
PubH 7405:  
REGRESSION ANALYSIS 

Review #2: 

 Simple Correlation & Regression 



COURSE INFORMATION 
• Course Information are at address: 

www.biostat.umn.edu/~chap/pubh7405 
• On each class web page, there is a brief 

version of the lecture for the day – the part 
with “formulas”; you can review, preview,  
or both – and as often as you like. 

• Follow Reading & Homework assignments 
at the end of the page when & if applicable. 



OFFICE HOURS 
• Instructor’s scheduled office hours:                                                      

1:15 to 2:15 Monday & Wednesday,                               
in A441 Mayo Building 

• Other times are available by 
appointment  

• When really needed, can just drop in 
and interrupt me; could call before 
coming – making sure that I’m in. 

• I’m at a research facility on Fridays. 



Variables 
• A variable represents a characteristic or 

a class of measurement. It takes on 
different values on different 
subjects/persons. Examples include 
weight, height, race, sex, SBP, etc. The 
observed values, also called 
“observations,” form items of a data set. 

• Depending on the scale of measurement, 
we have different types of data. 



There are “observed variables” (Height, 
Weight, etc… each takes on different 
values on different subjects/person) 
and there are “calculated variables” 
(Sample Mean, Sample Proportion, 
etc… each is a “statistic” and each 
takes on different values on different 
samples). The Standard Deviation of a 
calculated variable is called the 
Standard Error of that variable/statistic. 



A “variable” – sample mean, sample 
standard deviation, etc… included – 
is like a “function”; when you apply it 
to a target element in its domain, the 
result is a “number”. For example, 
“height” is a variable and “the height 
of Mrs. X” is 135 lbs; it’s a number. 



TYPES OF DATA 
• There are binary or dichotomous outcomes, e.g. 

Sex/gender (male/female), Morbidity (sick/well) 
• There are categorical or polytomous outcomes, 

eg. Race (white/black/Hispanics/Asian) 
• There are continuous outcomes, e.g. blood 

pressure, cholesterol level); of course, you can 
dichotomized or categorized a continuous 
outcome to make it binary or categorical – but 
some information are lost in the process. 



In most problem involving statistical 
inference, we investigate one variable 
at a time. However, in many important 
investigations, we may have two 
measurements made on each subject, 
and the research objective is 
concerned not with each of them but 
with the relationship between them. 



AN EXAMPLE: IN SEARCH OF  
AN HONEST EMPLOYEE 

 
• Shoplifting is a big problem, it costs up to 2 

billions dollars a year in America 
• Who done it? Customers? 
• Yes, but customer shoplifting ranks second to 

employee theft which involves between 2% 
and 3% of all employees. 



SOLUTION? 
• One approach to curtailing employee theft 

is screen job applicants so as not to hire 
those with “high potential” to theft. 

• How to do it? How about using polygraph 
test (lie detector)? 

• But who want to apply? you need to treat 
your future employee with dignity! 



AN ALTERNATIVE 
• May be a less visible pencil-and-

paper test as part of the application. 
• Need: to device some kind of a 

questionnaire; but its “score” should 
be “highly correlated” to to the result 
by the polygraph test. 



ANOTHER: RESEARCH IN AN 
AMUSEMENT PARK? 

 Yes, they do it for business planning: designing 
questionnaires, selecting samples, conducting 
interviews, and analyzing data  that provide 
information about visitors’ attitudes, perceptions, 
and preferences. 

 Information about visitors themselves, where they 
come from and why they came. 

 Results would be variety of plans, strategies, and 
decisions on how to draw visitors to the park & 
make them to spend more. 



SOME OTHER INTERESTING 
RELATIONSHIPS 

• Height and Weight 
• Age and Blood Pressure 
• Daily Fat Intake and cholesterol Level 
• Daily Salt Intake and Blood Pressure 
• Weight Gain during pregnancy and Birth weight 
• Time to engraftment and time to infection in BMT. 
• White Blood Count and a leukemia patient’s    

Survival Time from diagnosis. 



