
PubH 7405:  
REGRESSION ANALYSIS 

   MLR: MODEL BUILDING  



In order to provide more comprehensive prediction 
of a specific dependent variable Y – say the outcome 
of certain treatment, it is very desirable to consider a 
large number of factors – with available data - and 
sort out which ones are most closely related that 
outcome. We do not want to miss identifying any 
important predictor/covariate. 



NUMBER OF COVARIATES 
• In biomedical research, the independent variables are 

covariates representing patients’ characteristics and, in 
many cases of clinical research, one of them represents 
the treatment. 

• There may be more “potential predictors” than we can 
manage to investigate; sometimes the number of factor is 
even larger than the sample size. 

• Multiple Regression could help us to “investigate” the 
factors with available data but, in the end, may be only a 
few of the potential explanatory factors have predictive 
power. The “core” of the process is to “build” a model. 



A simple strategy for the building of a 
regression model consists of some, most, or 
all of the following five steps or phases: 

(1) Data collection and preparation, 

(2) Preliminary model investigation, 

(3) Reduction of the predictor variables, 

(4) Model refinement and selection, and 

(5) Model validation 



#1: DATA COLLECTION 
The data collection phase separates 

studies into two types: 

(1) Controlled experiments, and 

(2) Observational Studies 



#2: PRELIMINARY  
MODEL INVESTIGATION 

Once data have been collected, the process begins with 
steps/actions employed to identify: 

(1) Functional form for predictor variables; whenever 
possible, one should rely on investigator/statistician’s 
prior knowledge and or similar previous studies to suggest 
appropriate data transformations – such as taking logs. 

(2) Important interactions that should be included in the list 
of variables from which to narrow down in the next step. 



#3: REDUCTION OF  
EXPLANATORY VARIABLES 

Major reason? To avoid “multiple decision 
problem”; in addition, with factors include 
– some are unnecessarily – the error 
degree of freedom is reduced which 
weakens subsequent statistical decisions: 



Very often, inexperienced investigators might 
screen a set of explanatory variables by fitting 
the full model containing the entire set of 
potential predictor variables, then simply drop 
those “not statistically significant” factors 
using individual t-tests. It first seems reasonable 
but one may drop important intercorrelated 
predictor variables (which changes the results for 
the remaining factors – which is good but has to 
be done cautiously – with a “control” strategy). 



#4: MODEL REFINEMENT & 
SELECTION 

At this stage, a “tentative” regression model or 
models need to be checked in details for curvature 
and interaction effects; residual plots are helpful 
here. In addition, efforts are needed to identify 
outliers and further reduction is needed due to 
multicollinearity. 



#5: MODEL VALIDATION 

Validation is an useful and necessary final phase of 
the model-building process. It refers to the stability 
and reasonableness of the regression coefficients, 
the plausibility and usability of the regression 
function, as well as and the ability to generalize 
references drawn to the population situations. 



To deal with that very large number of models: 
 

In the early phase, the reduction phase, we usual 
decide on a criterion or a set of criteria, then the 
selection/elimination process proceeds 
“automatically” according to that selected 
criterion in order to reduce the list candidate 
models to a smaller number – say 3 to 6. 

 

In the later phase, the refinement phase, a detailed 
examination can then be made to that more 
limited number of the more promising or 
“candidate” models, leading to the selection of 
the final model or models for validation. 



There are more than one criteria for “model 
selection”; none is clearly dominating. The decision 
on which criterion to use is still a subjective 
judgment. Even for a given criterion, it is still possible 
that more than one “good” models are found, and that 
the choice can only be made on the basis of additional 
considerations. For example, we settle on certain specific 
criterion with the goal of identifying a model with “high 
predictive power” (high according to that selected 
criterion); but how high is high? Or how much “higher” 
is enough to justify the selection of a larger model? 



Generally: 

(1) When the pool of explanatory variables are 
small enough, one could examine most of 
possible subsets of explanatory variables and 
identify those subsets that are “good” according 
to the selected criterion, 

(2) For larger pools of explanatory variables, one 
has to rely on automatic search procedures to 
arrive at a single subset of the explanatory 
variables; the only step left is to validate it for 
possible acceptance – most of the middle steps in 
this automatic search are very much hidden. 



