the “Null 
Hypothesis”. That is, the Null Hypothesis is the 
hypothesis that the new Drug you’re studying 
has no effect. 
 
If you’re the researcher who developed the new 
drug, the Null Hypothesis is the thing that 
keeps you up at night – unless you can rule it 
out. 



The standard framework, called the Test of 
Significance, was developed by R. A. Fisher, 
the founder of the modern practice of statistics 
in the early twentieth century. It is an analog of 
the “Trial by Jury” 
 
It goes like this. First you run an experiment. 
You might start with one hundred subjects, 
randomly select half to receive the New Drug 
while the other half gets a Placebo. Your hope 
is that the patients on the study drug will be 
less likely to die than the one getting the sugar 
pill. 



From here, the protocol might seem simple: If 
you observe fewer deaths among the drug 
patients than the placebo patients, you would 
declare victory and file an application with 
FDA, right? 
That’s wrong! It’s not enough to say that the 
data be consistent with your theory (called the 
Alternative Hypothesis); they have to be 
inconsistent with the negation of your theory, 
the Null Hypothesis. The Null Hypothesis is the 
hypothesis being tested, data are reality. If they 
are inconsistent, you must trust reality and 
reject the Null Hypothesis. 



Let make this numerical.  
Suppose we’re in “the Null Hypothesis land”, 
where the chance of death is exactly the same 
(say, 10%) for both groups. Let consider all the 
possibilities and compute the (binomial) 
probabilities and added up the three scenarios; we 
have: 
13.3%: equally many drug and placebo patients die 
43.3%: fewer placebo patients than drug patients die 
43.3%: fewer drug patients than placebo patients die 
Does your observation (result) of fewer deaths 
among drug patients insistent with the Null 
Hypothesis? Not quite, it could happen with 43.3% 
chance! 



Seeing better results among the 
drug patients than the placebo 
patients says very little since this 
isn’t at all unlikely, even under the 
Null Hypothesis that the drug 
doesn’t work.  You must show that 
the drug patients do a lot better to 
rule out the chance occurrence, to 
rule out (i.e. to reject) the Null 
Hypothesis. 



So, here’s the procedure for ruling out 
the Null Hypothesis: 
 
(1) Run an experiment, 
(2) Suppose the Null Hypothesis is true, and let “p” be 

the probability (under that Null hypothesis) of 
getting results as extreme as those observed, 

(3) The number “p” is called the “p-value”. It is a 
measure of compatibility between the Null 
Hypothesis (a theory that you assume) and data (the 
reality). If it is small, you’re happy and say your 
results are “statistically significant”. 

 
How small is very small?  
There is no magic threshold; a conventional choice for 
the threshold is 0.05 or 0.01. 



Test of significance is popular because it captures our 
intuitive way of reasoning about uncertainty. 
But we start with “ Suppose the Null Hypothesis is true” 
while what we’re trying to prove is that the Null 
Hypothesis isn’t true. This is a very common line of 
logic: defeating a hypothesis by means of its own force; 
that a hypothesis implies a falsehood, then the 
hypothesis itself must be false. 
In addition, tests of significance are popular because, 
using theses tests, you get the job done: You make a 
decision! 
 
Now, let put the process in the context of a basic, 
popular procedure, the two-sample t-test. 



THE TASKS IN  
THE “TESTING” PROCESS 
To proceed through the Testing Process - 

a successful one, We need the following 
items: 

(1) A Null and an Alternative Hypotheses 
(2) The Research Design & Data 
(3) Key Statistic (called “Test Statistic”) 
(4) (Statistical Guidelines) & The 

Conclusion 
(Then, of course, the Implications) 



COMPARISON OF MEANS 
• FOCUS: (Pop Mean of) Continuous Endpoint 
• Often involved one or two groups of 

subjects 
• PROBLEMS belong to one of three types: 
(1) One-sample (versus Standard/Referenced) 
(2) One-to-one matched sample 
(3) Two independent samples 
• Final Products: “t-tests”; one-sample and 

two-sample t-tests 



COMPARISON OF TWO 
POPULATION MEANS 

• In this type of problems, we have two 
independent samples (n1,x1,s1

2) and 
(n2,x2,s2

2); the n’s being the sample sizes- 
may be different sizes, the x’s the sample 
means, and the s2’s the sample variances 
(the s’s are standard deviations).  

• The Null Hypothesis considered is              
H0: µ1 = µ2                                                                     
or equivalently,  

   H0: µ2 - µ1 = 0. 