EASY WAY OUT? 
• We could dichotomize both variables and 

use the Odds Ratio; for example, Daily Salt 
Intake (Above/Below average) versus High 
Blood Pressure (yes/No). 

• But by doing so, we would lose the details 
and the “power” (it always take more data to 
deal with dichotomous variables!) 

• Instead, you learned how to deal with the 
relationship between continuous variables. 



SUB-TYPES OF ANALYSES 
• We have have measurements made on each subject, 

one is the response variable Y, the other predictor X. 
There are two types of analyses: 

• Correlation: is concerned with the association 
between them, measuring the strength of the 
relationship. For example, Is a woman’s Age and her 
SBP related? How strong is the relationship?  

• Regression: To predict response from predictor. 
For example, Is a woman’s Age predictive of her 
SBP? Or Is a woman’s Weight Gain during pregnancy 
predictive of her newborn’s Birth Weight? 



AN EXAMPLE 
Trace metals in drinking water affect the flavor 

and may pose a health hazard. The following 
Table shows concentration of Zinc (in mg/l) 
for both surface (X) and bottom (Y) water at 6 
river location. Can we predict bottom water 
concentration (which is harder to measure) 
from surface water concentration (which is 
easier to measure) so that in a continuous 
monitoring system we can only measure from 
the surface water? Regression may be 
needed here. 



POLLUTION DATA 
Concentration of Zinc (in mg/l) measured 
at six (6) river locations, both from  
surface water and bottom water.  

Location Bottom Surface
1 0.430 0.415
2 0.266 0.238
3 0.567 0.390
4 0.531 0.410
5 0.707 0.605
6 0.716 0.609



NUTRITION AND “IMR” 
The following Table gives “Net Food Supply” 

(X, in number of calories per person per 
day) and the “Infant Mortality Rate” 
(Y=IMR, number of infant deaths per 1000 
live births). Data are listed for 22 selected 
countries (each country is an unit of 
observation); data were ontained before 
World War I (current IMRs are much 
lower; for USA: current figure is about 11). 
Are X and Y related? Maybe it’s just a 
problem of Correlation. 



N = 22 Countries                          
X = Calories Per Person Per Day     
Y = Infant Mortality Rate (IMR, 
Deaths per 1000 Live Births) 

Country x y Country x y
Argentina 2730 98.8 Iceland 3160 42.4
Australia 3300 39.1 India 1970 161.6
Austria 2990 87.4 Iceland 3390 69.6
Belgium 3000 83.1 Italy 2510 102.7
Burma 1080 202.1 Japan 2180 60.6
Canada 3070 67.4 New Zealand 3260 32.2
Chile 2240 240.8 Netherlands 3010 37.4
Cuba 2610 116.8 Sweden 3210 43.3
Egypt 2450 162.9 england 3100 55.3
France 2880 66.1 USA 3150 53.2
Germany 2960 63.3 Uruguay 2380 94.1

INFANT MORTALITY DATA 



n = 12 

X = Birth weight (oz) 

Y = Growth in weight 
between 70th and 
100th days of life, as 
% of birth weight. 

It’s both: Correlation 
& Regression 

x (oz) y (%)
112 63
111 66
107 72
119 52
92 75
80 118
81 120
84 114

118 42
106 72
103 90
94 91

Birth weight data 



MORE APPLICATIONS OF 
REGRESSION 

• Sales of a product could be predicted from 
amount of advertising expenditures. 

• The performance of an employee could be 
predicted from a battery of tests. 

• The size of vocabulary of a child could be 
predicted from the age of the child and 
levels of education of parents. 

• The length of hospital stay could be 
predicted from the severity of the operation. 