R2 CRITERION 
The “R2 Criterion” calls for the use of the 
“coefficient of multiple determination” R2 in the 
effort to identify “good” subset or subsets of 
predictor variables; subsets for which R2 is “high”. 
Coefficient of multiple determination R2 represents the 
portion of total variation in y-values attributable to 
difference in values of independent variables or 
covariates – that is attributable to “the model”; it is a 
measure of “predictive power” of a regression model. 



The intent in using the R2 criterion is to find a 
point where adding more predictor variables is 
“not worthwhile” because it leads to a very small 
increase in R2. But “how small is small?”; clearly 
the determination of where diminishing returns set 
in is a judgmental one. One could use some 
conventional “floor value” like less than 3% or 
5% - just like the use of .05 cutoff for p-values. 



Since R2 does not take into account the 
number of parameters in the regression 
model, it never reaches a maximum 
value; it keeps increasing as additional 
predictor variables are added to the 
model. Therefore, forming a “stopping 
rule” is always subjective. 



Ra
2 CRITERION 

The “adjusted coefficient of multiple 
determination” Ra

2 has been suggested as an 
alternative; adjusted coefficient takes the number 
of parameters in the regression model into 
account through the degrees of freedom: 
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MST = SST/(n-1) which is not often mentioned. 
When we keep adding more and more predictor 
variables, the decrease in SSE becomes so small, 
not enough to offset the decrease in the error degree 
of freedom) that Ra

2 can, indeed, reach a maximum 
value and start to decrease. That may be a  “natural” 
point where we should stop the search process. 



AIC CRITERION 
Another well-known alternative criterion that also 
provide penalties for adding predictors is the 
“Akaike’s Information Criterion (AIC)”.  In AIC, 
the first term (nln(SSE)) decreases as the number 
of predictor variables increases, the second term 
(nln(n)) is fixed, and the third term increases. We 
choose model with small AIC value: 
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When the number of factors in the model, 
k, increases, up to a point, Akaike’s 
Information Criterion (AIC) starts to go 
up! There is an optimal choice: the model 
with the smallest AIC value. 



In the general case, the AIC is 
    AIC = 2k - 2ln(L) 
where k is the number of parameters, and L is the 
likelihood function.  
 
The AIC not only rewards goodness of fit, but also 
includes a penalty that is an increasing function of the 
number of estimated parameters. This penalty 
discourages overfitting. The preferred model is the 
one with the lowest AIC value. The AIC methodology 
attempts to find the model that best explains the data 
with a minimum number of free parameters. 



There are other criteria besides the three popular 
ones that have been introduced here; the textbook 
introduces three others : Mallow’s Cp (p is the 
number of parameters, p=k+1), SBC, and PRESS 
(pages 357-361). One can also use the p-value 
associated with the “marginal contribution” of 
the newly added predictor variable; but the 
interpretation is a bit more obscure because the      
p-value is affected more by the sample size n. 
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In this formula, s2 is the MSE of the full model. Cp is 
proportional to the sum of the squared bias plus the 
variance of the predicted; if there is no bias, it is 
approximately p (the number of parameters); Good 
models have (i) small Cp value and (ii) Cp is near p. 



For larger k (the number of predictor variables), the 
total number of possible models 2k increases quickly 
(1024 models for 10 variables) and the task of fitting 
and evaluating all models becomes impossible – at 
least not practically feasible. We have no choice but 
to rely only computer packages to perform certain 
“automatic computer-search procedure”. 



There are two automatic search processes: 

(1) To specify a criterion, say Ra
2. The computer has to 

fit all possible models but the “selection step” is 
automatic; the result may be one or one small group 
of good models. This is usually done with smaller 
number of potential predictors. 

