
PubH 7405:  
REGRESSION ANALYSIS 

 INTRODUCTION TO 

 LOGISTIC REGRESSION 



Let Y be the Dependent Variable Y 
taking on values 0 and 1, and: 
π = Pr(Y=1) 
Y is said to have the “Bernouilli 
distribution” (Binomial with n = 1).   
We have: 
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Consider, for example, an analysis of whether or 
not business firms have a daycare facility, 
according to the number of female employees, the 
size of the firm, the type of business, and the 
annual revenue. The dependent variable Y in this 
study was defined to have two possible outcomes:  
 
 (i) Firm has a daycare facility (Y=1), and  
(ii) Firm does not have a daycare facility (Y=0).  



As another example, consider a study of Drug 
Use among middle school kids, as a function 
of gender and age of kid, family structure 
(e.g. who is the head of household), and family 
income. In this study, the dependent variable Y 
was defined to have two possible outcomes: 
  
 (i) Kid uses drug (Y=1), and  
(ii) Kid does not use drug (Y=0).  



In another example, say, a man has a physical 
examination; he’s concerned: Does he have 
prostate cancer? The “truth” would be confirmed 
by a biopsy. But it’s a very painful process (at least, 
could we say if he needs a biopsy?) 
In this study, the dependent variable Y was defined 
to have two possible outcomes: 
  
 (i) Man has prostate cancer (Y=1), and  
(ii) Man does not have prostate cancer (Y=0). 
 
Possible predictors include PSA level, age, race. 



Suppose Prostate Cancer has been 
confirmed, the next concern is whether the 
cancer has been spread to neighboring 
lymph nodes; knowledge would dictate 
appropriate treatment strategy. The “truth” 
would be confirmed by performing a 
“laparotomy” (to examine the nodes), but 
any surgery involves risks; the question is 
whether we can accurately predict nodal 
involvement without a surgery.  



In this study, the dependent variable Y was 
defined to have two possible outcomes:  
(i) With nodal involvement (Y=1), and  
(ii) Without nodal involvement (Y=0). 

Possible “predictors” include X-ray reading, 
biopsy result pathology reading (grade), size 
and location of the tumor (stage - by 
palpation with the fingers via the rectum), and  
“acid phosphatase level” (in blood serum).  



The basic question is: Can we do 
“regression” when the dependent 
variable, or “response”, is binary? 



For “binary” Dependent Variables, we 
run into problems with the “Normal 
Error Model” – The distribution of Y 
is Bernouilli. However, the “normal” 
assumption is not very important (i.e. 
“robust”); effects of any violation is 
quite minimal – especially if n is large! 



  The Mean of Y is in well-defined but it 
has limited range:   
                                        
Mean of Y = Pr(Y=1) = π   
0≤ π ≤1,  
 
and fitted values may fall outside of 
(0,1). However, that’s a minor problem. 



The Variance (around the regression 
line) is not constant (a model 
violation that we learn in diagnostics); 
variance is function of the Mean π of 
Y (which is a function of predictors):       
 
σ2 = π(1- π) 



More important, the relationship is 
not linear. For example, with one 
predictor X, we usually have: 
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We still can focus on “modeling the 
mean”, in this case it is a Probability, π = 
Pr(Y=1), but the usual linear regression 
with the “normal error regression 
model” is definitely not applicable – all 
assumptions are violated, some may 
carry severe consequences. 

Conclusion:                                                     
We need some transformation for Y 
(assumptions about Y are violated) 



EXAMPLE: Dose-Response 
Data in the table show the effect of different concentrations of 
(nicotine sulphate in a 1% saponin solution) on fruit flies; here 
X = log(100xDose), just making the numbers easier to read. 

Dose(gm/100cc) # of insects, n # killed, r x p (%)
0.1 47 8 1.000 17.0

0.15 53 14 1.176 26.4
0.2 55 24 1.301 43.6
0.3 52 32 1.477 61.5
0.5 46 38 1.699 82.6
0.7 54 50 1.845 92.6

0.95 52 50 1.978 96.2

   Proportion p is an estimate of Probability π 



EXAMPLE: Dose-Response 
Data in the table show the effect of different concentrations of 
(nicotine sulphate in a 1% saponin solution) on fruit flies; here 
X = log(100xDose), just making the numbers easier to read. 

Dose(gm/100cc) # of insects, n # killed, r x p (%)
0.1 47 8 1.000 17.0

0.15 53 14 1.176 26.4
0.2 55 24 1.301 43.6
0.3 52 32 1.477 61.5
0.5 46 38 1.699 82.6
0.7 54 50 1.845 92.6

0.95 52 50 1.978 96.2

   p is an increasing function of x; in what way? 