EXAMPLE: For the first child x = 112 oz.  
&  y = 63%  (3rd dot from right) 

Scatter Diagram 

Increase in weight by birth weight
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If we let each pair of numbers (x,y) be represented 
by a dot in a diagram with the x’s on the 
horizontal axis, we have the figure shown below: 



About SCATTER DIAGRAM 
• The dots in a Scatter Diagram do not fall perfectly 

on a straight line, very typical of a “statistical 
relationship”-not “deterministic relationship”.  

• The positions of the dots provide information 
about “direction” as well as the strength of the 
association. 

• Positive association: dots go lower left to upper right 
• Negative association: dots go upper left to lower right 
• Strong association: dots are clustered closer to line. 
• Weaker association: less clustered, form a circle. 



ANALYSIS of 
Scatter Diagram 
ANALYSIS of 
Scatter Diagram 

In this figure, we will draw a vertical line 
and a horizontal line intersecting at the 
point (  ,   ). Together these two lines divide 
the page into four quarters, labeled as 
I,II,III and IV. 
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SCATTER DIAGRAM 
• In quarters I and III, 

 
• For positive association, 

 
• In addition, for stronger                              

relationship most of the dots, being closely 
clustered around the line, are in these two 
quarters; the above sum is large. 
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SCATTER DIAGRAM 
• In quarters II and IV, 

 
• For negative association, 

 
• In addition, for stronger                              

relationship most of the dots, being closely 
clustered around the line, are in these two 
quarters; the sum is a large negative number. 
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SUMMARY 
• The sum                                                           

summarizes the “evidence” of the relationship 
under investigation; It is zero or near zero for 
weak associations and is large, negative or 
positive, for stronger associations. 

• However, it is “unbounded” making it hard to 
use because we cannot tell if we have a 
strong association (how large is “large”?). 

• We need to “standardize” it. 

∑ −− ))(( yyxx



COEFFICIENT OF CORRELATION  
• With a standardization, we obtain: 

 
 

so that -1≤ r ≤ 1. The statistic r is called the 
Correlation Coefficient measuring the strength of 
the relationship; and here is a “short-cut” formula 
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OUR LIMITATION 
• We focus only on “linear relationship”, where 

the dots in the scatter diagram are clustered 
around a straight line (so, we’ll emphasize on 
its “slope”). 

• There are more complicated “patterns” of 
association. For example, the dots may 
cluster around a “curve”, such as a parabola. 

• It may seem too restrictive to focus only on 
linear relationships; fortunately, many real-life 
applications fit this pattern. 
 



A SMALL EXAMPLE 
 
  x   y  x2  y2  xy 
  1   3    1    9    3 
  2   5    4  25  10 
  6   7  36  49  42 
Totals  9 15  41  83  55 
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ANALYSIS OF BIRTH WEIGHT DATA 

x (oz) y (%) x-sq y-sq xy
112 63 12544 3969 7056
111 66 12321 4356 7326
107 72 11449 5184 7704
119 52 14161 2704 6188
92 75 8464 5625 6900
80 118 6400 13924 9440
81 120 6561 14400 9720
84 114 7056 12996 9576

118 42 13924 1764 4956
106 72 11236 5184 7632
103 90 10609 8100 9270
94 91 8836 8281 8554

1207 975 123561 86487 94322Totals 



Coefficient of Correlation: 
GROWTH Versus BIRTH WEIGHT 
Using these five total, we obtain 
 

 

 

 

 

Indicating a very strong negative association. 
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INTERPRETATION 
• Values near +1 indicate a strong positive association 
• Values near -1 indicate a strong negative association 
• Values around 0 indicate a rather weak association. 
Caution: 
• A correlation of 0 does not mean no association, it 

means no linear association, we assume a straight 
line relationship to start with. You may have a 
correlation near zero and yet a strong 
relationship; but not a linear strong relationship. 

