
PubH 7405:  
REGRESSION ANALYSIS 

 Correlation Analysis 



CORRELATION & REGRESSION 

• We have 2 continuous measurements made on 
each subject, one is the response variable Y, the 
other predictor X. There are two types of 
analyses: 

• Correlation: is concerned with the association 
between them, measuring the strength of the 
relationship; the aim is to determine if they are 
correlated – the roles are exchangeable. 

• Regression: To predict response from predictor.  



ROLES OF VAIRABLES 
In Regression Analysis, each has a well-
defined role; we’ll predict “response Y” 
from a given value of “predictor X” 
 
In Correlation Analysis, the roles of “X” and 
“Y” are exchangeable; in the coefficient of 
correlation “r” is symmetric with respect to 
X and Y: we get the same result regardless 
of which one is X – no special “label”.  



SCATTER DIAGRAM 

• In quarters I and III, 
 

• For positive association, 
 

• For stronger relationship most of the dots, 
being closely clustered around the line, are in 
these two quarters; the above sum is large. 
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SCATTER DIAGRAM 

• In quarters II and IV, 
 

• For negative association, 
 

• For stronger relationship most of the dots, 
being closely clustered around the line, are in 
these two quarters; the sum is a large 
negative number. 
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SUMMARY 
• The “sum of products”                                                           

summarizes the “evidence” of the relationship 
under investigation; It is zero or near zero for 
weak associations and is large, negative or 
positive, for stronger associations. The sum of 
products can be used as a measure of the 
strength of the association itself. 

• However, it is “unbounded” making it hard to 
use because we cannot tell if we have a strong 
association (how large is “large”?). 

• We need to “standardize” it. 
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COEFFICIENT OF CORRELATION 

With a standardization, we obtain a statistic r 
is called the Correlation Coefficient 
measuring the strength of the relationship: 
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WE can “explain” the denominator as necessary 
for standardization: to obtain a statistic in [-1,1]. 



There are many different ways to express the 
coefficient of correlation n; one of which is 
often mentioned as the “short-cut” formula: 
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sxy is the “sample covariance” of X and Y 



Another very useful formula is to 
express the coefficient of correlation r 
as the “Average Product” in “standard 
units” – where sx and sy are the 
(sample) standard deviations of X and 
Y, respectively: 
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The following is an important and 
very interesting characteristic:  

Y)r(X,b)aYd,r(cX =++
we can prove by showing that  (u = c*x + d) is 
the same as x in standard units & (v = a*y + b) 
is the same as y in standard units; e.g. 
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σxy is the Covariance and ρ is the Coefficient of 
Correlation between the two random variables X and Y; ρ 
is estimated by the (sample) Coefficient of Correlation r. 

CORRELATION MODEL 
“Correlation Data” are often cross-sectional or 
observational. Instead of a regression model, one should 
consider a “correlation model”; the most widely used is 
the “Bivariate Normal Distribution” with density: 



The classic work of Pearson (Biometrika, 1909) 
and Fisher (Biometrika, 1915; Metron, 1921) led to 
the (Pearson’s, product moment) coefficient of 
correlation r which generated a steady stream of 
development of measures of association and 
correlation coefficients appropriate in different 
contexts (latest: Kraemer, SMMR, 2006). 

At the beginning of the 20th century, correlation 
analysis was one of the most common statistical 
analyses, especially in health psychology and 
epidemiology. Conversely, the use of 
coefficient of correlation r has had major 
influence on medical policy decision making. 



HOW STRONG IS A 
CORRELATION? 

• The Coefficient of Determination r2, when 
expressed as percentage, represents the 
proportion of the degree of variation among the 
values of one variable which is accounted by its 
relationship with the other variable. 

• When r2 > 50%, one variable is responsible for 
more than half of the variation in the other; the 
relationship is obviously strong. 

• A correlation with r >.7 is therefore conventionally 
considered as a strong. 



TESTING FOR 
INDEPENDENCE 

• The Coefficient of Correlation r measures the 
strength of the relationship between two variables, 
say the Mother’s Weight and her Newborn’s Birth  
Weight. But r is only a Statistic; it is an Estimate of 
an unknown Population Coefficient of Correlation ρ 
(rho), the same way the sample x is used as an 
estimate of the Population mean µ. 