UNDERLYING ASSUMPTION 
It is assumed that each subject/fly has its own 
tolerance to the drug. The amount of the 
chemical needed to kill an individual fruit fly, 
called “individual lethal dose” (ILD), cannot 
be measured - because only one fixed dose is 
given to a group of n flies (indirect assay)                                
(1) If that dose is below some particular fly’s 
ILD, the insect survived.                                                           
(2) Flies which died are those with ILDs 
below the given fixed dose. 



INTERPRETATION OF DATA 
• 17% (8 out of 47) of the first 

group respond to dose of 
.1gm/100cc (x=1.0); that 
means 17% of subjects have 
their ILDs less than .1 

• 26.4% (14 out of 53) of the 
2nd group respond to dose of 
.15gm/100cc (X=1.176); that 
is  26.4% of subjects have 
their ILDs less than .15  

Dose   # n # killed X p(%)
0.1 47 8 1.000 17.0

0.15 53 14 1.176 26.4
0.2 55 24 1.301 43.6
0.3 52 32 1.477 61.5
0.5 46 38 1.699 82.6
0.7 54 50 1.845 92.6

0.95 52 50 1.978 96.2



Interpretation of data: 

we view each dose D (with       
X = log of D) as upper endpoint 
of an interval and p the 
cumulative relative frequency 



A symmetric sigmoid dose-response curve suggests that it 
be seen as some cumulative distribution function (cdf). 



“Empirical evidence”, i.e. data, suggest that we 
view p the cumulative relative frequency. 
This leads to a “transformation” from “π” to 
an “upper endpoint”, say Z (which is on the 
continuous scale) corresponding to that 
cumulative frequency of some cdf. After this 
transformation, the regression model is then 
imposed on Z, the transformed value of π. 



Let π be the probability “to be modeled” and X a 
covariate (let consider only one X for simplicity). 
The first step in the regression modeling process is 
to obtain “the transformed value Z of π” using the 
following transformation: 
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Cumulative Proportion π  

  1- π 

Transformation: π to Z 
which is on a linear scale  

   Z 



As a result, the proportion π has been 
transformed into a new variable Z on the 
“linear” or continuous scale with 
unbounded range. We can use Z as the 
dependent variable in a regression model. 
(We now should only worry about 
“normality” which is not very important) 



The relationship between covariate X (in the 
example, log of the dose) or covariates X’s 
and Probability π (through Z) is then 
stipulated by  the usual simple linear 
regression: 
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In theory, any probability density function 
can be used. We can choose one either by its 
simplicity and/or its extensive scientific 
supports. And we can check to see if the 
data fit the model (however, it’s practically 
hard because we need lots of data to tell). 



A VERY SIMPLE CHOICE 
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Result (for one covariate X) is: 
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That is to model the “log” of the probability 
as a “linear function” of covariates. 
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The advantage of the approach of modeling the 
“log” of the probability as a “linear function” 
of covariates, is easy interpretation of  model 
parameters, the probability is changed by a 
multiple constant (i.e.“multiplicative model” 
which is usually plausible)  
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REGRESSION COEFFICIENTS 

• If X1 is binary (=0/1) representing an exposure, 
β1 represents the (log of) the “odds” (of having 
the event represented by Y) associated with the 
exposure – adjusted for that of X2 

• If X1 is on a continuous scale, β1 represents the 
(log of) the “odds” (of having the event 
represented by Y) associated with one unit 
increase in the value of X1 - adjusted for X2 



The model is plausible; calculations could be 
simple too; after the log transformation of “p”, 
proceeding with usual steps in regression analysis.  
 
this approach has a small problem: the exponential 
distribution is defined only on the whole positive 
range and certain choice of “x” could make the 
fitted probabilities exceeding 1.0 
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LOGISTIC TRANSFORMATION 
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Result is: 
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We refer to this as “Logistic Regression” 



Exponential transformation leads to a linear model 
of “Log of Probability”: ln(π);                     
Logistic transformation leads to a linear model of 
“Log of Odds”: ln[π/(1- π)] 

When π is small (rare disease/event), the 
probability and the odds are approximately equal. 
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Advantages: 

(1)  Also very simple data transformation:                     
Z = log{p/(1-p)}  

(2) The logistic density, with thicker tails 
as compared to normal curve, may be a 
better representation of real-life 
processes. 



A POPULAR MODEL 
• Although one can use the Standard Normal 

density in the regression modeling process (or any 
density function for that purpose), 

• The Logistic Regression, as a result of choosing 
Logistic Density remains the most popular 
choice for a number of reasons: closed form 
formula for π, easy computing (Proc LOGISTIC) 

• The most important reasons: interpretation of 
model parameter and empirical supports! 