• Check the scatter diagram! 



n = 15, X = AGE (Years), Y = Systolic Blood Pressure (mm of Hg) 
Another example: Age and SBP 

Age (x) SBP (y)
42 130
46 115
42 148
71 100
80 156
74 162
70 151
80 156
85 162
72 158
64 155
81 160
41 125
61 150
75 165
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SBP versus AGE 



Analysis: 

SBP versus 
AGE 

Age (x) SBP (y) x-sq y-sq xy
42 130 1764 16900 5460
46 115 2116 13225 5290
42 148 1764 21904 6216
71 100 5041 10000 7100
80 156 6400 24336 12480
74 162 5476 26244 11988
70 151 4900 22801 10570
80 156 6400 24336 12480
85 162 7225 26244 13770
72 158 5184 24964 11376
64 155 4096 24025 9920
81 160 6561 25600 12960
41 125 1681 15625 5125
61 150 3721 22500 9150
75 165 5625 27225 12375

984 2193 67954 325929 146260Totals 



Correlation Coefficient: SBP versus Age 
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Using these five total, we obtain 
 

 

 

 

indicating a moderate positive association 



COEFFICIENT OF DETERMINATION 
• The square of the Coefficient of Correlation r, 

called the “Coefficient of Determination” r2, 
when expressed as percentage, represents the 
proportion of the degree of variation (as measured 
by the Variance) among the values of one variable 
which is accounted by its relationship with the 
other variable. 

• Example: 32.04% (square of .564) of variation in 
SBP among women are  due to their different ages. 

• This provides a more powerful interpretation for 
correlation analysis. 



HOW STRONG IS A 
CORRELATION? 

• The Coefficient of Determination r2, when 
expressed as percentage, represents the 
proportion of the degree of variation among the 
values of one variable which is accounted by its 
relationship with the other variable. 

• When r2 > 50%, one variable is responsible for 
more than half of the variation in the other; the 
relationship is obviously strong. 

• A correlation with r >.7 is therefore conventionally 
considered as a strong. 



TESTING FOR 
INDEPENDENCE 

• The Coefficient of Correlation r measures the 
strength of the relationship between two variables, 
say the Mother’s Weight and her Newborn’s Birth  
Weight. But r is only a Statistic; it is an Estimate of 
an unknown Population Coefficient of Correlation ρ 
(rho), the same way the sample x is used as an 
estimate of the Population mean µ. 

• The basic question is concerned: H0: ρ = 0; only 
when H0 is true,the  two variables are not correlated.  



Statistics Versus Parameters 
Parameter: A numerical characteristic of a 

population; parameters are fixed but 
unknown. Example: population coefficient of 
correlation ρ 

Statistic: A summarized figure from sample 
data (used to estimate parameters). Statistics 
are known but vary from sample to sample. 
Example: (sample) coefficient of correlation r 

 



Try to separate a “statistic” from a 
“parameter”. When r = 0, it only imply that 
values of the two factors, as measured from 
that sample, are not related. But you can’t 
generalize that yet (what you found might 
happen by chance, if you do it again you 
might not see it again); Only when ρ = 0, 
we can conclude that the factors are not 
related - population-wise .  



TESTING FOR INDEPENDENCE 
• The Coefficient of Correlation r measures the 

strength of the relationship between two variables; 
but as statistic it involves “random variation” in its 
sampling distribution. We are interested in knowing 
if we can conclude that: ρ≠0, that the two variables 
under investigation  are really correlated - not just 
by chance.  

• It is a two-sided Test of the Null Hypothesis of No 
Association, H0: ρ = 0, against HA: ρ ≠ 0 of Real 
Association (you can do it as one-sided too). 



TESTING FOR INDEPENDENCE 
• The Test Statistic is: 

 
 
 

• It is the same t-test  as used in the 
comparison of two Population Means; the 
Degree of Freedom is:   df = n-2 (same 
way to form your rejection decision and to 
calculate p-value) . 
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We refer to this as a “t-test” but 
not as “one-sample t-test”, nor 
“two-sample t-test” (those later 
two terms are for the comparison 
of means). You can call it as the 
“t-test for independence”. 



