
PubH 7405:  
REGRESSION ANALYSIS 
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The Model has several parts: 
Normal Distribution, Linear 
Mean, Constant Variance, etc… 



In doing statistical analyses, a “statistical 
model” – e.g. “normal error regression 
model”- is absolutely necessary.  

However, a model is just an assumption 
or a set of assumptions about the 
population of which data we have are 
considered as a sample; they may or may 
not fit the observed data. Certain part or 
parts of a model may be violated and, as 
a consequence, results may not be valid. 



IMPORTANT QUESTIONS 
Does the Regression Model fit the data? 

Then what if the Regression Model, or 
certain part of the Regression Model, does 
not fit the data ? i.e. (1) If it does not fit, 
could we do something to make it fit? And 
(2) Does it matter if it still does not fit? 



POSSIBLE DEPARTURES FROM THE 
NORMAL REGRESSION MODEL 

• The regression function is not linear 
• Variance (of error terms) is not constant 
• Model fits all but a few “outliers” 
• Responses are not independent 
• Responses are not normally distributed 
Outliers and missing predictor or predictors are not model’s 
violation but might even have more severe consequences. 



Besides the data values for the dependent 
and independent variables, diagnostics 
would be based on the “residuals” (errors 
of individual fitted values) and some of 
their transformed values.  



SEMI-STUDENTIZED RESIDUALS 

MSE
e

MSE
eee ii

i =
−

=

_

*

If √MSE were an estimate of the standard deviation of 
the residual e, we would call e* a studentized (or 
standardized) residual. However, standard deviation of 
the residual is complicated and varies for different 
residuals, and √MSE  is only an approximation. 
Therefore, e* is call a “semi-studentized residual”. 
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Diagnostics could be informal using 
plots/graphs or could be based on formal 
application of statistical tests;  graphical 
method is more popular and would be 
sufficient. We could perform a few 
statistical tests but, most of the times, 
they are not really necessary. 



PLOTS OF RESIDUALS 
• Plot of residuals against predictor 
• Plot of absolute/squared residuals 

against predictor 
• Plot of residuals against fitted values 
• Plot of residuals against time or other 

sequence. 
• Plot of residuals against omitted 

predictor variable 
• Box plot of residuals 
• Normality plot of residuals 



In any of those graphs, you could 
plot semi-studentized residuals 
instead of residuals. A semi-
studentized residual is a residual on 
“standard deviation scale”; graphs 
provide same type of information. 



Issue: NONLINEARITY 
• Whether a linear regression function is appropriate for a 

given data set can be studied from a scatter diagram (e.g.. 
Using Excel); but it’s not always effective (less visible). 

• More effective to use a residual plot against the predictor 
variable or, equivalently, against the fitted values; if 
model fits, one would have a horizontal band centered 
around zero which has no special clustering pattern. 

• The lack of fit would result in a graph showing the 
residuals departing from zeros in a systematic fashion – 
likely a curvilinear shape. 



Easier  to see; WHY? 



REMEDIAL MEASURES 
• If a SLR model is found not appropriate for the 

data at hand, there are two basic choices: 
(1) Abandon it and search for a suitable one, or 
(2) Use some transformation on the data to create 

a fit for the transformed data 
• Each has advantages & disadvantages: first 

approach may yield better insights but may lead to 
more technical difficulties; transformations are 
more simple but may obscure the fundamental 
real relationship; sometimes it’s hard to explain. 



LOG TRANSFORMATIONS 
• Typical: Y* = Log (Y), turns a multiplicative 

model into an additive model – for linearity. 
• Residuals should be used to check if model fits 

transformed data: normality, independence, and 
constant variance because the distribution changes 
the distribution and the variance of the error terms. 

• Others: (1) X* = Log (X),                                       
(2) X* = Log (X) and Y* = Log (Y);                                             
Example: Model (2) is used to study “demand” (Y) 
versus “price of commodity” (X) in economics. 



