
PubH 7405:  
REGRESSION ANALYSIS 

Review #3: 

ONE-FACTOR EXPERIMENT DESIGN 



HOW DOES SOCIETY DEAL 
WITH UNCERTAINTIES ? 

• We form Assumption/Hypothesis: “Every 
person is innocent until proven guilty” 
(written in our Constitution), 

• We gather data: Evidence against 
Hypothesis- not against the suspect, then 

• We decide whether Hypothesis should be 
rejected (If it is, the verdict is “Guilty”) 



HOW DOES SCIENCE DEAL 
WITH UNCERTAINTIES ? 

• We form Assumption/Hypothesis: From 
experience & observations (The process 
leads to the so-called research questions) 

• We gather data: Experiments & Trials, 
Surveys, Medical Records Abstractions. 

• We make decision by performing  DATA 
ANALYSIS, the “core” area of Biostatistics – 
the core part, not the only part. 



ELEMENTS OF GOOD 
RESEARCH 

• A good RESEARCH QUESTION with well-
defined objectives  & endpoints, 

• A thorough INVESTIGATION, lots of data 
• An efficient PRESENTATION: data 

organization & summarization, and 
• A proper STATISTICAL INFERENCE (the 

process & methods of drawing conclusions) 



AREAS OF BIOSTATISTICS 
Research is a three-step process: 
(1) Sampling/design: Find a way or ways to 

collect data (going from population to sample). 
(2) Descriptive statistics: Learn to organize, 

summarize and present data which can shed 
light on the research question (investigating 
sample). 

(3) Inferential statistics: Generalize what we learn 
from the sample or samples to the target 
population and answer the research question 
(going from sample to population). 



THE IMPORTANT PHASE 

Just as in the case of “Trial by Jury”, the 
most important stage of the “Research 
Process” is the DESIGN:  How & How 
Much data are collected! Also, It dictates 
how data should be analyzed. May be it’s 
not the question of “how” to collect your 
data but the decision on “when to do 
what”! 



Designed (one-factor) experiments are conducted 
to “demonstrate” a cause-and-effect relation 
between an explanatory factor (or predictor) and a 
response variable. The demonstration of a cause-
and-effect relationship  is accomplished, to put it 
in a simple way, by altering the level of the 
explanatory factor (i.e. “designed”) and observing 
the effect of the changes (i.e. designed values of 
predictor X) on the response variable Y. Designed 
experiments are often used as “comparative” in 
natures; that is comparing responses from 
different levels of the predictor. 



A Simple Example: 
An experiment on the effect of Vitamin C on the prevention 
of colds could be simply conducted as follows. A number 
of n children (the sample size) are randomized; half were 
each give a 1,000-mg tablet of Vitamin C daily during the 
test period and form the “experimental group”. The 
remaining half , who made up the “control group” received 
“placebo” – an identical tablet containing no Vitamin C – 
also on a daily basis. At the end, the “Number of colds per 
child” could be chosen as the outcome/response variable, 
and the means of the two groups are compared. 

Pay attention to which/what is the Explanatory variable 
(Predictor), Factor levels or treatment arms, Experimental 
units, and Outcome/Response variable. 



Assignment of the treatments (factor levels: 
Vitamin C or Placebo) to the experimental units 
(children) was performed using a process called 
“randomization”. The purpose of randomization 
was to “balance” the characteristics of the 
children in each of the treatment groups, so that 
the difference in the response variable,  the 
number of cold episodes per child, can be rightly 
attributed to the effect of the predictor – the 
difference between Vitamin C and Placebo. 

Randomization balances the characteristics that 
we know and measurable and characteristics 
that we are not aware or hard to quantify. 

 



Designed experiments are conducted to 
“demonstrate” a cause-and-effect relation 
between one or more explanatory factors 
(or predictors) and a response variable.  

Different ways to show case the 
relationship form different “designs”. 



The simplest form of designed 
experiments is the “completely 
randomized design” where treatments 
are randomly assigned to the 
experimental units – regardless of their 
characteristics. This design is most 
useful when the experimental units are 
relatively homogeneous with respect to 
known confounders.  