EXAMPLE #1 
• For the Birth-Weight problem, we have:      

n=12 and r = -.946 leading to: 
 
 
 

• At α=.05 and df = 10, the tabulated 
coefficient is 2.228 (2.5% tail) indicating that  
the Null Hypothesis should be rejected      
(t=-9.23<-2.228); (two-sided) p-value < .001.  
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EXAMPLE #2 
• For the “SBP vs. Age” problem, we have      

n=15 and r = .566 leading to: 
 
 
 

• At α=.05 and df = 13, the tabulated 
coefficient is 2.16 (2.5% tail) indicating that  
the Null Hypothesis should be rejected 
(t=2.475>2.16); (two-sided) p-value = .028.  
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EXAMPLE #3 
 
  x   y  x2  y2  xy 
  1   3    1    9    3 
  2   5    4  25  10 
  6   7  36  49  42 
Totals  9 15  41  83  55 
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EXAMPLE #3 
• Here: n = 3, r = .945 

 
 
 
 

• At α=.05 and df = 1, the tabulated coefficient is 
12.706 (2.5% tail) indicating that  the Null 
Hypothesis should not be rejected (even though 
r=.945≠0) (t=2.889<12.706); n=3 is the smallest 
size that we can apply the procedure. 
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  x   y  x2  y2  xy 
  1   3    1    9    3 
  2   5    4  25  10 
  6   7  36  49  42 
  9 15  41  83  55 

 

 



CORRELATION & REGRESSION 
• We have have measurements made on each subject, 

one is the response variable Y, the other predictor X. 
There are two types of analyses: 

• Correlation: is concerned with the association 
between them, measuring the strength of the 
relationship & test for the Null Hypothesis H0: ρ=0; 
For example, Is a woman’s Age & her SBP related?  

• Regression: To predict response from predictor. For 
example, Is a woman’s age predictive of her SBP? 
Or Is a woman’s Weight Gain during pregnancy 
predictive of her newborn’s Birth Weight? How? 



DIFFERENT ROLES OF VAIRABLES 
• X is the “predictor”; also called “explanatory 

variable” or “independent variable”. 
• In a causal relationship, or when they come in 

sequentially, X comes first - and we place it on 
the horizontal axis of the scatter diagram. 

• Y is the “response”; also called “dependent 
variable” or “outcome variable”. 

• In a causal relationship, or when they come in 
sequentially, Y comes later - and we place it on 
the vertical axis of the scatter diagram. 



AN IMPORTANT NOTE 

• In Correlation Analysis, the roles of “X” and 
“Y” are exchangeable; you should note the 
formula for the coefficient of correlation “r” 
is symmetric with respect to X and Y (that 
we get the same result regardless of which 
one is X). 

• In Regression Analysis, each has a well-
defined role; we’ll predict “response Y” from 
(a new) value of “predictor X” 



n = 12 

X = Birth weight (oz) 

Y = Growth in 
weight between 70th 
and 100th days of 
life, as % of birth 
weight. 

x (oz) y (%)
112 63
111 66
107 72
119 52
92 75
80 118
81 120
84 114

118 42
106 72
103 90
94 91

Birth weight data: EXAMPLE: 

Here, the “Birth Weight” is the Predictor, “Growth” the Response 



n = 15, X = AGE (Years), Y = Systolic Blood Pressure) (in mm of Hg) 
Age and SBP 

Age (x) SBP (y)
42 130
46 115
42 148
71 100
80 156
74 162
70 151
80 156
85 162
72 158
64 155
81 160
41 125
61 150
75 165

100

120

140

160

40 50 60 70 80
Age
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P

SBP versus AGE                           
(AGE is Predictor, SBP is Response) 



RATIONALE FOR PREDICTION 
• When the Coefficient of Correlation r is large, so 

is the Coefficient of Determination. 
• If the Coefficient of Determination r2 is large, say 

r2 = 80%, almost all variation among responses 
are due to different values of its predictor; 

• That means we can predict almost precisely the 
value of the response if we know the value of the 
predictor. For example, the question could be : 
what would be a boy’s birth weight if his mother 
gained 37 lbs during her pregnancy? 