Example: 

Y* = ln(Y=PSA) is used in the model 
for PSA with Prostate Cancer 
Note: When the distribution of the error terms 
is close to normal with an approximately 
constant variance, and a transformation is 
needed only for linearizing a non-linear 
regression relation, only transformations on X 
should be attempted. 



RECIPROCAL TRANSFORMATIONS 

• Also aimed for linearity 
• Possibilities are: 
(1) X* = 1/X, 
(2) Y* = 1/Y,  
(3) X* = 1/X and Y* = 1/Y 
• Example: Models (1) and (2) are useful 

when it seems that Y has a lower or upper 
“asymptote” (e.g. hourly earning) 



Logarithmic and Reciprocal Transformations  can be 
employed together to linearize a regression function. 
For example, the “Logistic Regression Model” (with 
Y = probability/proportion “p”): 
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Issue: NONCONSTANCY OF VARIANCE 
• Scatter diagram is also helpful to see if the variance of 

error terms are constant; if model fits, one would have 
a band with constant width centered around the 
regression line which has no special clustering pattern. 
Again, not always effective  

• More effective to plot residuals (or their absolute or 
squared values) against the predictor variable or, 
equivalently, against the fitted values. If model fits, one 
would have a band with constant width centered 
around the horizontal axis. The lack of fit would 
result in a graph showing the residuals departing 
from zeros in a systematic fashion – likely a 
“megaphone” or “reverse megaphone” shape. 



EXAMPLE: Plutonium Measurement 
An Example in environmental clean up; 

X = Plutonium Activity (pCi/g) 

Y = Alpha Count Rate (#/sec) 

A full description of the example is in section 
3.11, starting on page 141 (in practice its use 
involves an inverse prediction, predicting 
plutonium activity from the observed alpha 
count (Plutonium emits alpha particles). 



Plutonium (X) Alpha Count
Activity (pCi/g) Rate (#/sec)

20 0.150
0 0.004

10 0.069
5 0.030
0 0.011
0 0.004
5 0.041

20 0.109
10 0.068
0 0.009
0 0.009

10 0.048
0 0.006

20 0.083
5 0.037
5 0.039

20 0.132
0 0.004
0 0.006

10 0.059
10 0.051
0 0.002

Alpha Count vs. Plutonium Activity
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Scatter Diagram 

Residual Plots 

Easier to see  -
Same reason 



TESTS FOR CONSTANT VARIANCE 
• If variance is not constant, coverage of confidence 

intervals might be affected. 
• There are many tests for non-constant variance but 

two are often mentioned 
• The Breusch-Pagan test assumes normality of error 

terms but the test follows the usual regression 
methodology – not hard to do. 

• The Brown-Forsythe test does not depend on 
normality of error terms; this is desirable because 
non-constant variance and non-normality tend to go 
together. This test is easy. 
 



BROWN-FORSYTHE TEST 
• The Brown-Forsythe test is used to ascertain whether 

the error terms have constant variance; especially  
when the variance of the error terms either increases 
or decreases with the independent variable X. 

• The Test: divide the data into 2 groups, say half with 
larger values of X and half with smaller values of X; 
(1) calculating the “absolute deviations” of the 
residuals around their group mean (or median);          
(2) applying the two-sample t-test. 

• Test statistic follows approximately the t-distribution 
when the variance of the error terms is constant (under 
the Null Hypothesis) and the sizes of the two group are 
not extremely small. 



BROWN-FORSYTHE: RATIONALE 
• If the error variance is either increasing or 

decreasing with X, the residuals in one group tend to 
be more variable than those residuals in the other. 

• The Brown-Forsythe test does not assume normality 
of error terms; this is desirable because non-constant 
variance and non-normality tend to go together. 

• It’s is very similar to “Levine’s test” to compare 
any two variances – instead of forming the ratio 
of two sample variances (& use “F-test”). 