A confounder is a factor which may be related to 
the treatment or the outcome even the factor 
itself may not be under investigation. A study 
may involve one or several confounders. In a 
clinical trial, the primary outcome could be SBP 
reduction and the baseline SBP is a potential 
confounder. Patients’ age may be another one. 
In theory, values of confounders may have been 
balanced out between study groups because 
patients were randomized.  But it is not 
guaranteed; especially if the sample size is not 
very large. 



If confounder or confounders are known 
apriori, heterogeneous experimental units 
are divided into homogeneous “block”; and 
randomizations of treatments are carried 
out within each block. The result would be a 
“randomized complete block design”. This 
is the type of data you see in Two-way 
ANOVA (One factor is Treatment, the other 
is Block) 



A Simple Example: 
An experiment on the effect of Vitamin C on the prevention 
of colds could be simply conducted as follows. A number 
of n children (the sample size) are randomized; half were 
each give a 1,000-mg tablet of Vitamin C daily during the 
test period and form the “experimental group”. The 
remaining half , who made up the “control group” received 
“placebo” – an identical tablet containing no Vitamin C – 
also on a daily basis. At the end, the “Number of colds per 
child” could be chosen as the outcome/response variable, 
and the means of the two groups are compared. 

Some other factors might affect the numbers of colds 
contracted by a child: age, gender, etc… Let say we focus 
on gender. 



THE CHOICES 
• We could perform  complete randomization – 

disregard the gender of the child, and put 
Gender into the analysis as a covariate; or 

• We could randomize boys and girls 
separately; at the end the proportions of boys 
in the two groups are similar and there would 
be no need for adjustment. 

• The first approach is a complete randomized 
design; the second is a randomized complete 
block design. 

• Similarly, we could block using “age groups”. 



It might involve two blocking 
factors, and you would end up 
with Three-way ANOVA. 



The term “treatment” may also mean different 
things; a treatment could be a factor or it could be 
multifactor. For example, let consider two different 
aspects of a drug regiment: Dose (Low, High) and 
Administration mode (say, one tablet a day or two 
tablets every other day). We could combine these 
two aspects to form 4 combinations; then treating 
them as 4 treatments and apply a completely 
randomize design. We call it a (balanced) Factorial 
Design; the analysis is similar to that of a 
randomized complete block design. 



THE ROLE OF STUDY DESIGN 
In a “standard” experimental design, a linear 
model for a continuous response/outcome is: 
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The last component, ‘experimental error”, includes 
not only error specific to the experimental process 
but also includes “subject effect” (age, gender, 
etc…).  Sometimes these subject effects are large 
making it difficult to assess “treatment effect”. 



Blocking (to turn a completely 
randomized design into a randomized 
complete block design ) would help. But 
it would only help to “reduce” subject 
effects, not to “eliminate” them: 
subjects in the same block are only 
similar, not identical – unless we have 
“blocks of size one”. And that the basic 
idea of “Cross-over Designs”, a very 
popular form in biomedical research. 



Today’s lecture is limited to the simplest 
form of designed experiments, the 
“completely randomized design”. The aim 
is to review some statistical methods you 
previous learned and strengthen them by 
relating the solutions to regression 
analysis. 



INFERENCES & VALIDITIES 
• Two major levels of inferences are involved in 

interpreting a study 
The first level concerns Internal validity; the 

degree to which the investigator draws the 
correct conclusions about what actually 
happened in the study. 

The second  level  concerns External Validity 
(also referred to as generalizability or 
inference); the degree to which these 
conclusions could be appropriately applied to 
people and events outside the study. 



Truth in              
The Universe 

Truth in       
The Study 

Findings in     
The Study 

Research Question       Study Plan    Study Data 

External Validity Internal Validity 



With the goal of maximizing the validity of the 
inferences, the investigator reverses the process: 
(i) designs a study plan in which the choice of the 
research question, the subjects, and the 
measurements enhances the External Validity,  (ii) 
is conducive to implementation with a high degree 
on Internal Validity.  

That is to focus on the External Validity first 
(Design) then Internal Validity (Implementation).  