HISTORICAL ORIGIN 

Regression analysis was first developed by Sir Francis 
Galton in the later part of the 19th century. Galton had 
studied the relation between heights of parents and 
children and noted that the heights of children of both 
tall and short parents appeared to “revert” or “regress” 
to the mean of the group. He considered this tendency 
be a “regression to mediocrity”. The term “regression” 
persists to this day to describe statistical relations 
between variables – even nothing “regresses”!. 



A functional relation between two variables 
is expressed by a mathematical formula. 
For example, if X denotes the independent 
variable and Y the dependent variable, a a 
functional relation could be of the form Y = 
f(X). Given a particular value of X, the 
function f(.) would give the corresponding 
value of Y 



DETERMINISTIC & 
STATISTICAL RELATIONSHIPS 

• In a deterministic relation, the value of X 
determines the value of Y precisely. For example, 
if the admission costs $100 and each day of stay 
costs $200; then staying for X=3 days will cost the 
patient Y=100+(3)(200)= $700. 

• A statistical relation is not a perfect one; the 
observations (i.e. the “dots”) do not fall perfectly 
on a straight line or a curve – as seen from a 
scatter diagram. 

• Our targets are statistical relations 



REGRESSION MODEL 
• Let Y be the Response Variable, X the Predictor 

(also called Explanatory or Independent Variable). 
For a particular value x of the Predictor X, the 
values of the Response or Dependent Variable Y is 
assumed to be “normally distributed”.  

• For example, among the mothers who gained 37 lbs 
during their pregnancies and gave birth to baby 
boys, the boys’ birth weights may not be all the 
same but form certain normal distribution. 



REGRESSION MODEL 
• Let Y be the Response Variable, X the Predictor 

(also called Explanatory or Independent Variable). 
The Response or Dependent Variable Y, for the sub-
population with X=x, is assumed to be “normally 
distributed”. The Regression Model describes the 
Mean of that Normal Distribution as a function 
when X takes value X=x. 

• Since we focus only on linear relationship, the above 
function represents the equation of a straight line- 
with a Slope and an Intercept- when we graph X on 
the horizontal axis and Y on the vertical axis. 





EXAMPLE 
• For example, among the mothers who gained 

37 lbs during their pregnancies and gave birth 
to baby boys, the boys’ birth weights may not 
be all the same but form certain normal 
distribution. 

• The Mean of that Normal Distribution depends 
on the weight gain:                                      
Mean (of BW) = Intercept + (Slope)(37) 

• But that’s the Mean, an individual BW is the 
Mean plus certain “deviation from the mean”. 



REGRESSION MODEL 
• Model: Y = β0 + β1x + ε where β0 and β1 are two  new 

parameters called regression coefficients, the Intercept 
and the Slope, respectively. The last term, ε, is the 
“error” representing the random fluctuation of y-values 
around their mean, β0 + β1x , when X=x. 

• The presence of the error term is an important 
characteristic of a statistical relationship; the points on a 
scatter diagram do not fall perfectly on the line. 

• The scatter diagram is an useful diagnostic tool for 
checking out the Model (e.g. to see if it is linear). 
 



REGRESSION COEFFICIENTS 
• The error term ε would tell how spread the dots are 

around the regression line. 
• The regression coefficients, β0 and β1, determine the 

position of the line and are important quantities in the 
analysis process. In “correlation analysis”, we need to 
know only the coefficient of correlation r which is 
proportional to the slop β1 (we’ll see); but in a 
“regression analysis”, with new emphasis on 
prediction , so we need them both, β0 and β1. 

• As parameters, both β0 and β1 are unknown; but they 
can be “estimated” by statistics from data 



THE INTERCEPT 
• If the scope of the model include X = 0, β0 gives 

the Mean of Y when X = 0; otherwise, it does not 
have any particular meaning as a separate term. 