GENERAL APPROACH 
• In general, the Null Hypothesis of a 

“Statistical Test” is concerned with a 
Parameter or Parameters (Population 
Proportion, Population Mean, or 
Coefficient of Correlation). In the current 
problem, the Difference of 2 Population 
Proportions: µ2- µ1. 

• Sample data are summarized into a 
Statistic which is used to estimate the 
Parameter under investigation. Therefore, 
in the current problem, we focus on the 
difference of  two sample means x2-x1 . 



GENERAL APPROACH 
• We have a Parameter, µ2- µ1, involved in the 

Null Hypothesis and its “Estimator”, x2-x1. 
• The next step is to measure the distance 

from the “observed value” of the estimator 
(representing “reality”) to its hypothesized 
value under H0 (representing the “theory”). In 
the current problem, it is the difference 
between x2-x1 and µ2- µ1=0; if the 
“discrepancy” is larger that what can be 
explained (by chance), then we have to 
“trust” the reality and reject the theory. That 
is to reject H0 . 



GENERAL APPROACH 
• We are measuring the “distance” from the statistic 

its hypothesized value under H0. 
• An estimate is a Statistic which is itself a Variable 

(in the context of repeated sampling, its value 
varies from sample to sample). In that sampling 
distribution the variation (representing its 
“reproducibility”) of the Statistic is measured by 
its “Standard Error”. 

• The “distance” between Statistic & its 
hypothesized value under H0 is “converted” to a 
standard unit: “Number of standard errors”  that 
the Statistic is away from its hypothesized value 
under H0. 



GENERAL APPROACH 
• We are measuring the “distance” from the 

estimate of a Parameter (a Statistic) and its 
hypothesized value under H0 and expressed it as 
the “Number of standard errors” of that Statistic. 

• If the Statistic involved has “Normal” as its 
sampling distribution (in this case, this is backed 
by the CTL if the n’s are large); the above 
“Number of standard errors” is on “the Standard 
Normal scale which we can determine how likely 
to occur under the assumption that is true. The 
larger the “Number of standard errors” the less 
likely that H0 is true. 



TWO-SAMPLE t-TEST 
• Null Hypothesis H0: µ1 = µ2 , or H0: µ2 - µ1 = 0. 
• Data & Test statistic: 2 independent samples 

of data (n1,x1,s1
2) and (n2,x2,s2

2); Standard 
Error &  “t” Test Statistic: 

 
 

• The statistic x2-x1 is “t standard errors away 
from its hypothesized value” of 0; This “t” is 
on the Standard normal scale if the n’s are 
large and “t-scale” with (n1+n2-2) degrees of 
freedom if the n’s are not large. 
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DECISION 
• The Null Hypothesis considered is         

H0: µ1 = µ2 , or H0: µ2 - µ1 = 0.                    
The statistic x2-x1 is “t standard errors 
away from its hypothesized value” of 0 : 

 
 

 
• There are two ways to form a decision: 
(1) Choose a level of Type I error, form a 

Rejection Region, then decide whether or 
not H0 is rejected, 

(2) Summarize the finding into a “p-value” 
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P-VALUE 
• Instead of saying that an observed value of the test 

statistic is significant (i.e., falling into the rejection 
region for a given choice of ) or is not significant, many 
writers in the research literature prefer to report 
findings in terms of a p-value.   

• The p-value is the probability of getting values 
of the test statistic as extreme as, or more 
extreme than, that observed if the null 
hypothesis is true. For the current problem, it 
is the area to the “left” of t for HA: µ2< µ1 & the 
area to the right of t for HA: µ2>µ1 and it is the 
are “beyond ±t for two-sided HA: µ2≠µ1 where 
the degree of freedom is (n1+n2-2). 



EXAMPLE  
• Data in epidemiologic studies are sometimes 

self-reported. The following table gives the 
percent discrepancy between self-reported and 
measured height:  

x = [(self-reported - measured)/measured] 100% 
                                     Men                    Women                         

Education:  n  & mean & SD    n  & mean  & SD  
H. school: 476 &  1.38  & 1.53  323 &  .66  & 1.50  
College:    192 &  1.04  & 1.31    62 &   .41 & 1.46  



EXAMPLE  
• Comparing Men versus Women, 

both groups with High-school 
education, we have: 

• The difference is significant at the 
.05 level; two-sided p-value < .001 

• It’s the two-sample t-test 
 



COMMON  
INTERPRETATION/EXPRESSION 
(About p-Values) 

• p > .10:          Result is not significant 
• .05 < p < .10: Result is marginally significant 
• .01 < p < .05: Result is significant 
• p < .01         : Result is highly significant 



CONFIDENCE INTERVAL 



What makes the Trial by jury & 
Statistical Tests of Significance 
“attractive” is that we can usually 
reach “a conclusion”, a verdict; a 
simple and clear-cut conclusion - 
and get the job done! 



