
PubH 7405:  
REGRESSION ANALYSIS 

CROSS-OVER EXPERIMENT DESIGNS 



THE ROLE OF STUDY DESIGN 
In a “standard” experimental design, a linear 
model for a continuous response/outcome is: 
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The last component, ‘experimental error”, includes 
not only error specific to the experimental process 
but also includes “subject effect” (age, gender, 
etc…).  Sometimes these subject effects are large 
making it difficult to assess “treatment effect”. 



Blocking (to turn a completely 
randomized design into a randomized 
complete block design ) would help. But 
it would only help to “reduce” subject 
effects, not to “eliminate” them: 
subjects in the same block are only 
similar, not identical – unless we have 
“blocks of size one”. And that the basic 
idea of “Cross-over Design”, a very 
popular form in biomedical research. 



Cross-over is a very special design 
where we have “bloc” of size one; 
each subject serves as his/her own 
control receiving both treatment. 
Randomization decides the order. 
The outcome could be binary or on 
the continuous scale. 



Let start with the case of a continuous 
outcome and, for illustration, consider 
a project we just completed here: a 
clinical trial to prevent lung cancers. 



US Mortality, 2006 

Source: US Mortality Data 2006, National Center for Health Statistics, Centers for Disease Control and Prevention, 2009. 

 
1. Heart Diseases     631,636  26.0 
   
2. Cancer      559,888  23.1 
 
3. Cerebrovascular diseases    137,119    5.7 
   
4. Chronic lower respiratory diseases   124,583                 5.1 
   
5. Accidents (unintentional injuries)   121,599     5.0 
   
6. Diabetes mellitus       72,449    3.0 
   
7. Alzheimer disease        72,432    3.0 
   
8. Influenza & pneumonia      56,326    2.3 
   
9.     Nephritis        45,344    1.9 
 
10. Septicemia        34,234    1.4  

Rank Cause of Death No. of 
deaths 

% of all 
deaths 



2009 Estimated US Cancer Deaths 

Source: American Cancer Society, 2009. 

Men 
292,540 

Women 
269,800 

26% Lung & bronchus 
15% Breast 

  9% Colon & rectum 

  6% Pancreas 

  5% Ovary 

  4% Non-Hodgkin lymph 

  3% Leukemia 

  3% Uterine corpus 

  2% Liver & intrahepatic 
   bile duct 

  2% Brain 

 25%   All other sites 

Lung & bronchus 30% 
Prostate 9% 

Colon & rectum  9% 

Pancreas 6% 

Leukemia 4% 

Liver & intrahepatic 4% 
bile duct 

Esophagus 4% 

Urinary bladder 3%   

Non-Hodgkin                 3%    
lymphoma               

Kidney & renal pelvis 3% 

All other sites               25% 

 



Cancer Death Rates Among 
Men, US,1930-2005 

Source:  US Mortality Data 1960-2005, US Mortality Volumes 1930-1959, 
National Center for Health Statistics, Centers for Disease Control and Prevention, 2008. 
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Cancer Death Rates Among 
Women, US,1930-2005 

Source:  US Mortality Data 1960-2005, US Mortality Volumes 1930-1959, 
National Center for Health Statistics, Centers for Disease Control and Prevention, 2008. 
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Lung cancer is the leading cause of 
cancer death in the United States and 
worldwide. Cigarette smoking causes 
approximately 90% of lung cancer. 
Despite anti-smoking campaigns over 
the past 40 years, over 45 million (22%) 
adult Americans are still current 
smokers. The development of a viable 
chemoprevention strategy targeting 
current smokers potentially could 
decrease lung cancer mortality.  



Previous studies have shown  

(1) that the tobacco specific nitrosamine 
4(methylnitrosamino)-1-(3-pyridyl)-1-
butanone (NNK) is a major lung carcinogen 
in tobacco smoke,  

(2) that 2-phenethyl isothiocyanate (PEITC) 
is a potent inhibitor of NNK-induced lung 
carcinogenesis in rats and mice.  



PEITC can be found in water cress, 
garden cress, broccoli, among other 
foods; but few people eat enough of 
those foods. We extract PEITC from 
foods then form pills having higher 
concentration. 



Then we designed and conducted a 
placebo-controlled cross-over clinical 
trial to assess the effect of a PEITC 
supplement on changes of NNK 
metabolism in smokers. We hypothesize 
that there will be a 30% increase in 
urinary NNAL plus NNAL-Gluc among 
PEITC treated subjects (taking more 
toxin out). 



In the most simple cross-over design, subjects 
are randomly divided into two groups (often of 
equal sign); subjects in both groups/series take 
both treatments (experimental treatment and 
placebo/control) but in different “orders”. 