LotSize WorkHours
80 399
30 121
50 221
90 376
70 361
60 224

120 546
80 352

100 353
50 157
40 160
70 252
90 389
20 113

110 435
100 420
30 212
50 268
90 377

110 421
30 273
90 468
40 244
80 342
70 323

EXAMPLE: Toluca Company Data 
 (Description on page 19 of Text) 
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Group 1: n = 13 with lot sizes from 20 to 70; median residual = -19.88 

Group 2: n = 12 with lot sizes from 80 10 120; median residual = -2.68 



This example shows that the half with 
smaller X’s has larger residuals – and vice 
versa; the pattern of an inverse mega phone 
– but it’s “not significant”, a case that makes 
me uneasy with statistical tests: I want to 
assume that the variance is constant, it only 
says that we do not have enough data to 
conclude that the variance is not constant! 



WEIGHTED LEAST SQUARES 

• Constant variance = Homoscedasticity 
• Non-constant variance = 

Heteroscedasticity 
• Most often: Variance is functionally 

related to the mean; e.g. standard 
deviation or variance is proportional to 
X. A possible solution is performing 
“weighted” least-squares estimation 
instead of “ordinary”  



With ordinary least squares, estimators for 
regression coefficients are obtained by 
minimizing the quantity Q; setting the partial 
derivatives equal to zero to have the “normal 
equations”: 
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With weighted least squares, estimators for 
regression coefficients are obtained by 
minimizing the quantity Q where “w” is a 
“weight” (associated with the error term); 
setting the partial derivatives equal to zero to 
have the “normal equations”: 
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The optimal choice for the weight is the inverse of 
the variance; when the variance is constant, ordinary 
and weighted least squares estimators are identical. 
For example, when standard deviation is 
proportional to X (variance is kX2), we minimize: 
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ISSUE: PRESENCE OF OUTLIERS 

• Outliers are extreme observations 
• They can be identified from a Box plot or a residual plot 

graphing semi-studentized residuals against independent 
variable values or fitted values. 

• Point with residuals representing 3-4 standard deviations 
from their fitted values are suspicious. 

• Presence of outliers could cause the impression that  
a linear regression model does not fit. 





In a Box Plot: 

(1) The box extends from first quartile to third 
quartile, divided into 2 parts at the median, 

(2) Two lines  (or the “whiskers”) projecting out 
from the box extending to both sides, each by  
a distance equal to 1.5 times the length of the 
adjacent compartment 

(3) It tells about “symmetry” of the distribution – 
those points beyond the reach of the whiskers 

are usually considered “extreme” 





It is extremely hard to deal with outliers: 

(1) Some are simple results of mistakes or recording 
errors; as such, they should be discarded.  

(2) Some may convey important information: an outlier 
may occur because of an interaction with another 
independent variable not under investigation. 

A safe rule is  to discard an outlier only if 
there is direct evidence that it represents 
a error or miscalculation. 



ISSUE: NONINDEPENDENCE OF ERROR TERMS 

• Whenever data are obtained in a time sequence or 
some other type of sequence – such as adjacent 
geographical areas, it is a good idea to prepare a 
sequence plot of the residuals (residuals vs. time) 

• When the error terms are independent, the residuals 
in such a graph fluctuate in a random pattern; lack 
of randomness shows in the form of a time trend or 
cyclical pattern . 

• This is the special case of a predictor omitted from 
the regression model (in this case, it’s “time”). 





BASIC TOOLS: 
(1)Histogram, 

(2)Stem-and-Leaf Plot, & 

(3)Box Plot 

ISSUE: NONNORMALITY OF ERROR TERMS 



In a Box Plot: 

(1) The box extends from first quartile to third 
quartile, divided into 2 parts at the median, 

(2) Two lines  (or the “whiskers”) projecting out 
from the box extending to both sides, each by  
a distance equal to 1.5 times the length of the 
adjacent compartment 

(3) It tells about “symmetry” of the distribution 
– those points beyond the reach of the 
whiskers are usually considered “extreme” 



Issue: DEPARTURE FROM NORMALITY 

Violation of the normality assumption can be 
checked more effectively using the normal 
probability plot. Each residual is plotted against 
its expected value under normality (the “Normal 
Q-Q Plot”). A plot that is nearly linear suggests 
agreement with the normality assumption, whereas 
a plot that departs substantially from linearity 
suggests that the distribution is not normal.  