Statistical contributions involve both 
Internal Validity (for example, helping to 
select a sensitive “endpoint” or decide 
what to do with missing data) and External 
Validity (helping to choose a proper design 
and an adequate sample size). 



THE BASIC ISSUE IN RESEARCH 

Most of the times, inexperienced 
researchers mistakenly act like there is an 
identifiable, existent parent population or 
populations of subjects. We act as if the 
sample or samples is/are obtained from 
the parent population or populations  
according to a carefully defined technical 
procedure called random sampling. And 
we simply compare population means. 



This is not true in real-life biomedical 
studies. The laboratory investigator 
uses animals in his projects but the 
animals are not randomly selected from 
any large population of animals. The 
clinician, who is attempting to describe 
the results he has obtained with a 
particular therapy, cannot say that his 
patients is a random sample from a 
parent population of patients. 



THE VALUE OF TRIALS 
• Because they are not population-based (there is 

not an identifiable, existent parent population of 
subjects  for sample selection), biomedical 
studies – designed experiments are 
“comparative”. That is the validity of the 
conclusions is based on a comparison. 

• In a clinical trial, we compare the results from 
the “treatment group” versus the results from 
the “placebo group”. The validity of the 
comparison is backed by the randomization. 



Basic data analysis includes: 

Two-sample t-test: to compare two 
population means (two-by-two Chi-square 
is a special case); 

One-way ANOVA (Analysis Of Variance) to 
compare several population means; 

DATA ANALYSIS METHODS 



Two-sample t-test is a popular statistical 
method for comparing two population 
means using two independent samples; 
and One-way Analysis of Variance 
(ANOVA) extends two-sample t-test to 
compare means of more than 2 
independent samples.  
 



Analysis A: COMPARISON OF TWO 
POPULATION MEANS 

• In this type of problems, we have two independent 
samples (n1,y1,s1

2) and (n2,y2,s2
2); the n’s being the 

sample sizes, y the sample means, and s2 the sample 
variances (the s are standard deviations).  

• Often called the “two-sample problem” 
• Considered as samples with population means µ1 and µ2  
• The aim is to compare the two population means. 
• (“Y” is the “response”, a measure of interest) 



#1: TWO-SAMPLE t-TEST 

• The Null Hypothesis considered is H0: µ1 = µ2                                                   
or equivalently, H0: µ2 - µ1 = 0. 

• The assumptions are: 
 Independent observations 
 Two Normal Distributions 
 Variances are equal 
• (Normal assumption may be dropped if 

sample sizes are large – due to Central Limit 
Theorem) 
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#2: REGRESSION APPROACH 
• Pool the data, treat Y as dependent variable 
• Binary independent variable (X=0/1; for 

group1/2) 
• The assumptions (on Y; Regression of Y on X): 
 Independent observations 
 Normal Distribution for Y 
 Constant Variance 
• Same as assumptions of  the two-sample t-test 
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EQUIVALENCY 

• Same Assumptions 
• Same Null Hypothesis 
• In order to prove that they are the same     

t-test, at df = (n-2); n = n1 + n2  we  prove 
that they have the same test statistic too. 

• A sketch of the proof is as follows 
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 Since X = 0/1 for group 1/2; group 1 serves as “baseline”. 
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test for independence 



Conclusion: 
We can do regression with a 
binary independent variable; the 
results are equivalent to those of 
the two-sample t-test to compare 
two population means. 



Analysis B: COMPARISON OF 
POPULATION SEVERAL MEANS 
• Suppose we want to know whether there 

are differences in the means of more 
than two independent groups. For 
example, do families of different ethnic 
groups have different income levels? 

• Two Questions here: How to measure 
the “difference”? and how to decide of 
the observed difference is real ? (i.e. 
statistically significant). 



QUESTION #1: 
How do we measure the “difference” among 
several means? By subtraction? Which from 
which? If not, then what else can we “measure” 
differences? That is what should we use instead 
of difference (x2-x1) (or their ratio)? 
 
QUESTION #2: 
How do we decide if the “difference” among 
several sample means is large enough to 
conclude that the population means are different? 
That is what do we use instead of the t-test? 