• If the scope of the model does not include X = 0, 
we may choose a “transformation” such as:        
(New) x = x - x                                                   
Under this transformation, α gives the Mean of Y 
when X = x, i.e. a “typical” subject (with value x) 



THE SLOPE 
• The Slope  is a more important parameter:  
• (i) If X is binary (=0/1) representing an exposure, β1 

represents the increase in the mean of Y associated 
with the exposure (or a decrease if β1 is negative);  

• (ii) If X is on a continuous scale, β1 represents the 
increase in the mean of Y associated with one unit 
increase in the value of X,  X=x+1 vs. X=x, (or a 
decrease if β1 is negative). 

• The slope β1 and the coefficient of correlation r are of 
the same “sign”; β1 is positive for a positive 
association and negative for a negative association. 



EXAMPLE 
• For example, let X be a mother’s weight gain 

during her pregnancy and Y the birth weight of 
the newborn. When X=x, the birth weights (BW) 
of all infants form certain normal distribution. 

• The Mean of that Normal Distribution depends 
on the weight gain:                                        
Mean (of BW) = Intercept + (Slope)(x) 

• The “slope” represents the average increase in 
birth weight for every pound the mother gained. 
 



ESTIMATION OF PARAMETERS 
• By the Model, when X=x, the Mean of Y is β0 + β1x .  
• The quantity (β0 + β1x) is the mean and Y is an 

observation when X=x; Y can be used as an estimate of 
that mean (sample of size 1). The error of that estimate 
is [Y - (β0 + β1x)] so that Q = Σ [Y - (β0 + β1x)]2 

represents the “total errors” (not distinguishing an 
under-estimation from an over-estimation); called “the 
sum of squared errors” 

• The method of least squares requires that we find “good 
estimates” of β0 and β1 the values of b0 and b1 so as to 
minimize the “sum of squared deviations” Q. 

• (We need Math, “Calculus”, to carry out this step) 



ESTIMATION OF PARAMETERS 

• Given the estimates “b0” of the Intercept and 
“b1” of the Slope, Estimate of Y (for a “new” 
value x of X) is Ŷ = b0 + b1x. You can see 
that the slope b and the correlation r are 
proportional, that if one is 0 the other is 0. 
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•  The “Least Squares” Estimates are: 
 



SUM OF SQUARED ERRORS 
• Since [Y - (b0 + b1x)] represents the “error” of our 

prediction; SSE = Σ [Y - (b0 + b1x)]2 is referred to 
as the (observed) “sum of squared errors”, very 
much like the numerator of the sample variance s2. 

• The the Regression Model, the error term ε is 
assumed to have a Normal Distribution with mean 
0 and variance σ2. The variance σ2 is estimated by  
SSE/(n-2); 2 degrees of freedom were lost due to 
the need to estimate the intercept and slope. 



EXAMPLE #1 
 
  x   y  x2  y2  xy 
  1   3    1    9    3 
  2   5    4  25  10 
  6   7  36  49  42 
Totals  9 15  41  83  55 
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EXAMPLE #1  
  x   y  x2  y2  xy 
  1   3    1    9    3 
  2   5    4  25  10 
  6   7  36  49  42 
Totals  9 15  41  83  55 

 

 

the estimates of the Slope and the Intercept are: 
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For example, for new subject 
with X=5, it is predicted that 
its average y-value would be:                       
2.858 + (.714)(5) = 6.428 
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n = 12 

X = Birth weight (oz) 

Y = Growth in weight 
between 70th and 
100th days of life, as 
% of birth weight. 

x (oz) y (%)
112 63
111 66
107 72
119 52
92 75
80 118
81 120
84 114

118 42
106 72
103 90
94 91

Birth weight data: 
EXAMPLE #2: 