TESTS FOR NORMALITY 
• Goodness-of-fit tests – such as the Kolmogorov-

Smirnov test – can be used for examining the 
normality of the error terms; but they are a bit 
advanced for first-year students. 

• A more simple – but also formal – test for 
normality can be conducted by calculating the 
coefficient of correlation between the residuals 
and their expected values under normality. High 
value of the coefficient of correlation is indicative 
of normality. This is a supplement to Q-Q plot. 

• “Critical value” for various sample sizes are in 
Appendix Table B6. 



When the distribution (of the response) is 
only near normal, most of the dots (on the 
Q-Q plot” are already very close to a 
straight line; the “cut-point” for rejection 
is quite high. Again, as mentioned, a formal 
statistical test may not really be needed here; 
but could use to supplement the Q-Q plot – 
more valuable when sample size n is small. 



LotSize WorkHours
80 399
30 121
50 221
90 376
70 361
60 224

120 546
80 352

100 353
50 157
40 160
70 252
90 389
20 113

110 435
100 420
30 212
50 268
90 377

110 421
30 273
90 468
40 244
80 342
70 323

EXAMPLE: Toluca Company Data 
 (Description on page 19 of Text) 

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 62.3658586 26.17743389 2.382428 0.025851 8.21371106 116.518006
X Variable 1 3.57020202 0.346972157 10.28959 4.45E-10 2.85243543 4.28796861

Results: 
Correlation r = .991, n = 25 
Critical value = .959         
(from Table B6, p.673); 

Rejection when r is small! 

No departure from normality 



If the probability distributions of Y are not exactly normal 
but do not depart seriously, the sampling distributions of 
b0 and b1 would still be approximately normal with very 
little effects on the level of significance of the t-test for 
independence and the coverage of the confidence 
intervals. Even if the probability distributions of Y are far 
from normal, the effects are still minimal provided that 
the samples sizes are sufficiently large; i.e. the sampling 
distributions of b0 and b1 are asymptotically normal. 



OMISSION OF OTHER PREDICTORS 

Residuals should also be plotted against other potential 
independent variables – one at a time. “Time” was an 
earlier example in a sequential plot. If the factor under 
investigation is not related to the dependent and the 
independent variable, one would have a horizontal band of 
dots centered around zero which has special clustering 
pattern. If it is related to either the dependent or the 
independent variable then we would have a graph showing 
the residuals departing from zeros in a systematic fashion. 

This is starting step in forming multiple regression models. 



PROTOTYPE EXAMPLE 
Age (x) SBP (y)

42 130
46 115
42 148
71 100
80 156
74 162
70 151
80 156
85 162
72 158
64 155
81 160
41 125
61 150
75 165

Will use for Illustration 



BASIC DATA DESCRIPTION options ls=79; 
title "SBP versus Age"; 
data SBP; 
input age pressure; 
cards; 
42 130 
46 115 
42 148 
71 100 
80 156 
74 162 
70 151 
80 156 
85 162 
72 158 
64 155 
81 160 
41 125 
61 150 
75 165 
; 

Notes: 

(1) Can use “data lines” instead of “cards” 

(2) Good enough for smaller data sets 

(3) For a larger data set, save it as “abc.dat”   
or “abc.xls” and refer to it or import it; 
use PROC IMPORT (a bit later). 