• The basic question is concerned: H0: ρ = 0; only 
when H0 is true,the  two variables are not correlated.  



Try to separate a “statistic” from a 
“parameter”. When r = 0, it only imply that 
values of the two factors, as measured from 
that sample, are not related. But you can’t 
generalize that yet (what you found might 
happen by chance, if you do it again you 
might not see it again); Only when ρ = 0, 
we can conclude that the factors are not 
related - population-wise .  



TESTING FOR INDEPENDENCE 
• The Coefficient of Correlation r measures the 

strength of the relationship between two variables; 
but as statistic it involves “random variation” in its 
sampling distribution. We are interested in knowing 
if we can conclude that: ρ≠0, that the two variables 
under investigation  are really correlated - not just 
by chance.  

• It is a two-sided Test of the Null Hypothesis of No 
Association, H0: ρ = 0, against HA: ρ ≠ 0 of Real 
Association (you can do it as one-sided too). 



TESTING FOR INDEPENDENCE 
• The Test Statistic is: 

 
 
 

• It is the same t-test  as used in the 
comparison of two Population Means; the 
Degree of Freedom is:   df = n-2 (same 
way to form your rejection decision and to 
calculate p-value) . 
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EXAMPLE  
• For the Birth-Weight problem, we have:      

n=12 and r = -.946 leading to: 
 
 
 

• At α=.05 & df = 10, the tabulated coefficient 
is 2.228 indicating that  the Null Hypothesis 
should be rejected (t=-9.23<-2.228); (two-
sided) p-value < .001.  
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In recent years, it has become increasingly clear that 
the magitude and direction of correlation coefficient is 
more important, not merely whether or not the 
association is “statistically significant” (Hunter, 1997); 
Schmidt, 1996). It has been suggested that the Null 
Hypothesis of independence in never true (Meehl, 
1967; Jones and Tukey, 2000). Consequently, a 
“statistically significant association” only means the 
sample size and the design were good enough to 
detect a non-random association between X and Y, 
not the strength of the association in necessarily of 
any clinical significance. You can say that p-value 
is a statement about the data, not a statement 
about the strength of an association. 



The Coefficient of Correlation ρ between 
the two random variables X and Y is 
estimated by the (sample) Coefficient of 
Correlation r but the sampling distribution 
of r is far from being normal. Confidence 
intervals of is by first making the “Fisher’s 
z transformation”; the distribution of z is 
normal if the sample size is not too small 
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EXAMPLE #1: Birth Weight Data 
x (oz) y (%)
112 63
111 66
107 72
119 52
92 75
80 118
81 120
84 114

118 42
106 72
103 90
94 91

)814.,985.(
1)2exp(
1)2exp(

:is ρ of Interval Confedence 95%
)139.1,445.2()333)(.96.1(792.1

333.
312

1)(

792.1
1
1ln

2
1

946.

−−=
+
−

−−=±−
=

−
=

−=








−
+

=

−=

z
z

z

r
rz

r

σ



814.
1)]139.1)(2exp[(
1)]139.1)(2exp[(

985.
1)]445.2)(2exp[(
1)]445.2)(2exp[(

:
)139.1,445.2()333)(.96.1(792.1

333.
312

1)(

792.1
946.1
946.1ln

2
1

1
1ln

2
1

946.

−=
+−
−−

−=
+−
−−

−−=±−

=
−

=

−=






+
−

=








−
+

=

−=

14)(-.985,-.8 is ρ of Interval Confedence 95%

z

r
rz

r

σ



EXAMPLE #2: AGE & SBP 
Age (x) SBP (y)

42 130
46 115
42 148
71 100
80 156
74 162
70 151
80 156
85 162
72 158
64 155
81 160
41 125
61 150
75 165 )835,.073(.
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CONDITIONAL DISTRIBUTION 
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Again, since Var(Y|X)=(1- ρ2)Var(Y), ρ is 
both a measure of linear association 
and a measure of “variance reduction” 
(in Y associated with knowledge of X) – 
that’s why we called r2, an estimate of 
ρ2, the “coefficient of determination”. 



CORRELATION & REGRESSION 

• Suppose that we select a random sample of observations 
{(x,y)} from the bivariate normal distribution and wish 
to make conditional inferences about Y, given X = x. 