(2) To evaluate, “one-at-a-time”, the marginal 
contribution of one predictor variable at a time and 
the process is stopped when all and only “good” ones 
are in the model. In theory it’s still a long process but 
in reality, the process usually stops after a few or 
several rounds.  



ONE-AT-A-TIME 
AUTOMATIC SEARCH PROCESS 

• Two important steps are still: 
(1) Specifying  criterion or criteria for the automatic 

selection step (i.e. threshold p-values) 
(2) Specifying a strategy for applying the criteria. 
• The basic strategy is that of adding into or removing 

from the current model one predictor variable at a time 
according to certain order of relative importance with 
respect to meeting the selected p-values’ thresholds. 



#1: ONE-AT-A-TIME STRATEGIES 

Basic “moving” Strategies are:  
  (i) Forward Selection Procedure,        
 (ii) Backward Elimination Procedure,  
(iii) Stepwise Regression Procedure. 



In practice “forward selection” and “backward 
elimination” are usual included as steps of a 
“stepwise” strategy.  Stepwise Regression is 
perhaps the most popular search strategy, especially 
when the number of predictor variables is rather 
large (say, 30-40) – even larger than sample size - 
and fitting all possible models may not be feasible. 

An important characteristic: The stepwise 
algorithm identifies not a group of models but a 
single regression model as “the best” 



FORWARD SELECTION 
The forward-selection phase starts with no variables 
in the model. It fits all one-variable models, 
calculates the “F statistics”; the one with largest F 
serves as a “candidate”.                                         
(1) If the p-value for this candidate is smaller than a 
pre-determined level, called SLENTRY or SLE (for 
example, we choose SLE = .05),  that candidate is 
the first variable to be included in the model;        
(2) Otherwise, the process stops without any 
variable in the final model).  

Let say the result is X7. 



Assume that X7 “entered” the model in step 1. 
The routine now fits all models with two 
predictor variables, one of the two must be X7; 
for example, models with (X7,X1), (X7,X2), 
etc…For each two-variable model, it calculates 
the F statistic associated with the marginal 
contribution of the newly added variable; for 
example, MSR(X2|X7)/MSE(X2,X7). The one 
with largest F serves as a “candidate”.  



(1) If p-value for this candidate is smaller than 
SLENTRY,  that candidate is the second variable 
to be included in the model. Let say the result is 
X2; we now have 2 variables in the model,       
(2) Otherwise, the process stops with one 
variable in the final model). The process is 
repeated to evaluate all three-variables model.  

If “FORWARD” is used as the strategy, once a 
variable is in the model, it stays. 



BACWARD ELIMINATION 

The backward elimination strategy begins with the 
“full model” (including all predictor variables). 
Then the variables are deleted from the model one 
at a time and it calculates the F statistics associated 
with the marginal contribution of each deleted 
variable- just like it is one newly added , say  

MSR(X4|X1,X2,X3,X5,X6,X7)/MSE(X1,X2,X3,X4,X5,X6,X7)        

The variable with smallest F serves as a candidate  



(1)If the p-value for this candidate is greater 
than a pre-determined level, called SLSTAY 
or SLS (for example, we choose SLS = .15),  
that candidate is the first variable to be 
eliminated from the model; 

(2) Otherwise, the process stops and all 
variables stay to form the final model.  

The process continues searching for the 
next elimination. 



STEPWISE REGRESSION 

Stepwise regression combines forward selection and 
backward elimination , one step forward followed by 
one step backward, continues until no more variables 
can be added or removed. We need both SLENTRY 
and SLSTAY; default values for SAS are both “.15” 
(default value for SLE is .50 for FORWARD alone 
and SLS is .10 for BACKWARD alone). 



#2: IMPLEMENTATION OF       
ALL-POSSIBLE MODELS 

The “all-possible models” search algorithm, one can put 
in one or more than one criteria in a SAS program: 

MODEL Y = X1 X2 X3 X4 X5/ 
SELECTION = RSQUARE ADRSQ AIC; 



For each of these criteria, the routine performs all 
possible regression models then display the results 
in the increasing order of the number of predictor 
variables (all one-variable models, followed by all 
two-variable models, etc…) then in the decreasing 
order of the statistic within each group of models 
of the same size. When more than one criteria are 
specified, the decreasing order is the one of the 
first criterion listed. 