REGRESSION COEFFICIENTS 

x
P

P
x

x

10

10

1
ln

)exp(1
)exp(

ββ

βα
ββπ

+=
−

++
+

=

β1 represents the log of the odds ratio associated 
with X, if X is binary, or with “an unit increase” 
in X if X is on continuous scale; β0 only depends 
on “event prevalence”- just like any intercept. 
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β1 is the odds ratio on the log scale if X is binary 



REGRESSION COEFFICIENTS 

• If X1 is binary (=0/1) representing an exposure, 
β1 represents the (log of) the “odds ratio” (of 
having the event represented by Y) associated 
with the exposure – adjusted for that of X2 

• If X1 is on a continuous scale, β1 represents the 
(log of) the “odds ratio” (of having the event 
represented by Y) associated with one unit 
increase in the value of X1 - adjusted for X2 



Logistic Regression applies in both prospective and 
retrospective (case-control) designs. In prospective 
design, we can calculate/estimate the probability 
of an event (for specific values of covariates). In 
retrospective design, we cannot calculate/estimate 
the probability of events because the “intercept” is 
meaningless but relationship between event and 
covariates are valid. 



SUPPORTS FOR LOGISTIC MODEL 
The fit and the origin of the linear logistic model could be easily 
traced as follows. When a dose D of an agent is applied to a 
pharmacological system, the fractions fa and fu of the system 
affected and unaffected satisfy the so-called “median effect 
principle” (Chou, 1976):  
 
 
 
where ED50 is the “median effective dose” and “m” is a Hill-
type coefficient; m = 1 for first-degree or Michaelis-Menten 
system. The median effect principle has been investigated much 
very thoroughly in pharmacology. 
If we set “ π= fa”, the median effect principle and the logistic 
regression model are completely identical with a slope β1= m. 
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Besides the Model, the other aspect where 
Logistic Regression, both simple and multiple, is 
very different from our usual approach is the way 
we estimate the parameters or regression 
coefficients. The obstacle is the lack of 
homoscedasticity: we cannot assume a constant 
variance after the logistic transformation. 
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SOLUTION #1: WEIGHTED LS 

Instead of minimizing the “sum of squares”, we 
minimize the “weighted sum of squares” 

Σw[z - (α + βx)]2 

where the weight for the value Z is 1/Var(Z). This 
can be done but much more complicated. 
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In addition, Z might not be 
defined if p=0 or p=1 



SOLUTION #2: MLE 
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Maximum Likelihood Estimation 
(MLE) process gives us estimates 
of all regression coefficients and 
their standard errors, bi (estimate 
of βi) and SE(bi) 



TEST FOR SINGLE FACTOR 
• The question is: “Does the addition of one 

particular factor of interest add significantly to the 
prediction of Pr(Y=1) over and above that 
achieved by other factors?”. 

• The Null Hypothesis for this test may stated as: 
"Factor Xi does not have any value added to the 
prediction of the probability of response over and 
above that achieved by other factors ". In other 
words, 

0:0 =iH β



TEST FOR SINGLE FACTOR  

• The Null Hypothesis is  
• Regardless of the number of variables in the model, 

one simple approach is using 
 

• Refer it to the percentiles of the standard normal 
distribution, where bi is the corresponding 
estimated regression coefficient and SE(bi) is the 
standard error of βi , both of which are provided by 
any computer package. 
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ESTIMATING ODDS RATIO 

• General form of 95% CI for βi: bi ± 1.96*SE(bi); 
bi is point estimate of βi, provided by SAS, and 
SE(bi) from Information matrix, also by SAS 

• Transforming the 95% confidence interval for the 
parameter estimates to 95% C.I. for Odds Ratios: 
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Logistic Model For Interaction 

“Usual approach”: use the product of 
individual terms to represent “interaction” 
– also called “effect modification” 
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Interaction Hypothesis 

 
Testing for interaction 
     H0: β3 = 0  
     HA: β3 ≠ 0 
(Interaction = Effect Modification) 
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In summary, with “Logistic Regression”, we 
“lost” these tools that we use with NERM: 

The global F-test 

R2  and all coefficients of partial determination 
(there are some substitutes but not as good) 

All graphs (Scatter diagram, all residual plots, 
and Variable-added Plot) 

Least Squares method (but MLE is better) 

All other methods/tools are unchanged (test 
for single factors, stepwise, etc…) 



Indirect Assays: Dose fixed, Response random. 