• The previous results of the “normal regression model” is 
entirely applicable because: 

(1) The Y observations are independent 
(2) The Y observations when X is considered given or 

fixed are distributed as normal with constant variance 
σy|x

2  and mean:   E(Y2|Y1) = β0+ β1x  



The conditional distribution also explains 
a (future) result: the relationship between 
the (estimated) “slope” and the Pearson’s 
“coefficient of correlation”: 
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In the bivariate normal model, when ρ = 0, the exact distribution 
of r is such that the following t-statistic has a t-distribution with 
(n-2) degrees of freedom. And this distribution is remarkably 
robust to deviations from the assumption of bivariate normality: 

 

 

When ρ≠0, the exact distribution of r is unknown. The Fisher’s 
transformation has been widely used, the transformed statistic Z 
is approximately distributed as normal with variance equal to 
1/(n-3): 
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However, the non-null distribution 
may not be that robust to deviations 
from marginal normality, to unequal 
conditional variances, to non-linear 
relationship, & to presence of outliers. 



IMPLICATION 
• If we only need to test for independence 

(and/or draw regression inferences), 
diagnostics may not be very crucial 
because the methods are robust. 

• But if we focus on confidence interval 
estimation of the coefficient of 
correlation we should pay attention to 
diagnostics because the method 
(Fisher’s transformation) may not be 
robust. We will do more of these in the 
following weeks. 



We end up having “a correlation analysis” 
and “a regression analysis” that go hand-
in-hand. But, in general,  it does not have 
to be that way 

A measure of the strength of an 
association, say θ, needs only satisfying 
the following conditions: (1) It is an unit-
free measure that range from -1 to +1, (2) If 
X and Y are independent, θ = 0, and (3) If 
one can perfectly predict Y from X, or X 
from Y, θ = 1 



Besides the (Pearson’s) coefficient of 
correlation r, we have (i) Spearman’s 
rho and (ii) Kendall’s tau. Spearman’s 
rho and Kendall’s tau are 
nonparametric statistics; 
statistics/methods based on “ranks” 



Suppose the data set consists of $n$ pairs of 
observations expressing a possible relationship 
between two continuous variables.  We characterize 
the strength of such a relationship by calculating the 
coefficient of correlation r called the Pearson's 
correlation coefficient. Like other common statistics, 
such as the mean and the standard deviation s, the 
correlation coefficient r is very sensitive to “extreme 
observations”.  We may be interested in calculating a 
measure of association that is more robust with 
respect to outlying values.  There are not one but two 
nonparametric procedures: the “Spearman's rho” and 
the “Kendall's tau” rank correlation coefficients. 
Spearman's rho is more similar to Pearson's r.  



Spearman’s rho 
The Spearman's rank correlation is a direct nonparametric 
counterpart of the Pearson's correlation coefficient.  To 
perform this procedure, we first arrange the “x” values 
from smallest to largest and assign a “rank” from 1 to  
n for each value; let Ri be the rank of value xi.  Similarly, 
we arrange the “y” values also from smallest to largest 
and assign a rank from 1 to n for each value; let Si be the 
rank of value yi.  If there are tied observations, we assign 
an “average rank” averaging the ranks that the tied 
observations jointly take. For example, if the second and 
third measurements are equal, they both are assigned 2.5 
as their common rank. The next step is to replace, in the 
formula of the Pearson's correlation coefficient r, xi by its 
rank Ri and yi by its rank Si.  
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It’s still symmetric; doesn’t matter 
which rank is R; the second formula 
is easier to use in hand calculations. 



NUMERICAL EXAMPLE 

x (oz) R=Rank(x) y (%) S=Rank(y) R-S (R-S)2

112 10 63 3 7 49
111 9 66 4 5 25
107 8 72 5.5 2.5 6.25
119 12 52 2 10 100
92 4 75 7 -3 9
80 1 118 11 -10 100
81 2 120 12 -10 100
84 3 114 10 -7 49
118 11 42 1 10 100
106 7 72 5.5 1.5 2.25
103 6 90 8 -2 4
94 5 91 9 -4 16

Totals 560.5
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The relationship between Pearson's 
r and Spearman's ρ is similar to 
that between the two-sample t-test 
and the Wilconxon test: replacing 
observed values by their ranks. 