Same order as in the data 



DESCRIPTIVE STATISTICS  options ls=79; 
title "Descriptive Statistics for SBP 
versus Age"; 
data SBP; 
input X Y; 
  label X = 'Age' 
           Y = 'Blood Pressure'; 
cards; 
42 130 
46 115 
… 
75 165 
; 
proc PRINT data=SBP; 
Var X Y; 
run; 
proc UNIVARIATE data=SBP; 
run; 

PRINT helps to check for typos  

UNIVARIATE provides typical data 
summaries such as mean, range, 
standard deviation, etc… 



More DESCRIPTIVE STATISTICS 
Proc IMPORT out=work.hw1 
datafile="C:\Documents and Settings\ADCS-C381Mayo-User\Desktop\CH01PR19.xls" 
DBMS=EXCEL2000 REPLACE; 
GETNAMES=YES; 
run; 
data hw1; 
set work.hw1; 
run; 
 

Proc MEANS data=hw1 STDERR maxdec=1; 
Var x; 
run; 
 
Proc print data=hw1(obs=20) noobs; 
run; 
 

Important Part: 

Showing HOW to read in data 
file (its name & location) 

Specify max # of decimal places 

Suppress the observation number 

Request Standard Error of the Mean  

File name 



MORE OPTIONS 
for Proc Univariate options ls=79; 

title "Descriptive Statistics for SBP versus Age"; 
data SBP; 
input X Y; 
  label X = 'Age' 
           Y = 'Blood Pressure'; 
cards; 
42 130 
46 115 
… 
75 165 
; 

proc UNIVARIATE data=SBP; 
Normal; 
Plots/ 
Plotsize = 26; 
Var Y; 
run; 

NORMAL helps to test if Blood Pressure 
(Y) is normally distributed 

PLOTS provides three useful graphs: Stem 
and Leaf, Box Plot, and Q-Q Plot. 

Option HISTOGRAM can be added to 
obtain the fourth graph. 

Plotsize can be changed 

Similar to that used with 
Q-Q Plot in Regression 



 
Variable=Y             Blood Pressure 
 
               Stem Leaf                     #             Boxplot 
                 16 5                        1                |    
                 16 022                      3             +-----+ 
                 15 5668                     4             *-----* 
                 15 01                       2             |     | 
                 14 8                        1             |  +  | 
                 14                                        |     | 
                 13                                        |     | 
                 13 0                        1             +-----+ 
                 12 5                        1                |    
                 12                                           |    
                 11 5                        1                |    
                 11                                           |    
                 10                                           |    
                 10 0                        1                |    
                    ----+----+----+----+               

                Multiply Stem.Leaf by 10**+1           
 
 
                                Normal Probability Plot               
            167.5+                                   +++    *         
                 |                                *+*                 
                 |                         * *  *++                   
                 |                      **   +++                      
                 |                    *    ++                         
                 |                      +++                           
                 |                    ++                              
                 |                 +*+                                
                 |               +*                                   
                 |            +++                                     
                 |         +++ *                                      
                 |       ++                                           
                 |    +++                                             
            102.5+  ++    *                                           
                  +----+----+----+----+----+----+----+----+----+----+ 
                      -2        -1         0        +1        +2  

RESULTING GRAPHS 

Similar to Q-Q plot but plotting 
Y, not residual on vertical axis 

There is a separate 
PROC BOXPLOT 
too! 



CORRELATION  
(& Scatter Diagram) 

options ls=79; 
title "Descriptive Statistics for SBP versus Age"; 
data SBP; 
input X Y; 
  label X = 'Age' 
           Y = 'Blood Pressure'; 
cards; 
42 130 
46 115 
… 
75 165 
; 

proc CORR data=SBP;  
run; 
proc plot data=SBP; 
     plot y*x='*'; 
run; 

Proc CORR gives the coefficient of 
correlation r (& the p-value) 

Proc PLOT provides the Scatter 
Diagram; could choose symbol to plot. 