ONE-WAY “ANOVA” 
• What is needed is a different way to summarize 

the differences between several means and a 
method of simultaneously comparing these 
means in one step.  This method is ANOVA or 
One-way ANOVA, for ``ANalysis Of VAriance''. 

• If that “one-step” test, the ANOVA F-test, is 
significant indicating that some pair(s) of means 
are different then we can start looking for 
that/those pairs- with “allowance” for multiple 
comparisons. 



COMPONENTS OF TOTAL VARIATION 

• The total variation in the combined sample can be 
decomposed into two components as follows:     
(xij-x) = (xij-xi) + (xi-x):  

(1) The first term reflects the variation within the  
samples; the following sum is called the “within 
sum of squares”: 

(2) The difference, SSB=SST-SSW, is called the 
“between sum of squares” which measures the 
differences between samples: 
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ANOVA: ANALYSIS OF VARIANCE 
• SST measures the “total variation” in the 

combined sample with (n-1) degrees of freedom, 
n=Σni is the total size. It is decomposed into: 
SST=SSW+SSB 

• SSW measures the variation within samples with 
Σ(ni-1)=(n-k) degrees of freedom, and 

• SSB measures the variation between sample 
means with (k-1) degrees of freedom; k=# of 
groups 



ANSWER #1: 

SSB measures the variation, or difference, 
between sample means: 

 

 

(which is a concept similar to the “variance”: 
variation among sample means) 
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“ANOVA” TABLE 
• The breakdowns of the total sum of squares and its 

associated degree of freedom are displayed in the form of 
an “analysis of variance table” (ANOVA table) as follows: 

    Source of Variation    SS      df       MS     F ratio        p-val  
    Between samples       SSB     k-1    MSB MSB/MSW  
    Within samples         SSW     n-k   MSW  
    Total                           SST     n-1 
• MSW is a natural extension of the pooled estimate sp

2 as 
used in the two-sample t-test; It is a measure of the 
average variation within the k samples. 
 



APPROACH TO QUESTION #2: 

COMPARE the “average gap/difference” 
between sample means (MSB) to the 
average gap/difference between 
measurements in samples (MSW):  

Use F=MSB/MSW 



THE “F” TEST 
• The test statistic F for the Analysis of Variance 

compares MSB (the average variation between the 
k sample means) and MSE (the average variation 
within the k samples), a value near 1 supports the 
null hypothesis of no differences between the k 
population means.  

• If we apply the new method of “One-way ANOVA” 
to compare the means of two groups, the result is 
identical to that of a two-sided two-sample t-test 
 



ANOVA ASSUMPTIONS 
• The Null Hypothesis considered is       

H0: µ1 = µ2 = … = µk  
• The assumptions are: 
 Independent observations 
 k Normal Distributions 
 Variances are equal 
• (Normal assumption may be dropped if 

sample sizes are large – due to Central 
Limit Theorem) 



Alternative Approach: 

To compare several means from a completely 
randomized design, we can do regression 
with a categorical independent variable – 
using (k-1) “dummy/indicator variables”. The 
results are equivalent to those of the one-
way Analysis of Variance (one-way ANOVA). 
This is “Multiple Regression”; main topic in 
the second half of this course. 



A NEWER POSSIBLE PROBLEM: 

Randomization is very crucial because it 
helps to balanced out the groups. However, 
even with randomization, groups or arms of 
a one-factor experiment design might still 
be unbalanced with respect to some 
confounder or confounders; without proper 
adjustment, results might be misleading. 



A confounder is a factor which may be related to 
the treatment or the outcome even the factor 
itself may not be under investigation. A study 
may involve one or several confounders. In the 
above clinical trial example, the primary 
outcome is SBP reduction and the baseline SBP 
is a potential confounder. Patients’ age may be 
another one. In theory, values of confounders 
may have been balanced out between study 
groups because patients were randomized.  



That’s theory that study groups are balanced 
– after a randomization; in practice, study 
groups are rarely completely balanced with 
respect to all factors. Randomization helps 
but might not help completely. And this 
possibility of unbalanced study groups is 
very real when the sample sizes are not very 
large – and confounding effect is strong. 