To reduce computing time/effort and/or computer 
output, we have the following options: 

(1) STOP = s  specifies the largest number of 
predictor variables to be evaluated and 
reported, 

(2) BEST = b specifies that  only b best models 
are displayed for each group of models of the 
same size. 



And instead of “SELECTION = RSQUARE”, the 
specification “SELECTION = MAXR”  would 
result in a more simple computer output listing of 
only “the best one-variable model”, “the best two-
variable model”, etc…(instead the list of ALL 
models of the same size). Actually, MAXR has a 
hidden backward elimination step similar to that 
of STEPWISE but checking the effect of 
elimination/switching on R2 instead of p-value. 



PROC REG data = SURV; 
model Y = X1 X2 X3 X4/selection=stepwise 
SLentry = .15 SLstay = .30; 

 Summary of Stepwise Procedure for Dependent Variable Y        
 
        Variable        Number    Partial    Model 
Step     Label      In  Model     R**2     R**2      C(p)                   F      Prob>F 
        
   1   X4                            1    0.5218   0.5218   93.5454    56.7310      0.0001 
        Liver Test                               
   2   X2                            2    0.0956   0.6174   66.8411    12.7473      0.0008 
        Prognostic                               
   3   X3                            3    0.1449   0.7623   25.3353    30.4939      0.0001 
        Enzyme                                   
   4   X1                            4    0.0744   0.8367    5.0000    22.3353       0.0001 
        Blood Clotting                           
   (NOTE: No step #5; No removal – because SLstay was set at “.30”) 



PROC REG data = SURV; 
model Y = X1 X2 X3 X4/ selection =  rsquare adjrsq cp; 

Number in     R-square       Adjusted              C(p)   Variables in Model 
       Model                           R-square                  
           1     0.52175569   0.51255868      93.54544   X4  
           1     0.33668289   0.32392679    149.09519   X3  
           1     0.30688939   0.29356034    158.03774   X2  
           1     0.13877015   0.12220803    208.49887   X1  
      ---------------------------------------------------- 
           2     0.65911506   0.64574702     54.31690   X2 X3  
           2     0.61738863   0.60238426     66.84113   X2 X4  
           2     0.61623041   0.60118063     67.18877   X3 X4  
           2     0.55251128   0.53496270     86.31412   X1 X3  
           2     0.52187923   0.50312940     95.50835   X1 X4  
           2     0.41180870   0.38874237    128.54612   X1 X2  
      ------------------------------------------------------- 
           3     0.83253178   0.82248369      4.26573   X1 X2 X3  
           3     0.76233507   0.74807518     25.33533   X2 X3 X4  
           3     0.64519769   0.62390956     60.49421   X1 X3 X4  
           3     0.61970441   0.59688667     68.14604   X1 X2 X4  
      ---------------------------------------------------------- 
           4     0.83674875   0.82342212      5.00000   X1 X2 X3 X4  
      ------------------------------------------------------------- 



PROC REG data = SURV; 
model Y = X1 X2 X3 X4/ selection =  rsquare Stop = 3; 

Number in     R-square       Adjusted              C(p)   Variables in Model 
       Model                           R-square                  
           1     0.52175569   0.51255868      93.54544   X4  
           1     0.33668289   0.32392679    149.09519   X3  
           1     0.30688939   0.29356034    158.03774   X2  
           1     0.13877015   0.12220803    208.49887   X1  
      ---------------------------------------------------- 
           2     0.65911506   0.64574702     54.31690   X2 X3  
           2     0.61738863   0.60238426     66.84113   X2 X4  
           2     0.61623041   0.60118063     67.18877   X3 X4  
           2     0.55251128   0.53496270     86.31412   X1 X3  
           2     0.52187923   0.50312940     95.50835   X1 X4  
           2     0.41180870   0.38874237    128.54612   X1 X2  
      ------------------------------------------------------- 
           3     0.83253178   0.82248369      4.26573   X1 X2 X3  
           3     0.76233507   0.74807518     25.33533   X2 X3 X4  
           3     0.64519769   0.62390956     60.49421   X1 X3 X4  
           3     0.61970441   0.59688667     68.14604   X1 X2 X4  
      ---------------------------------------------------------- 
           NOTE: There is no model with 4 predictor variables with “Stop = 3” 
      ------------------------------------------------------------- 