Specify Notation for the graph 



 Simple Statistics  
 Variable                N             Mean          Std Dev              Sum 
 
 X                      15        65.600000        15.592123       984.000000 
 Y                      15       146.200000        19.479660      2193.000000 
  

Simple Statistics  
Variable          Minimum          Maximum     Label 
 
 X                    41.000000         85.000000     Age            
 Y                  100.000000       165.000000     Blood Pressure 
 
   Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 15   
 
                                             X                 Y 
 
              X                        1.00000           0.56422 
              Age                    0.0                   0.0285 
 
              Y                        0.56422           1.00000 
              Blood Pressure   0.0285            0.0    

coefficient  

p-value  

Note: results are symmetric 

OUTPUT 



 Plot of Y*X.  Symbol used is '*'. 
      | 
  165 +                                                 * 
      | 
      |                                                *              * 
  160 +                                                         * 
      |                                             * 
      |                                                        * 
  155 +                                  * 
      | 
      |                                          * 
  150 +                             * 
      |   * 
      | 
B 145 + 
l     | 
o     | 
o 140 + 
d     |       
P 135 + 
r     | 
e     | 
s 130 +   * 
s     | 
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r 125 + * 
e     | 
      | 
  120 + 
      | 
      | 
  115 +        * 
      | 
      | 
  110 + 
      | 
  105 + 
      | 
  100 +                                           * 
      |      -+-------------+-------------+-------------+-------------+-------------+- 
      40            50            60            70            80            90 
 

SCATTER DIAGRAM 



SIMPLE LINEAR REGRESSION  
(& Scatter Diagram) 

options ls=79; 
title "Descriptive Statistics for SBP versus Age"; 
data SBP; 
input X Y; 
  label X = 'Age' 
           Y = 'Blood Pressure'; 
cards; 
42 130 
46 115 
… 
75 165 
; 

proc REG data = SBP;  
model y = x; 
plot y*x='+'; 
 
run; 

Proc REG is the most basic one; will 
add in more options 

PLOT provides the Scatter Diagram; 
could choose symbol to plot. 

CORR and REG provide the same 
Scatter Diagram (“plot” option) 

Key: Model Statement 



  
                                           Parameter      Standard    T for H0:                
     Variable             DF      Estimate         Error          Parameter=0    Prob > |T| 
 
     INTERCEP          1     99.958515   19.25516927         5.191        0.0002 
     X (Age)                1        0.704901    0.28607866         2.464        0.0285 
 
                                          Variable 
     Variable             DF      Label 
 
     INTERCEP           1      Intercept                                
     X                           1      Age                                      
 

PARAMETER ESTIMATES 

Slope 

Testing for Zero Slope 
(i.e. Independence) 

Testing for Zero Intercept 
(usually not needed) 



ANALYSIS OF VARIANCE 

                                                 Sum of        Mean 
 Source              DF      Squares       Square           F Value       Prob>F 
 
 Model                  1   1691.19774   1691.19774        6.071       0.0285 
 Error                  13   3621.20226     278.55402 
 Total                  14   5312.40000 
 
           Root MSE       16.68994     R-square       0.3183 
           Dep Mean     146.20000      
           C.V.                11.41583 
 

MSE & its square root 

Testing for Independence 

From R2 & slope, obtain “r” 



USEFUL OPTIONS FROM PROC 
REG 

• R: Analysis of residuals 
• P: computing predicted 

values (i.e. fitted) 
• COVB: Var-Cov matrix of 

regression coefficients 
• CLM: Confidence Intervals 

of mean responses 
• CLI: Conf Intervals of new 

individual responses 
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ANALYSIS OF RESIDUALS  

options ls=79; 
title "Descriptive Statistics for SBP versus Age"; 
data SBP; 
input X Y; 
  label X = 'Age' 
           Y = 'Blood Pressure'; 
cards; 
42 130 
… 
75 165 
; 

proc reg data = SBP noprint;  
model y = x/R; 
run; 

This short program achieves the same 
thing and more; it helps to set up a Table 
just like TABLE 1.2 on page 22 of the 
text book and student residuals – plus all 
regression analysis results. 