We can investigate binary covariates (t-test), 
we can investigate categorical covariates 
(One-way ANOVA), and – of course - we can 
investigate continuous covariates. 

Of course, a binary covariate or a 
categorical covariate can be used in the 
same model with one or more continuous 
covariates (confounders); the “combination” 
forms an interesting case – that’s used to be 
called ANCOVA, Analysis of covariance.  



The Analysis of Covariance (ANCOVA) 
serves the very same main purpose as 
ANOVA, that is to compares averages or 
means from different treatments, but it 
combines the ANOVA method with the 
Regression method in doing so. The term 
“ANCOVA” often refers to the Multiple 
Regression Model without interact terms 
in which binary/categorical covariate 
(representing groups) and continuous 
covariates (confounders) used together. 



Multiplicity 



VARIABILITY & ERRORS 
In some medical cases such as infections, the 
presence or absence of bacteria and viruses – a 
binary outcome - is easier to confirm; “test 
decisions” are made correctly.  

For a continuous outcome, we have different 
“distributions” for sub-populations. In efforts to 
separate them,  errors are unavoidable. 

And that’s also the case of statistical tests of 
significant: “test statistics” have different 
distributions under the Null and the Alternative. 



ERRORS 
In making a decision concerning the Null Hypothesis 
to compare µU versus µNU, errors are unavoidable. 
Since a  null hypothesis H0 may be true or false and 
our possible decisions are whether to reject or not to 
reject it, there are four possible outcomes 
combinations. Two of the four outcomes are correct 
decisions: 

(i) not rejecting a true H0 

(ii) rejecting a false H0 

There are also two possible ways to commit an error: 

 Type I: a true H0 is rejected 

 Type II: a false H0 is not rejected 



ANALOGIES 
• Type I error: Convicting an innocent man 

(top priority: to keep the probability of 
committing this error low – that’s in “trial 
phase”) 

• Type II error: Acquitting a guilty suspect 
(Type II error is controlled earlier in the 
process, i.e. making sure to have enough 
evidence for a conviction by a thorough 
investigation – in “investigation phase”).  



α = Pr(Type I Errors) 

β = Pr(Type II Errors) 

        Truth H0 not rejected H0 is rejected
H0 is true Correct Decision Type I Error

H0 is false Type II Error Correct Decision



1-β = Statistical Power 



The aim of investigators is to keep α and β, the 
probabilities - in the context of repeated sampling 
– of types I and II errors respectively, as small as 
possible. However, resources are limited, this goal 
requires a compromise because these actions are 
contradictory; We fix α at some specific 
conventional level- say .05 or .01 and β is 
controlled through the use of sample size.  
 
In other words, in research, the control of type I 
errors lies in the “analysis stage” and the control 
of type II errors lies in the “design stage”, making 
sure to have a large study to collect enough data. 



In a “One-way ANOVA” problem, if the F-test 
is significant we can conclude that not all 
group means are equal but the test does not 
tell which ones are not the same or how may 
pairs are not different. We may have to start 
a series of “pairwise comparisons” using, 
for example, two-sample t-test. 
So, what’s the problem? 
 



FAMILYWISE ERROR RATE (FER) 

FER = 𝑃𝑃(𝑎𝑎𝑡𝑡 𝑙𝑙𝑒𝑒𝑎𝑎𝑠𝑠𝑡𝑡 𝑜𝑜𝑛𝑛𝑒𝑒 𝑓𝑓𝑎𝑎𝑙𝑙𝑠𝑠𝑒𝑒 𝑝𝑝𝑜𝑜𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑒𝑒 𝑟𝑟𝑒𝑒𝑠𝑠𝑢𝑢𝑙𝑙𝑡𝑡) 
        = 1−𝑃𝑃(𝑧𝑧𝑒𝑒𝑟𝑟𝑜𝑜 𝑓𝑓𝑎𝑎𝑙𝑙𝑠𝑠𝑒𝑒 𝑝𝑝𝑜𝑜𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑒𝑒 𝑟𝑟𝑒𝑒𝑠𝑠𝑢𝑢𝑙𝑙𝑡𝑡𝑠𝑠) 
        = 1–(1−α)𝑘𝑘 
 
We often want to maintain FER at a     
pre-determined level, say, the 
conventional choice of 0.05 or 0.01 



EXAMPLES 
Number of tests     Probability  
               1                    0.05  
               2                   0.0975  
               5                   0.226  
             10                   0.401  
             50                   0.923  
 
Probability of at least one false significant result 
(Note: not proportional to number of tests; with 
10 tests, it’s not (10)(0.05) = 0.50). 