PROC REG data = SURV; 
model Y= X1 X2 X3 X4/selection= rsquare Stop=3 Best=2; 

Number in     R-square       Adjusted              C(p)   Variables in Model 
       Model                           R-square                  
           1     0.52175569   0.51255868      93.54544   X4  
           1     0.33668289   0.32392679    149.09519   X3  
---------------------------------------------------- 
           2     0.65911506   0.64574702     54.31690   X2 X3  
           2     0.61738863   0.60238426     66.84113   X2 X4  
------------------------------------------------------- 
           3     0.83253178   0.82248369      4.26573   X1 X2 X3  
           3     0.76233507   0.74807518     25.33533   X2 X3 X4  
---------------------------------------------------------- 
           NOTE: There is no model with 4 predictor variables with “Stop = 3” 
                        & only 2 models are listed in each group because of “Best = 2” 
      ------------------------------------------------------------- 



PROC REG data = SURV; 
model Y = X1 X2 X3 X4/selection=maxr; 
 
Maximum R-square Improvement for Dependent Variable Y  
 
                              Parameter             Standard                 Type II 
Variable                   Estimate                  Error    Sum of Squares              F   Prob>F 
INTERCEP     -71.92123497      38.30031842   36287.70264864        3.53   0.0660 
X4                     98.05483965     13.01843184  583808.87323857      56.73   0.0001 
------------------------------------------------------------------------------- 
The above model is the best  1-variable model found. 
 
                               Parameter           Standard                    Type II 
Variable                    Estimate                 Error      Sum of Squares             F   Prob>F 
INTERCEP    -424.56413841     63.74961983  331720.68573475      44.35   0.0001 
X2                       4.88261191        0.70299436  360779.51674699      48.24   0.0001 
X3                       4.05843991        0.55907160  394116.40334444      52.70   0.0001 
------------------------------------------------------------------------------- 
The above model is the best  2-variable model found. 
 



                               Parameter           Standard                   Type II 
Variable                    Estimate                 Error     Sum of Squares              F   Prob>F 
INTERCEP    -659.17941990     55.67408110  525372.16182084     140.18   0.0001 
X1                     38.32274412       5.32589144  194041.43220438        51.78   0.0001 
X2                       4.56773202       0.49955913  313323.76018378        83.60   0.0001 
X3                       4.48503622       0.40017410  470760.31016036      125.61   0.0001 
------------------------------------------------------------------------------- 
The above model is the best  3-variable model found. 
 
 Parameter        Standard          Type II 
Variable         Estimate           Error   Sum of Squares          F   Prob>F 
INTERCEP    -621.59755029     64.80042601  343025.80578100      92.02   0.0001 
X1                      33.16382813       7.01727463    83263.81220448      22.34   0.0001 
X2                        4.27185982       0.56338454  214332.51418236      57.49   0.0001 
X3                        4.12573829       0.51116093  242857.75291128      65.15   0.0001 
X4                      14.09156259     12.52532754      4718.50099971        1.27   0.2661 
------------------------------------------------------------------------------- 
The above model is the best  4-variable model found. 
 
NOTE: WE could impose a limit “STOP = s” on the MAXR routine/strategy 



“Type I” SUM OF SQUARES 

Type I fits the reduction in residual sum of squares 
achieved by adding that variable at whatever stage it is 
added. Type I SS are order-dependent (hierarchical, 
sequential). Each effect is adjusted for all other effects 
that appear earlier – or enter before it - in the model, but 
not for any effects that appear later – or enter after it - in 
the model. For example, it is "adjusted" for no other 
variable if it is first in the model, for one other variable 
if it is second, for two others if it is third, etc.  