Kendall’s tau 
Unlike the Spearman's rho, the other rank 
correlation - the Kendall's tau rank 
correlation is defined and calculated very 
differently, even though they often yield 
similar numerical results. In practical 
applications, you could rely on SAS; it 
could be as follows: 
 
PROC CORR PEARSON SPEARMAN KENDALL; 
VAR XNAME YNAME; 



CAUTION ON EXTRAPOLATION 



SCOPE OF THE MODEL 
In formulating a regression model, we need to 
restrict the “coverage” of the model to some 
interval of values of the independent variable 
X; this is determined either by the design or the 
availability of data at hand. The shape of the 
regression function outside this range would 
be in doubt because the investigation provided 
no evidence as to the nature of the statistical 
relation outside this range. In short, one should 
not do any extrapolation. 



The National Health and Nutrition 
Examination Study (or NHANES) tracks 
the health data of a large , 
representative sample of Americans , 
covering everything from hearing loss 
to sexually transmitted infections. For 
example, it gives very good data for the 
proportion of Americans who are 
overweight, which is defined as having 
body-mass index of 25 or higher. 



There’s no question that  the prevalence 
of overweight has increased in recent 
decades. In the early 1970s, it was 
under 50%. By the early 1990s, that 
figure had risen to almost 60%, and by 
2008 almost three-quarters of the U.S. 
population was overweight. 
“Will all Americans become 
overweight”? 
Youfa Wang and colleagues published 
an article in Obesity claiming that, yes, 
by the year 2048. 



You can plot the prevalence of 
obesity against time and generate 
a linear regression line. In 2048, 
that line crosses 100%. And that’s 
why Wang wrote that all 
Americans will be over weight in 
2048, if the current trends 
continue.  



There are two problems here. 
The obvious one is the fatal extrapolation. You 
can easily make up a few  counter example: (a) 
The line crosses 100% in 2048; so can we say 
that, by 2060, 109% of Americans would be 
overweight? (b) If we apply the same method to 
Black men, whose overweight prevalence is a 
bit smaller than that of the average American, 
its line will crosses 100% in 2095. If not all 
Black men are overweight in 2048, how can we 
say that ALL American are overweight in 2048? 



In addition, sometimes lines are straight 
locally but curved globally. That’s the case 
of proportion, as a dependent variable. It 
fits a logistic curve; that is, log([p/(1-p)] is 
a linear function of time (or whatever used 
as independent variable). If  you can plot 
the prevalence of obesity against time, it 
might look like a straight line in the middle 
range of proportion but not so at both 
ends. Using wrong model contributes 
making extrapolation even worse. 



In addition, sometimes lines are straight 
locally but curved globally. That’s the case 
of proportion, as a dependent variable. It 
fits a logistic curve; that is, log([p/(1-p)] is 
a linear function of time (or whatever used 
as independent variable). If  you can plot 
the prevalence of obesity against time, it 
might look like a straight line in the middle 
range of proportion but not so at both 
ends. Using wrong model contributes 
making extrapolation even worse. 



The problem of linear extrapolation was 
warned by Mark Twain in “ Life on the 
Mississippi”: 
“ The Mississippi river was twelve hundred 
and fifteen miles. In the space of one 
hundred and seventy-six years, the Lower 
Mississippi has shortened itself two 
hundred and forty-two miles; and average of 
one mile and one third per year. Therefore, 
any person can see that seven hundred and 
forty-two years from now the Mississippi will 
be only a mile and three-quarters long!” 



CORRELATION AND CAUSATION 



As we mentioned, all Null Hypotheses 
are likely false; everything is perhaps 
correlated to everything else. So people 
do not report all of these correlations. 
When you read a report that one thing is 
correlated with another, perhaps that 
correlation is “strong enough” to be 
worth reporting. But what? Does it pass 
a statistical test of significance? 



There’s something slippery about 
understanding  of correlation and 
causation. When we say that good 
cholesterol HDL is correlated with a lower 
risk of heart attack, we’re making a factual 
statement that “if you’ve got a high level 
of HDL cholesterol, you’re less likely to 
have a heart attack”. That does not 
necessarily men that the HDL is “doing 
something” – like scrubbing your arterial 
walls causing your  cardiovascular health 
to improve. 