BONFERRONI METHOD 

(1) N different Null Hypotheses 𝐻𝐻01,…, 𝐻𝐻0𝑁𝑁 
(2) Calculate corresponding p-values: 𝑝𝑝1,…, 𝑝𝑝𝑁𝑁 
(3) Reject 𝐻𝐻0𝑖𝑖 if and only if 𝑝𝑝𝑖𝑖< 𝛼𝛼/𝑁𝑁 
 
e.g. 
For 10 comparisons; per comparison, 
compare p-value to:                       
adjusted α = 0.05/10 = 0.005 



Bonferroni is the most simple, most 
commonly used method. However: 
 
(1) It is too conservative (low power); 
(2) Do not take into account correlation 
between decisions. 



HOLM METHOD 
(1) N different Null Hypotheses 𝐻𝐻01,…, 𝐻𝐻0𝑁𝑁 
(2) Calculate corresponding p-values: 𝑝𝑝1,…, 𝑝𝑝𝑁𝑁 
(3) Order these p-values from smallest to largest, 
       𝑝𝑝(1) < p(2) < …< 𝑝𝑝(𝑁𝑁) 
(4) Starting with the smallest p-value: 
      (a) If p(1)≥ α/N, testing stops with no statistically 
              significant differences; 
      (b) If p(1)< α/N, that comparison is deemed significant, 
              and 𝑝𝑝(2) is then compared with  α/(N-1) 
      (c) If p(2)≥  α/(N-1), testing stops and no further differences 
             are declared significant. Otherwise, that comparison  
             is deemed significant, and 𝑝𝑝(3) is then compared with 
             α/(N-2) etc… 



At the jth step, reject H(j) if p(j)< α/(N-j+1); for 
example, at the last step, compare the largest    
p-value p(N) to α. 
 
Holm method is more powerful than Bonferroni’s 
but it’s still somewhat conservative because it 
does not take into account correlation between 
decisions.  



HOCHBERG METHOD 
(1) N different Null Hypotheses 𝐻𝐻01,…, 𝐻𝐻0𝑁𝑁 
(2) Calculate corresponding p-values: 𝑝𝑝1,…, 𝑝𝑝𝑁𝑁 
(3) Order these p-values from smallest to largest, 
       𝑝𝑝(1) < p(2) < …< 𝑝𝑝(𝑁𝑁) 
(4) Starting with the largest p-value: 
 
      (a) If p(N)< α, testing stops and declare all comparisons  
           significant at level (i.e. reject all Null Hypotheses).  
           Otherwise fail to reject H(N) and go on to the next step 
      (b) If p(N-1)< α/2, stop & declare H(1), H(2), …, H(N-1)  
           are all significant. Otherwise fail to reject H(N-1) and  
           go on to compare p(N-2) to α/3, etc… 
      (c) In general, compare p(N-k) to α/(k+1) 
 



Hochberg (also known as Benjamini-Hochberg) 
method and Holm method are equivalent. They 
are both sequential but moving in different 
direction (one like “backward elimination and 
one “forward selection”). In recent years, 
Hochberg method becomes increasing more 
popular and more cited. 
 
Both methods are more powerful than 
Bonferroni but not take into account correlation 
between decisions. 