Anything’s wrong with “Test of Significance”? To start 
with, that’s the word itself: “significance”. 
In common language, it means something like 
“important” or “meaningful”. But the test of 
significance that scientists use doesn’t measure 
importance. When we’re testing the effect of a new 
drug, the Null Hypothesis stipulates that there is no 
effect at all; so to reject the Null Hypothesis is merely 
to make the conclusion that the effect of the drug is 
not zero  (that what we see is “real”, not by chance). 
But the effect could still be very small – so small that 
the drug isn’t effective in any sense that an ordinary 
person would call “significant” or “importance”: a 
possible “insignificance of being significance” 



Secondly, the Null Hypothesis – any 
null hypothesis, if we take it 
literally, is probably just about 
always false. When you drop a 
powerful drug into a patient’s 
bloodstream, it’s hard to believe 
that it has exactly zero effect. 



Let make this numerical and suppose we are 
investigating the relationship between cigarette 
smoking (say, binary) and marriage; seemingly two 
unrelated “variables”. Saying that “marital status” and 
“smoking status”  are independent/uncorrelated (a Null 
Hypothesis) is simply to say that, in the population, the 
smoking rate of married people is the same as the 
smoking rate of unmarried people. 
Now we see the problem: the chance is very small, for 
any population, that the smoking rate for married 
people and the smoking rate for unmarried people are 
exactly the same. Any null hypothesis is 
probably always false; everything are 
correlated with everything else. 



A significance test is a scientific instrument; 
and like any other instrument, it has a certain 
degree of precision; by increasing the size of 
the studied sample, for example, you enable 
yourself to see ever-smaller effects. That’s the 
power of the method, statistical power, but 
also its danger: the true is the hypothesis is 
probably always wrong. Therefore, it is much 
more important to know how wrong is a Null 
Hypothesis, how large is a drug effect, how 
strong is a correlation. 
One simple needed strategy is to report 
confidence intervals in addition to p-values. 



PARAMETER ESTIMATION 
• Process: Research Question leads to  

Endpoint, then Parameter of Interest; For 
example, Unemployment Rate which is an 
unknown number between 0 and 1 (or 100%). 

• Question: How to estimate it ? 
   (If Testing Hypothesis is the analog of Trial 

by Jury, Parameter Estimation is the 
Sentencing Phase; but we’ll learn this phase 
first) 



THE STORY OF A LOST BOY 
• Scene: A little boy crying “mommy!” 
• Task: Help him to find his mother 
• Strategy: Look around - little kids can’t go far; 

But HOW FAR should we look? Factors to 
consider: His age, Traffic condition, how 
SURE do you want to be. The result? may be 
his mother is a couple of blocks either way 
(from where the boy is. 



STORY OF  
UNEMPLOYMENT RATE 

• Lost “mother”: True Unemployment Rate (say, 
in the state of Minnesota in September of 
2016) 

• The “Boy”? Unemployment Rate from a 
sample 

• Strategy: Look around, but how far should we 
look. Factors to consider: sample size, chance 
variation, how SURE we want to be. 

RESULT: A “Confidence Interval”: 
Estimate +/- Margin of Error 

(just like a couple of blocks either way) 



IMPLICATION OF “CLT” 
• Central Limit Theorem: X is distributed 

as Normal with Mean and Variance 
given by: 
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CONFIDENCE INTERVAL FOR 
THE MEAN 

• We have previously: 
 

• Also: 
 
 

• Therefore: 
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CONFIDENCE INTERVAL         
FOR THE MEAN 

• We have: 
 

• After a sample has been taken: 
 
 

• (a,b) is called a 95% confidence 
interval for the Population Mean  µ ; 
“95%” is the Degree of Confidence, 
how sure we are that  µ is in (a,b). 
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95% “C.I.”: INTERPRETATION 
• After a sample has been taken, and data 

summarized, a 95% confidence interval for the 
(unknown) population mean µ is (a,b) where a 
& b are obtainable from data: 
 
 

• (a,b) is an “interval estimate”; we are “95% 
sure” that µ is between a and b. 