Of course, “order effects” and “carry-over 
effects” are possible. And the cross-over 
designs are not always suitable. They are 
commonly used when treatment effects are not 
permanent;  for example some treatments of 
rheumatism.  



THE DESIGN 
In our “PEITC trial”, measurements (urinary total 
NNAL) will be taken from each subject in the two 
supplementation sequences as seen in the 
following diagram: 
 
Group 1: Period #1 (PEITC; A1) – washout – Period #2 (Placebo; B2) 
Group 2: Period #1 (Placebo; B1) – washout – Period #2 (PEITC; A2) 
 
The letter is used to denote supplementation or 
treatment (A for PEITC and B for Placebo) and 
the number, 1 or 2, denotes the period; e.g. “A1” 
for PEITC taken in period #1. 



The “washout periods” are inserted in order 
to eliminate possible “carry-over effects” 
(The half-life of dietary PEITC in vivo is 
between 2-3 hours, with complete excretion 
within 1-2 days following ingestion).  



There are more complicated designs in 
which three treatments, in different orders, 
are compared a three-sequence, three-
period trial – with two washout periods. 



REGRESSION MODELS 

The mean of A1, A2, B1, and B2 can be modeled 
as follows: 
Mean  = (α)(Treatment) + (β)(Order) + Others 
 
Treatment is coded as (0 = Placebo, 1 =PEITC) 
Order is coded as (0= 2nd Period, 1= 1st Period) 
 
Others include all subjects’ characteristics  

Group 1: Period #1 (PEITC; A1) – washout – Period #2 (Placebo; B2) 
Group 2: Period #1 (Placebo; B1) – washout – Period #2 (PEITC; A2) 



OUTCOME VARIABLE 
From the design: 
Group 1: Period #1 (PEITC; A1) – washout – Period #2 (Placebo; B2) 
Group 2: Period #1 (Placebo; B1) – washout – Period #2 (PEITC; A2) 
Our data analysis could be based on the following 
“outcome variables” (Treatment - Placebo): 
X1 = A1 - B2; and X2 = A2 - B1 
This subtraction will cancel the “within-
sequence” effects of all subject-specific factors. 
This process will result in two independent 
samples (often with the same or similar sample 
size if there are no or minimal dropouts or 
missing data).  



Recall the general model: 
 
 
 
 
The subtractions 
X1 = A1 - B2; and X2 = A2 - B1 
will cancel not only effects of all subject-specific factors; 
they cancel the “overall constant” as well, leaving only 
two parameters in the means of X1 and X2:  
 
Mean of X1 = [(α)(1)+(β)(1)] – [(α)(0)+(β)(0)] = α + β 
Mean of X2 = [(α)(1)+(β)(0)] – [(α)(0)+(β)(1)] = α - β 
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RESULTING LINEAR MODELS 
Design: 
Group 1: Period #1 (PEITC; A1) – washout – Period #2 (Placebo; B2) 
Group 2: Period #1 (Placebo; B1) – washout – Period #2 (PEITC; A2) 
Outcome variables: 
X1 = A1 - B2; and X2 = A2 - B1 
 
Resulting Linear regression models: 
X1 is normally distributed as N(α+β,σ2) 
X2 is normally distributed as N(α-β,σ2) 
In this models, α represents the PEITC supplementation 
effect (α>0 if and only if PEITC increases the total NNAL) 
and β represents the period effect (β>0 if and only if 
measurement from period 1 is larger than from period 2). 



(1) The X’s do not really need to have normal 
distributions; the robustness comes from the 
fact that our analysis will be based on the 
normal distribution of the sample mean – not of 
the data, and the sample mean would be almost 
normally distribution for moderate to large 
sample sizes (Central Limit Theorem). 

 
(2) Among the three parameters, α represents the 

PEITC effect and is the primary target, β could 
be of some interest; we have no in σ2 (we have 
to handle it properly to make inferences on α 
(and β) valid and efficient. 



DATA ANALYSIS 
Design: 
Group 1: Period #1 (PEITC; A1) – washout – Period #2 (Placebo; B2) 
Group 2: Period #1 (Placebo; B1) – washout – Period #2 (PEITC; A2) 
Outcome variables: 
X1 = A1 - B2; and X2 = A2 - B1 
From the model: 
X1 is normally distributed as N(α+β,σ2) 
X2 is normally distributed as N(α-β,σ2) 
 
Let the sample means and sample variances 
be defined as usual and n the group size 
(total sample size is 2n); then, we can easily 
prove the followings: 



TREATMENT EFFECTS 
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ESTIMATION OF PARAMETERS 
(1) Estimation of Variance. We can pool data from the two 

sequences to estimate the common variance σ2 by sp
2 

– the same pooled estimate used in two-sample t-test. 
(2) Estimation of Treatment  Effect. Parameter α 

representing the PEITC effect, the difference between 
PEITC and the placebo, is estimated by a – the average 
of the two sample means. Its 95 percent confidence 
interval is given by: 

N
s

ta p
975.±

The t-coefficient goes with (N-2) degrees of freedom; 
without missing data, N = 2n – total number of subjects. 