“Type III” SUM OF SQUARES 
 For Type III , each variable is credited with 
the reduction in residual sum of squares 
achieved by entering it on top of all other 
variables; each is adjusted for all others. When 
you fit just one multiple regression model – or 
when options such as RSQUARE, ADJRSQ, 
and/or Cp are specified, “SSR” is of type III. 



“Type II” SUM OF SQUARES 
Type II SS are the reduction in the SSE due to adding the 
effect to a model that contains all other effects except effects 
that “contain the effect being tested”.  An effect is contained 
in another effect if it can be derived by deleting terms in that 
effect—for example, A,  B,  C,  A∗B,  A∗C,  &  B∗C are all 
contained in A∗B∗C. For example, in evaluating the effect of 
A, it is not adjusted for A*B. Type II Sum of Squares is 
sequential like type I, the effect of each variable is not 
adjusted for variables not yet entered the model. However, 
type II Sum of Squares  is like type III – for each model 
being investigated at the time, the effect of each variable is 
adjusted for all others regardless of the entering order.  



In sequential model building (with option FORWARD, 
BACKWARD, or STEPWISE), SAS uses – as “default” – 
Type II Sum of Squares. However, if preferred – 
regardless of selection strategy, you can always request 
your choice of Sum of Squares. For example, even if you 
fit only one multiple regression model, you could request 
for “SS1”. In that case the effect of each variable is 
adjusted for all variables listed before it (on left side) in 
the model statement –but not variables listed after it. Of 
course, there is no compelling reason to do that. 



Readings & Exercises 

• Readings: A thorough reading of the text’s 
sections 9.1-9.4 (pp.343-367) is recommended. 

• Exercises: The following exercises are good for 
practice, all from chapter 9: 9.13(c), 9.15(c), 
9.17(c,d), 9.19, and 9.30. 



Due As Homework 
 
#18.1 Refer to dataset “Infants”, let Y = Birth Weight and 

consider a model with four independent variables, X1 = 
Gestational Weeks, X2 = Mother’s Age, X3 =  Toxemia (toxemia 
= 1 is a pregnancy condition resulting from metabolic 
disorder), and X4 = Length:  

    a) Fit the MLR model containing all 4 variables; does it appear 
that all four predictor variables should be retained? 

     b) Find the best subset of predictors using the stepwise 
strategy. 

     c) Find the best subset of predictors using the Ra
2 criterion; 

does the result agree with that in (b)? 
     d) Find the best subset of predictors using the AIC criterion; 

does the result agree with that in (b)? And with that in (c)? 
#18.2 We have data on the conduct of a number of cancer 

clinical trials from “ClinicalTrials.gov” (File: Minority 
Enrollment); the aim is to is to investigate potential factors 
which might affect the enrollment of black patients. 



There were n=113 trials and the (response) variable under 
investigation is the percent of black patients (“Black”) among 
those recruited for each trial. To provide possible explanations, 
we’ll investigate 9 possible exploratory factors: Age (1= under 18, 
2 = 18 and above), Gender (1 = Male, 2 = Female, 3 = both), Funder 
(1 = Government, 2 = Industry, 4 = Combination), Trial Duration (in 
months), Allocation (1 = Randomized, 2 = Non-randomized), 
Intervention Model (or Design; 1 = Parallel (multiple arms), 2 = 
Single group, 3 = Cross-over), Primary Purpose (1 = Therapeutic, 
2 = Non-therapeutic), Masking (1 = Open Label, 2 = Double Blind). 
The final factor, Trial Size, is represented by two variables: Actual 
enrollment, and Accrual Percentage which expressed accrual as 
percentage of Planned Accrual. 
a) Define indicator/dummy variables to represent categorical 
factors; how may independent variables are there? 
b) Fit the MLR model containing all variables; does it appear that 
all independent variables should be retained? How many are 
significant? 
c) Find the best subset of predictors using the stepwise strategy. 
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