•  x  is “point estimate”, “margin of error”: 
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95% “C.I.”: INTERPRETATION 
• If you take one sample, you have one 95% 

confidence interval (from your data). 
• If you take many samples (of the same size), 

you have many 95% confidence intervals (one 
from each sample). Ninety five percent (95%) 
of these similarly constructed intervals do 
include µ (and 5% of them do not). 

• In real-life, you have only one interval; yours 
may or may not include µ. Since 95% of similar 
intervals include µ, you “believe” that your 
interval does; you are 95% sure of that. 



MORE ABOUT ESTIMATION of µ 
• The Population Mean µ is unknown 
• You estimate µ by x, a Statistic 
• You maybe wrong; the margin of error is 

 
 

• That “margin of error” involved 2 components:        
(1) number 1.96 (implied by your degree of 
confidence 95%) and  

   (2)       called “Standard Error” of the mean. 

n
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n
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EXAMPLE #1 
• To assess physical condition of “joggers”, 

a sample of n=25 joggers was selected and 
maximum volume of oxygen uptake was 
measured from each. The results were: x = 
47.5 ml/kg and s = 4.8 ml/k 
 
 

• A 95% confidence interval of the mean (of 
the “population of joggers”) is:                     

96.
25
8.4)(

_
==xSE

kgml /)38.49,62.45()96)(.96.1(5.47 =±



EXAMPLE #2 
• In the same study, a sample of n=26 “non-

joggers” was selected and maximum volume 
of oxygen (VO2) uptake was measured from 
each. The results were:      x = 37.5 ml/kg and   
s = 5.1 ml/kg: 
 

• A 95% confidence interval of the mean (of the 
“population of non-joggers”) is: 
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Forming Confidence Intervals 
• In forming confidence intervals, the degree 

of confidence is determined by the 
investigator of a research project. 

• Different investigators may prefer different 
confidence intervals. 

• The coefficient to be multiplied with the 
standard error of the mean should be 
determined accordingly.  

• A few typical choices are 90%, 95%, or 99%; 
95% is the most conventional. 



USE OF SMALL SAMPLES 
• The Procedure we just learned for forming 

Confidence Intervals is applicable only to 
larger samples. The concept starts from: 
 
 

• Therefore, it is valid if the Population 
Variance σ2 is known or we can replace by a 
“good estimate” s which requires large 
Sample Size n  
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USE OF SMALL SAMPLES 
• The Population Variance is usually unknown, we 

need to estimate it by s. That estimation of s may 
not be good when n is small; we make up for that by 
changing the Coefficient to be multiplied by the 
Standard Error (so the we still have the same 
likelihood of including µ in our Interval). For 
example, when we form 95% Confidence Interval, 
we need a Coefficient larger than 1.96; the smaller 
the Sample Size, the larger than 1.96 the Coefficient. 

• These coefficients are from the “t-distributions” 
indexed by the “Degree of freedom”: df = n-1. 



ABOUT ESTIMATION 
• A Parameter is a “Numerical Characteristic” of 

a population (a number: Mean, Proportion, 
Odds Ratio). It is fixed but unknown. 

• A Parameter is estimated by a Statistic; its 
counter part from sample(s). A statistic is 
known (from data) but varies from sample to 
sample. It serves as “Point Estimate”; We may 
be wrong with a Point Estimate, but we can 
determine its Margin of Error. 

• Putting together Point Estimate & Margin of 
Error we form “Interval Estimate” called  a 
Confidence Interval; one for each Degree of 
Confidence 



Confidence Interval versus Test of Significance: 
The confidence interval tells you a lot more; it is even 
informative where you don’t get a statistically result. 
Let suppose you want to estimate some drug effect: 
(1) If the confidence interval is [-0.5%,0.7%], then the 

reason you didn’t get statistical significance is 
because you have good evidence the intervention 
doesn’t do much anything; 

(2) If the confidence interval is [-20%,22%], the reason 
you didn’t get statistical significance is because you 
have no idea whether intervention has an effect, or 
which direction it goes. 

Those two outcomes look the same from the viewpoint 
of significance test but have quite different reasons 
looking at confidence intervals: the first one showed a 
very small effect and the second one caused by a 
small sample size. 



DUE AS HOMEWORK 
None for today. 
 
From the next lecture, there are two 
homework problems each day; 
Assignments for Monday and 
Wednesday are both due at the following 
week’s recitation session & returned a 
week later – only in the labs; no late 
homework is accepted.  
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