TESTING FOR TREATMENT EFFECT 
Testing for PEITC Treatment Effect: Null hypothesis 

of “no treatment effects” H0: α = 0 is tested using 
the “t test”, with (N-2) degrees of freedom: 

N/s
at

p

=

It’s kind of “one-sample t-test” but we use the degree 
of freedom associated with sp. Alternatively, one can 
frame it as a two-sample t-test comparing the mean of 
X1 versus the mean of (-X2) as seen from 
X1 is normally distributed as N(α+β,σ2) 
X2 is normally distributed as N(α-β,σ2) 



ORDER EFFECTS 
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ESTIMATION OF PARAMETERS 
(1) Estimation of Variance. We can pool data from the two 

sequences to estimate the common variance σ2 by sp
2 

– the same pooled estimate used in two-sample t-test. 
(2) Estimation of Order Effect: Parameter β representing 

the order effect, the difference between Period 1 and 
Period 2, is estimated by b – half the difference of the 
two sample means. Its 95 percent confidence interval 
is given by: 

N
s

tb p
975.±

The t-coefficient goes with (N-2) degrees of freedom; 
without missing data, N = 2n – total number of subjects. 



TESTING FOR ORDER EFFECT 
Testing for Order Effect: Null hypothesis of “no order 

effects” H0: β = 0 is tested using the “t test”, with 
(N-2) degrees of freedom: 

N/s
bt

p

=

It’s kind of “one-sample t-test” but we use the degree 
of freedom associated with sp. Alternatively, one can 
frame it as a two-sample t-test comparing the mean of 
X1 versus the mean of X2 as seen from 
X1 is normally distributed as N(α+β,σ2) 
X2 is normally distributed as N(α-β,σ2) 



Two-period crossover designs are often used in 
clinical trials in order to improved sensitivity of the 
trial by eliminating individual patient effects. They 
have been popular in dairy husbandry studies, 
long-term agricultural experiments, bioavailability 
and bioequivalence studies, nutrition experiments, 
arthritic and periodontal studies, and educational 
and psychological studies – where treatment 
effects are not permanent. 

The response could be quantitative but quite often 
the response variable is binary , e.g. the response 
is whether or not relief from pain is obtained. 



THE DESIGN 

Recall the following design; the only difference 
is that, in this case, the four outcomes A1, A2, 
B1, and B2 are binary – say 1 if positive 
response and 0 otherwise: 
 
Group 1: Period #1 (Trt A; A1) – washout – Period #2 (Trt B; B2) 
Group 2: Period #1 (Trt B; B1) – washout – Period #2 (Trt A; A2) 
 
The washout periods are optional and the group 
sizes could be different (due to dropouts) – but 
not by much. 



In general, let Y be the outcome or dependent 
variable taking on values 0 and 1, and: 
π = Pr(Y=1) 
Y is said to have the “Bernouilli distribution” 
(Binomial with n = 1).   We have: 

)1()(
)(

ππ
π

−=
=

YVar
YE

Studies would involve some independent 
variables (treatment, order, etc…) 



Let π be the probability (also the mean 
of the Bernouilli distribution) and X a 
covariate (let consider only one X for 
simplicity). The common step in the 
regression modeling process is to relate 
π and X using the Logistic Regression 
Model – as follows. 

 LOGISTIC REGRESSION 
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“Logistic Simple Linear Regression” 



THE LOGISTIC MODELS 

The Multiple Logistic Models for cross-over 
design are ( J. J. Gart, Biometrika 1969): 
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In this models,  
(1) λ‘s represent the subjects effects 
varying from subject to subject; could be 
many terms here. 
(2) α represents the new treatment effect, 
say PEITC supplementation, (α>0 if and 
only if PEITC is more effective) – our main 
interest - and  
(3) β represents the period effect (β>0 if and 
only if a treatment from period 1 is more 
effective than from period 2). 



In this modeling: 

(1) We “code” binary covariates (Treatment 
and Order) as (+1/-1) instead of (0,1);  

(2) All subject-specific covariates are 
lumped together with the Intercept. 



We want to eliminate the subjects’ effects in 
drawing inferences on treatment and order 
effects. However, we cannot simply do 
some subtractions like (X1 = A1 - B2 and X2 
= A2 - B1). For a continuous outcome, the 
difference of two normal variables is 
distributed as “normal”. But this is not true 
for the Bernouilli distribution. 



A viable alternative is a “Conditional 
Analysis”, like the formation of the 
McNemar Chi-square test – used, for 
example, in the analysis of pair-
matched case-control studies. 