It might be that HDL and heart attack 
are correlated for a different reason; 
say, some unknown factor tends both 
to increase HDL and decrease the risk 
of cardiovascular events. If that’s the 
case, an HDL-increasing drug might or 
might not prevent heart attack. If the 
drug affects HDL by way of that 
mysterious factor, it would probably 
help your heart; but it boosts DDL by 
some other way, it would not help at all. 



Back to the relationship between smoking 
and lunch cancer.  At the turn of the 
twentieth century, lung cancer was an 
extremely rare disease. But by the late 
1940’s, the disease accounted for nearly 
20% of cancer deaths among British men. 
Lung cancer was on the rise but no one 
was sure what to blame. Maybe it was 
smoke from factories, maybe increased 
levels of car exhaust? Or maybe it was 
cigarette smoking whose popularity had 
exploded during the very same period? 



Cigarette smoking was emerged from 
the famous Case-control study by Doll 
and Hill in 1950. They show that 
smoking and lung cancer are correlated 
and the association got stronger as 
smoking got heavier. Does smoking 
cause lung cancer? Doll and Hill’s data 
showed that some heavy smokers do 
not get lung cancer and some 
nonsmokers do. So the association was 
not of strict determination. 



The famous Berkson, an MD, put it 
this way “ Cancer is a biologic, not a 
statistical problem. Statistics can 
soundly play an ancillary role in its 
elucidation. But if biologists permit 
statisticians to become arbiters 
biologic questions, scientific 
disaster is inevitable”. 



Doll and Hill’s study does not show that 
smoking causes lung cancer; as they 
write “the association would occur if 
carcinoma of the lung caused people to 
smoke or if both attributes were end-
effects of a common cause”. Of course, 
it is not reasonable to say that a tumor 
would go back in time and causes 
someone to smoke. But the problem of 
a common cause  was more troubling at 
the time. 



Even R. A. Fisher, the founding father of 
modern statistics was a skeptic of the 
tobacco-cancer link. He questioned “Is it 
possible that pre-cancerous condition – 
which must exist and is known to exist for 
years before become cancerous – is one of 
the causes of cigarette smoking? I don’t 
think it can be excluded. I don’t think we 
know enough to say it’s a cause but pre-
cancerous condition is involving certain 
amount of chronic inflammation …” 



Over the course of the 1950s and 1960s, 
scientific knowledge and opinion on the 
relationship between smoking and lung 
cancer steadily converged toward consensus; 
the association between smoking and lung 
cancer had appeared consistently across 
study after study leading to several Surgeon 
General’s reports implicating cigarette 
smoking as the cause lung and several other 
cancers. Scientists even identified several 
tobacco-specific carcinogens, e.g. NNN, and 
proved that they cause cancers in animals. 



 Due As Homework 
   Given n pairs of numbers (x,y) on two variables X and Y (n 

is the sample size); consider the following four (4) 
questions: 

a) Draw a Scatter Diagram to show the association, if any, 
between these two variables and calculate the Pearson’s 
coefficient of correlation r. Does it look “linear”? 

b) Testing for possible independence between X and Y, at the 
%5 level of significance 

c) Calculate the 95% Confidence Interval  for the Population 
Coefficient of Correlation 

d) Calculate the Spearman’s rho; is it close to the value of 
Pearson’s in (a)? 

    (Show the formulas you use and SAS programs) 
 
 



#4.1 We have a data set on 100 infants (File: “Infants”); the 
response or dependent variable Y is the infant’s Birth Weight. 
Data on 5 other factors are included: Head Circumference, 
Length, Mother’s Age, Gestational Weeks (the length of 
pregnancy), and Toxemia (0/1; toxemia is a pregnancy 
condition resulting from metabolic disorder). Answer the 
above 4 questions with X = Gestational Weeks. 
#4.2 It has been generally known that respiratory function 
may decline with age. To study this possibility, We consider a 
data set consisting of age (years) and vital capacity (VC, 
liters) for each of 44 men working in the cadmium industry but 
have not been exposed to cadmium fumes. Answer the 4 
questions (a)-(d) of Exercise 1.1 using dataset “Vital 
Capacity” with variables X = Age and Y = (100)(Vital Capacity) 
plus the following question: 
e) Can we say that the correlation coefficient between Age 
and Y is the same as the correlation coefficient between Age 
and vital Capacity, why or why not? 
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