EXAMPLE 
 

Suppose we performed N=5 tests of hypothesis 
simultaneously (or fitted a multiple regression 
model with 5 predictors) and want to keep the 
overall type I errors below the conventional 
level of 0.05. 
Let the ordered p-values be: 
p(1) = 0.009 
p(2) = 0.011 
p(3) = 0.015 
p(4) = 0.034 
p(5) = 0.512 



Investigating the ordered p-values: 
p(1) = 0.009 vs. 0.05/5 = 0.01 
p(2) = 0.011 vs. 0.05/5 = 0.01 
p(3) = 0.015 vs. 0.05/5 = 0.01 
p(4) = 0.034 vs. 0.05/5 = 0.01 
p(5) = 0.512 vs. 0.05/5 = 0.01 
 

Since 0.05/5 = 0.01; by Bonferroni method, 
only the first test (with p=0.09) is declared 
significant. 
Result: Only one test is significant at the 
“overall p-value” of 0.05 (Note: 4 p-values 
are less than 0.05) 



Investigating the sequence of ordered p-values: 
p(1) = 0.009 vs. 0.05/5 = 0.01 Starting here & move down 
p(2) = 0.011 vs. 0.05/4 = 0.0125 
p(3) = 0.015 vs. 0.05/3 = 0.0167 
p(4) = 0.034 vs. 0.05/2 = 0.025  investigation stops! 
p(5) = 0.512 
 

Result: by Holm method , the first three tests 
(with p=0.09, 0.011, and 0.015) are declared 
significant at the “overall p-value” of 0.05 
(Note: 4 p-values are less than 0.05). 



Investigating the sequence of ordered p-values: 
p(1) = 0.009  
p(2) = 0.011  
p(3) = 0.015 vs. 0.05/3 = 0.0167 investigation stops! 
p(4) = 0.034 vs. 0.05/2 = 0.025   
p(5) = 0.512 vs. 0.05  Starting here & moving up 
 

Result: by Hochberg method , the first 
three tests (with p=0.09, 0.011, and 0.015) 
are declared significant at the “overall p-
value” of 0.05 (Note: 4 p-values are less 
than 0.05). 



The only way to take into account the 
correlation between tests is using some 
“resampling” procedure” which preserve 
the correlation structure of test statistics, 
then use PROC MULTTEST in SAS to 
obtained adjusted p-values. For example, 
the Westfall and Young method using the 
Bootstrap resampling (resampling with 
replacement). Most these newer methods 
are rather complicated and time consuming, 
not popular with practitioners.  



GUIDELINE FOR MULTIPLE REGRESSION? 

(1) Identify one or two primary comparisons; for 
example, the “treatment” indicator in clinical 
trials; 
(2) Apply a multiplicity method, such as 
Benjamini-Hochberg, to all other comparisons 
 
Note: These are my own recommendation; no 
formal guidelines exist; most investigators are 
still overly excited with p-values & “significance” 



DUE AS HOMEWORK 
We have data on the conduct of a number of cancer clinical trials from 
“ClinicalTrials.gov” (File: Minority Enrollment); the aim is to is to investigate 
potential factors which might affect the enrollment of black patients. There were 
n=113 trials and the (response) variable under investigation is the percent of 
black patients (“Black”) among those recruited for each trial. To provide possible 
explanations, we’ll investigate 9 possible exploratory (or independent) factors 
represented by 10 variables: Age (1= under 18, 2 = 18 and above), Gender (1 = 
Male, 2 = Female, 3 = both), Funder (1 = Government, 2 = Industry, 4 = 
Combination), Trial Duration (in months), Allocation (1 = Randomized, 2 = Non-
randomized), Intervention Model (or Design; 1 = Parallel (multiple arms), 2 = 
Single group, 3 = Cross-over), Primary Purpose (1 = Therapeutic, 2 = Non-
therapeutic), Masking (1 = Open Label, 2 = Double Blind). The final factor, Trial 
Size, is represented by two variables: Actual enrollment, and Accrual 
Percentage which expressed accrual as percentage of Planned Accrual. 
#3.1 Investigate the role of Allocation, Primary Purpose, and Masking 
using the two-sample t-test. Define indicator variables and re-investigate 
the effects of those 2 factors using Simple Linear Regression 
#3.2 Investigate the role of Gender and Funder using the method of One-
way ANOVA. Define indicator variables and re-investigate the effects of 
those 2 factor using Multiple Linear Regression (You can skip this 
exercise if you did not yet have MLR) 
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