It was shown by Gart (1969) that optimum 
inferences about treatment and order 
effects, regarding subjects effects as 
nuisance, are based on those subjects 
with unlike responses in two periods; 
that are subjects whose pair of outcomes 
are either (0,1) or (1,0). This is similar to 
the argument leading to the McNemar 
Chi-square test. 



# 1: Period 1 (Trt A; A1) – Period 2 (Trt B; B2) 
# 2: Period 1 (Trt B; B1) – Period 2 (Trt A; A2) 

The analysis will be conditioned on: 

A1+B2 = 1, and 

B1+A2 = 1 
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Recall The Bayes Theorem: 
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Data #1: Frequencies of subjects with 
different Outcomes (0,1) and (1,0) 

Treatments (A,B) Treatments (B,A)
Oucome A=1 ya1 ya2

Oucome B=1 yb2 yb1

Total n1 n2
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Treatments (A,B) Treatments (B,A)
Oucome A=1 ya1 ya2

Oucome B=1 yb2 yb1

Total n1 n2

Results: With n1 and n2 fixed, ya1 and ya2 are 
distributed as Binomials B(n1,p1) and B(n2,p2) 

Note: If there are no Order Effects, then p1 = p2 



Data #1: Frequencies of subjects with 
different Outcomes (0,1) and (1,0) 

Treatments (A,B) Treatments (B,A)
Oucome A=1 ya1 ya2

Oucome B=1 yb2 yb1

Total n1 n2

Testing for Order Effects 
H0: β = 0 
Chi-square test; even Fisher’s Exact Test 



Data #2: The same set of data can also be 
assembled into a different  2x2 Table 

Treatments (A,B) Treatments (B,A)
1st Outcome=1 ya1 yb1

2nd Outcome =1 yb2 ya2

Total n1 n2
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Treatments (A,B) Treatments (B,A)
1st Oucome=1 ya1 yb1

2nd Oucome=1 yb2 ya2

Total n1 n2

Results: With n1 and n2 fixed, ya1 and yb1 are 
distributed as Binomials B(n1,p1) and B(n2,q2) 

Note: If no Treatment Effects, then p1 = q2 



Data #2: The same set of data can also be 
assembled into a different  2x2 Table 

Treatments (A,B) Treatments (B,A)
1st Outcome=1 ya1 yb1

2nd Outcome =1 yb2 ya2

Total n1 n2

Testing for Treatment Effects 
H0: α = 0 
Chi-square test; even Fisher’s Exact Test 



ESTIMATION OF PARAMETERS 
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Treatments (A,B) Treatments (B,A)
Oucome A=1 ya1 ya2

Oucome B=1 yb1 yb2

Total n1 n2

Results: With n1 and n2 fixed, ya1 and ya2 are 
distributed as Binomials B(n1,p1) and B(n2,p2) 



Results: With n1 and n2 fixed, ya1 and ya2 are 
distributed as Binomials B(n1,p1) and B(n2,p2) 

(Conditional) Likelihood Function: 

b2a2b1a1 yy

a2

2yy

a1

1 p2)(1p2
y
n

p1)(1p1
y
n

L −







−








=



β)2(α

β)2(α

e1
1

e1
1

−−

+−

+
=

+
=

2

1

p

p

{ }[ ]

[ ] [ ] 21

a2a1

nα)2(βnβ)2(α

b2b1
a2

2

a1

1

y2y

a2

2y1y

a1

1

e1e1

α)(β2yβ)(α2yexp
y
n

y
n

p2)(1p2
y
n

p1)(1p1
y
n

L

−+− ++

−++−
















=

−







−








=



RESULTS:  
Estimates & Standard Errors 









+==

==

==

b2a2

ba

b1a1

ab

b1a2

b2a1
^

b2b1

a2a1
^

yy
n

yy
n

16
1Var(b)Var(a)

yy
yyln

4
1bβ

yy
yyln

4
1aα



21.1 We conducted a randomized, crossover trial to test 
whether 3,3'-diindolylmethane (DIM, a metabolite of I3C) 
excreted in the urine after consumption of raw Brassica 
vegetables with divergent glucobrassicin concentrations is a 
marker of I3C uptake from such foods. Twenty-five subjects 
were fed 50 g of either raw "Jade Cross" Brussels sprouts 
(high glucobrassicin concentration) or "Blue Dynasty" 
cabbage (low glucobrassicin concentration) once daily for 3 
days. All urine was collected for 24 hours after vegetable 
consumption each day. After a washout period, subjects 
crossed over to the alternate vegetable. Data are in file 
“Brussels Sprouts”; use average of 3 days as our outcome. 
Estimate & Test for Treatment effects using both the t-test 
(hand calculation) and SAS program (handout). 

DUE AS HOMEWORK 
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