 Analysis of Variance 
 
                                         Sum of            Mean 
       Source          DF        Squares           Square      F Value       Prob>F 
 
       Model             1   1691.19774   1691.19774          6.071        0.0285 
       Error             13   3621.20226    278.55402 
       C Total         14   5312.40000 
 
           Root MSE       16.68994     R-square       0.3183 
           Dep Mean     146.20000     Adj R-sq       0.2659 
           C.V.                11.41583 
 

 Parameter Estimates 
 
                                          Parameter      Standard        T for H0:                
     Variable          DF        Estimate         Error              Parameter=0    Prob > |T| 
 
     INTERCEP        1     99.958515   19.25516927            5.191             0.0002 
     X                        1       0.704901    0.28607866             2.464             0.0285 
 

Standard Results come first 



                  
                  Dep Var   Predict   Std Err                     Std Err    Student 
         Obs   Y             Value     Predict     Residual  Residual  Residual 
           1     130.0        129.6     8.010       0.4357     14.642      0.030 
           2     115.0        132.4     7.072    -17.3839     15.118    -1.150 
           3     148.0        129.6     8.010     18.4357     14.642      1.259 
           4     100.0        150.0     4.578    -50.0065     16.050    -3.116 
           5     156.0        156.4     5.962      -0.3506     15.589    -0.022 
           6     162.0        152.1     4.934       9.8788     15.944      0.620 
           7     151.0        149.3     4.489       1.6984     16.075      0.106 
           8     156.0        156.4     5.962      -0.3506     15.589    -0.022 
           9     162.0        159.9     7.027       2.1249     15.139      0.140 
          10     158.0       150.7     4.682       7.2886     16.020      0.455 
          11     155.0       145.1     4.334       9.9278     16.118      0.616 
          12     160.0       157.1     6.163       2.9445     15.510      0.190 
          13     125.0       128.9     8.252      -3.8594     14.507    -0.266 
          14     150.0       143.0     4.506       7.0425     16.070      0.438 
          15     165.0       152.8     5.080     12.1739     15.898      0.766 

… then Results for Residuals 

These are Studentized Residuals 



EXAMPLE: Option COVB 
options ls=79; 
title "Descriptive Statistics for SBP 
versus Age"; 
data SBP; 
input X Y; 
  label X = 'Age' 
           Y = 'Blood Pressure'; 
cards; 
42 130 
46 115 
… 
75 165 
; 
proc REG data = SBP;  
model y = x/COVB; 
run; 



 Parameter Estimates 
 
                                      Parameter          Standard        T for H0:                
     Variable         DF        Estimate               Error   Parameter=0    Prob > |T| 
 
     INTERCEP      1      99.958515   19.25516927              5.191        0.0002 
     X                      1        0.704901    0.28607866               2.464        0.0285 
 
 
 
 

 Covariance of Estimates 
 
          COVB                    INTERCEP                            X 
 
          INTERCEP        370.76154379        -5.368769448                  Intercept 
          X                           -5.368769448       0.0818409977                Age       
 
 

Var(b0) 

Var(b1) 

Cov(b0,b1) 



EXAMPLE: Option CLM 
options ls=79; 
title "Descriptive Statistics for SBP 
versus Age"; 
data SBP; 
input X Y; 
  label X = 'Age' 
           Y = 'Blood Pressure'; 
cards; 
42 130 
46 115 
… 
75 165 
; 
proc REG data = SBP;  
model y = x/CLM; 
run; 



                  Dep Var      Predict   Std Err   Lower95%  Upper95%           
         Obs             Y        Value   Predict           Mean          Mean  Residual 
 