Depending on the “measurement scale” for the 
response (our random variable), we divide 
indirect assays into two groups: 

(1) Quantal assays, where the response is 
binary: whether or not an event (like the death of 
the subject) occurs, 

(2) Quantitative assays, where measurements for 
the response are on a continuous scale. 



Quantal response assays belong to the class of 
qualitative indirect assays. They are characterized 
by experiments in which each level of a stimulus 
(eg. dose of a drug) is applied to n experimental 
units; r of them respond and (n-r) do not 
response.That is “binary” response (yes/no). The 
group size “n” may vary from dose to dose; in 
theory, some n could be 1 (so that r = 0 or 1). 



From Webster International Dictionary: 

“Biological Assay is the estimation of the 
strength of a drug by comparing its effect on 
biological material, as animals or animal 
tissue, with those of a standard product.” 

In other words, we (usually) can only estimate  
“relative potency” of an agent, not its “potency”. 

 Quantal assays are exceptions to this definition. 



QUANTAL ASSAYS  
VERSUS QUANTITATIVE ASSAYS 

• Quantal bioassays are qualitative; we observe occurrences 
of an event - not obtain measurements on continuous scale. 

• Because the event is well-defined, we can estimate agent’s 
potency. The most popular parameter is the level of the 
stimulus which result in a response by 50% of individuals in 
a population. It is often denoted by LD50 for median lethal 
dose, or ED50 for median effective dose, or EC50 for 
median effective concentration. 

• However, measures of potency depend on the biological 
system used; the estimates of LD50’s for preparations of the 
same system can be used to form the relative potency – 
which would be more likely independent from the system. 



The most popular parameter LD50 (for median 
lethal dose), or ED50 (for median effective 
dose), or EC50 (for median effective 
concentration) is the level of the stimulus which 
result in a response by 50% of individuals in a 
population.                                                       
(1) It is a measure of the agent’s potency, which 
could be used to form relative potency.           
(2) It is chosen by a statistical reason; for any 
fixed number of subjects, one would attain 
greater precision as compared to estimating, 
say, LD90 or LD10 or any other percentiles. 



THE ASSAY PROCEDURE 
• The usual design consists of a series of dose levels 

with subjects completely randomized among/to the 
dose levels. The experiment may include a standard 
and a test preparations; or maybe just the test. 

• The dose levels chosen should range from “very 
low” (few or no subjects would respond) to “rather 
high” (most or all subjects would respond). 

• The objective is often to estimate the LD50; the 
number of observations per preparation depends on 
the desired level of precision of its estimate – 
sample size estimation is a very difficult topic. 



LOG POTENCY 
In the logistic the density, if we set p = .5 (or Y=0) 
we can obtain “log potency” (log of LD50); its 
estimate is given by, where b0 and b1 are estimated 
intercept and slope, respectively: 
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EXAMPLE AN IN VITRO EXPERIMENT 

Cells from a tumor-derived cell line are 
deposited in wells of a cell culture dish in 
complete growth medium.  After phase growth 
is established (say, 72 hrs in a typical cell line), 
wells are treated with different concentrations 
of a test agent – including a control (i.e. 
vehicle) well. Doses are spread over a wide 
range from very low to very high. 

The endpoint is “cell survival” and the aim 
is to establish “potency parameters”.  



Unlike Clinical or In Vivo trials; for In 
Vitro trials, the number of cells at the 
beginning of the experiment in each 
well, prior to drug exposure, may be 
large but unknown; that is why a 
control (i.e. vehicle) well is needed. 
(same volume were deposited in wells) 



Cells: ALL 

Drug: Vincristine 

(Extra feature: original 
and recurrent tumors from 
the same patient which is 
not needed here) 



 

Two straight lines: 
similar intercepts; 

Recurrent tumor: 
smaller slope 



Readings & Exercises 

• Readings: A thorough reading of the text’s 
sections 14.1-14.5 (pp.555-581) is highly 
recommended. 

• Exercises: The following exercises are good for 
practice, all from chapter 14 of text: 14.4, 14.5, 
and 14.12. 



Due As Homework 
#20.1 Refer to dataset “Prostate Cancer”, let Y = Node and 

five independent variables, X1 = X-Ray, X2 = Grade, X3 
= Stage, X4 = Age, and X5 = Acid. 

    a)  Fit the model with Acid as the only covariate and 
interpret the results, including the meaning of the slope. 

    b) Add more terms to the model in question (a) to test if 
Stage modifies the effect of Acid 

    c) In model (a) is the effect of Acid linear? 
    d) Fit the model containing all five covariates and 

interpret the results 
    b) In model (d) does Age modifies the effect of Acid? 
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