Note:if the birth weight is 95 ounces, it is 
predicted that mean increase between days 70 
& 100 would be 256.3 + (-1.74)(95) = 91% 



n = 15, X = AGE (Years), Y = Systolic Blood Pressure                                                                    
(in mm of Hg) 

Example #3: Age and SBP 

Age (x) SBP (y)
42 130
46 115
42 148
71 100
80 156
74 162
70 151
80 156
85 162
72 158
64 155
81 160
41 125
61 150
75 165

100

120

140

160

40 50 60 70 80
Age

SB
P

SBP versus AGE 

Note: for 60-year-old women, it is predicted 
that their mean systolic blood pressure would 
be 99.6 + (.71)(60) = 142.2 mmHg. 



How the data set was generated? 

Are the results more suitable for 
some form of data than others? 
For example, is the method for 
regression applicable to 
“correlation data”? 



Ideally the “story” should go like this: 

Step #1: The investigator chooses n, the number of data points, 

Step #2: The investigator chooses the levels of X: x1, x2, …, xn, 

Step #3: “Nature makes n draws at random with replacement from 
the magic “error box” whose average is 0; call them ε1, ε 2, .., ε n. 

Step#4: “nature” computes y1, y2, …, yn from the formula/model:      
yi = β0+ β1xi + ε i; the parameters are known to nature but not to 
investigator, nor statistician. 

Step #5: Investigator get the data values y1, y2, …, yn but none of the 
ingredients of the model: β0, β1, ε1, ε 2, .., ε n. 

Step#6: In the final step, the statistician’s task is to estimate the 
parameters β0, β1 and provide the standard errors for these estimates. 



Data for Correlation & 
Regression Analysis, however, 
may be obtained from any 
sources: observational as well 
as experimental studies. All the 
results are equally applicable. 



Besides estimating values of the “response” 
Y, at given values of the “predictor” X; efforts 
in regression analysis are also focus on the 
slope. These include forming its confidence 
intervals and/or testing if its true value is zero 
(if so, X and Y are not correlated). To do 
these, we need the “Standard Error” of the 
slope; this formula is given in the next slide, 
and details will be developed in the next few 
lectures. 
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SCOPE OF THE MODEL 
In formulating a regression model, we need to 
restrict the “coverage” of the model to some interval 
of values of the independent variable X; this is 
determined either by the design or the availability of 
data at hand. The shape of the regression function 
outside this range would be in doubt because the 
investigation provided no evidence as to the nature 
of the statistical relation outside this range. In short, 
one should not do any extrapolation. 



DUE AS HOMEWORK 
We have data on the conduct of a number of cancer clinical trials from 
“ClinicalTrials.gov” (File: Minority Enrollment); the aim is to is to investigate 
potential factors which might affect the enrollment of black patients. There were 
n=113 trials and the (response) variable under investigation is the percent of black 
patients (“Black”) among those recruited for each trial. To provide possible 
explanations, we’ll investigate 9 possible exploratory (or independent) factors 
represented by 10 variables: Age (1= under 18, 2 = 18 and above), Gender (1 = 
Male, 2 = Female, 3 = both), Funder (1 = Government, 2 = Industry, 4 = 
Combination), Trial Duration (in months), Allocation (1 = Randomized, 2 = Non-
randomized), Intervention Model (or Design; 1 = Parallel (multiple arms), 2 = Single 
group, 3 = Cross-over), Primary Purpose (1 = Therapeutic, 2 = Non-therapeutic), 
Masking (1 = Open Label, 2 = Double Blind). The final factor, Trial Size, is 
represented by two variables: Actual enrollment, and Accrual Percentage which 
expressed accrual as percentage of Planned Accrual. 
#2.1 Investigate the role of Trial Duration, Actual Enrollment, and 
Accrual Percentage using Simple Correlation (calculating Coefficient 
of correlation & test for independence). 
#2.2 Are Actual Enrollment and Accrual Percentage correlated? 
(Optional Question: Why we would be interested in or concerned 
about relationship between independent variables?) 
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