           1         130.0         129.6     8.010            112.3          146.9     0.4357 
           2         115.0         132.4     7.072            117.1          147.7  -17.3839 
           3         148.0         129.6     8.010            112.3          146.9   18.4357 
           4         100.0         150.0     4.578            140.1          159.9  -50.0065 
           5         156.0         156.4     5.962            143.5          169.2   -0.3506 
           6         162.0         152.1     4.934            141.5          162.8    9.8788 
           7         151.0         149.3     4.489            139.6          159.0    1.6984 
           8         156.0         156.4     5.962            143.5          169.2   -0.3506 
           9         162.0         159.9     7.027            144.7          175.1    2.1249 
          10        158.0         150.7     4.682            140.6          160.8    7.2886 
          11        155.0         145.1     4.334            135.7          154.4    9.9278 
          12        160.0         157.1     6.163            143.7          170.4    2.9445 
          13        125.0         128.9     8.252            111.0          146.7   -3.8594 
          14        150.0         143.0     4.506            133.2          152.7    7.0425 
          15        165.0         152.8     5.080            141.9          163.8   12.1739 
 
Sum of Residuals                      0 
Sum of Squared Residuals      3621.2023 
 



EXAMPLE: Option CLI 
options ls=79; 
title "Descriptive Statistics for SBP 
versus Age"; 
data SBP; 
input X Y; 
  label X = 'Age' 
           Y = 'Blood Pressure'; 
cards; 
42 130 
46 115 
… 
75 165 
; 
proc REG data = SBP;  
model y = x/CLI; 
run; 



 Output Statistics (from CLI) 
  
               Dep Var  Predicted     Std Error 
      Obs             Y        Value  Mean Predict            95% CL Predict               Residual 
        1   130.0000   129.5643        8.0095              89.5709   169.5578            0.4357 
        2   115.0000   132.3839        7.0718              93.2244   171.5435         -17.3839 
        3   148.0000   129.5643        8.0095              89.5709   169.5578           18.4357 
        4   100.0000   150.0065        4.5779            112.6183   187.3946          -50.0065 
        5   156.0000   156.3506        5.9616            118.0630   194.6382            -0.3506 
        6   162.0000   152.1212        4.9341            114.5221   189.7202             9.8788 
        7   151.0000   149.3016        4.4894            111.9635   186.6396             1.6984 
        8   156.0000   156.3506        5.9616            118.0630   194.6382            -0.3506 
        9   162.0000   159.8751        7.0265            120.7535   198.9966             2.1249 
       10   158.0000   150.7114        4.6821           113.2630   188.1598             7.2886 
       11   155.0000   145.0722        4.3336           107.8201   182.3242             9.9278 
       12   160.0000   157.0555        6.1628           118.6195   195.4914             2.9445 
       13   125.0000   128.8594        8.2521             88.6365   169.0824            -3.8594 
       14   150.0000   142.9575        4.5058           105.6102   180.3047             7.0425 
       15   165.0000   152.8261        5.0795           115.1367   190.5154           12.1739 
                 Sum of Residuals                           0 
                 Sum of Squared Residuals          3621.20226 Note: wider Intervals 

Versus: [112.3,146.9] 

Under CLM 



 

proc reg data=example; 
model y=x/alpha=0.01 cli clm; 
run; 
 

New Important Part: 

Set 99% CI instead of 95% 



Readings & Exercises 
• Readings: A thorough reading of the text’s 

sections 3.1-3.3 (pp. 100-114) and 3.5-3.7 (pp. 
115-127) is highly recommended. 

• Exercises: The following exercises are good 
for practice, all from chapter 3 of text: 3.3, 3.7, 
3.8, 3.9, 3.10, 3.11, and 3.18. 



Due As Homework 
#10.1 Refer to dataset “Cigarettes”, let X=CPD and Y= 

log(NNAL): 
     a) Prepare a Box plot for log(NNAL), and from the 

plot: (i) Are there any points in each plot that can 
be considered as extreme?, and (ii) Does this plot 
look symmetric? (the result may explain why we 
use NNAL on log scale) 

     b) Plot the residuals against predictor’s values; 
What departures from the Normal Regression 
Model can be studied from this plot? What are your 
findings?  

     c) Conduct the Brown-Forsythe test to determine 
whether or not the error variance varies with the 
level of X 

#10.2 Answer the 3 questions of Exercise 10.1 using 
dataset “Infants” with X = Gestational Weeks and Y 
= Birth Weight. 
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