
PubH 7405:  
REGRESSION ANALYSIS 

 INTRODUCTION TO 

 POISSON REGRESSION 



PROTOTYPE EXAMPLE #1 
   We have data for 44 physicians working in 
emergency medicine at a major hospital system. 
The concern is about the number of complaints 
each received the previous year. Why is it 
different from physician to physician? Could it 
be explained using other factors? Data available 
consist of the number of patient visits - and four 
covariates (the revenue, in dollars per hour;  
work load at the emergency service, in hours; 
gender, Female/Male, and residency training in 
emergency medicine, No/Yes.  



Question:  
Can we do Regression using the Normal 
Error Regression Model? 
 
Possible Issue:  
The response, Number of Complaints, is  
not on continuous scale; it’s a count – of 
course, not normally distributed. 



PROTOTYPE EXAMPLE #2  
Skin Cancer data for different age groups in two 
metropolitan areas: Minneapolis-St. Paul and Dallas-Fort 
Worth: (1) Any age effect? If so, is it  the same for the 
two cities? (2) Any weather effect? (difference between 
two cities) If so, is it the same for all age groups? 

Skin Cancer Data
City:
Age Group Cases Population Cases Population
15-24 1 172,675 4 181,343
25-34 16 123,063 38 146,207
35-44 30 96,216 119 121,374
45-54 71 92,051 221 111,353
55-64 102 72,159 259 83,004
65-74 130 54,722 310 55,932
75-84 133 32,185 226 29,007
85+ 40 8,328 65 7,538

Minneapolis-St. Paul Dallas-Ft. Worth



Questions are regression-type 
questions (about main effects or 
marginal contributions and about 
possible effect modifications). 
 
& the same possible issue: The 
Response or Dependent Variable, the 
Number of Skin Cancer Cases – a 
count, is not on the continuous scale 
and not normally distributed. 



   In Regression Analysis/Model, we usually 
impose the condition that the Response 
Variable Y is on the continuous scale maybe 
because of the popular “Normal Error Model” - 
not because Y is always on the continuous 
scale.  
   In a previous lecture, the Dependent Variable 
of interest was represented by an Binary or 
Indicator Variable Y taking on values 0 and 1. 
The distribution is “Bernoulli” which is a 
special case of the Binomial Distribution. And 
we introduced “Logistic Regression”. 



We are now introducing a new form of 
regression, the Poisson Regression, 
where the Response or Dependent 
Variable Y represents “count” data – 
non-negative integers. 



RARE EVENTS 
   It can be shown that the limiting form of the 
binomial distribution, when n is increasingly 
large (n → ∞) and π is increasingly small (π → 0) 
while  θ = nπ (the mean) remains constant, is:  
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A random variable having this probability 
function is said to have “Poisson Distribution” 
P(θ). For example, with n = 48 and π = .05: 
     b(x = 5; n, π) = .059  
     p(x = 5; θ)     = .060  



    The Poisson Model is often used when the 
random variable X is supposed to represent 
the number of occurrences of some random 
event in an unit interval of time or space, or 
some volume of matter; numerous 
applications in health sciences have been 
documented. For example, the number of 
virus in a solution, the number of defective 
teeth per individual, the number of focal 
lesions in virology, the number of victims of 
specific diseases, the number of cancer 
deaths per household, the number of infant 
deaths in certain locality during a given year, 
among others.  



The mean and variance of the Poisson 
Distribution are:   
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(A very special and “strong” characteristic 
where the variance is equal to the mean). 



REGRESSION NEEDS 
     The Poisson model is often used when the random 
variable X is supposed to represent the number of 
occurrences of some random event in an interval of time 
or space, or some volume of matter and numerous 
applications in health sciences have been documented. 
In some of these applications, one may be interested in 
to see if the Poisson-distributed dependent variable Y 
can be predicted from or explained by other variables. 
The other variables are called predictors, or explanatory 
or independent variables. For example, we may be 
interested in the number of defective teeth Y per 
individual as a function of gender and age of a child, 
branch of toothpaste, and whether the family has or 
does not have dental insurance.  



& refer to Example 1 (Number of 
complains) and Example 2 
(Number of skin cancer cases). 



POISSON REGRESSION MODEL 
     When the dependent variable Y is assumed 
to follow a Poisson distribution with mean θ; 
the Poisson regression model expresses this 
mean as a function of certain independent 
variables X1, X2, ..., Xk, in addition to the size of 
the observation unit from which one obtained 
the count of interest. For example, if Y is the 
number of virus in a solution then the size is 
the volume of the solution; or if Y is the 
number of defective teeth then the size is the 
total number of teeth for that same individual.  



   In our frame work, the dependent variable Y is 
assumed to follow a Poisson distribution; its 
values yi's are available from n “observation 
unit” which is also characterized by an 
independent variable X. For the observation unit 
“i” (i ≤ n), let si be the size and xi be the covariate 
value. The Poisson regression model assumes 
that the relationship between the mean of Y and 
the covariate X is described by: 
 
      
where λ(xi) is called the “risk” of/for observation 
unit i (1 ≤ i ≤  n). 
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   The basic rationale for using the term “risk” is 
the approximation of the Binomial distribution by 
the Poisson distribution. Recall that, when n 
goes to infinity, π tends 0 while θ = nπ remains 
constant, the binomial distribution B(n,π) can be 
approximated by the Poisson distribution P(θ). 
The number n is the size of the observation unit; 
so the ratio between the mean and the size 
represents π (or λ(x) in the new model); that’s the 
“probability” or “risk” (and, the ratio of risks is 
called the “risks ratio” or “relative risk”).  



Model with Several Covariates  
Suppose we want to consider k covariates, X1, 
X2, …, Xk, simultaneously. The simple Poisson 
regression model of previous section can be 
easily generalized and expressed as: 
 
 
      
 
where λ(xji’s) is called the “risk” of/for 
observation unit i (1 ≤ i ≤  n), xji is the value of 
the covariate Xj measured from subject i. 

)xβexp(βs

)xβ...xβxβexp(βs
)x,...,x,λ(xs)E(Y

k

1j
jij0i

ki12i21i10i

ki2i1iii

∑
=

+=

++++=
=



EXAMPLE 
   The purpose of this study was to examine the data for 
44 physicians working for an emergency at a major 
hospital so as to determine which of the following four 
variables are related to the number of complaints 
received during the previous year. In addition to the 
number of complaints, served as the dependent variable, 
data available consist of the number of visits - which 
serves as the size for the observation unit, the physician 
- and four covariates. Table 6.2 presents the complete 
data set. For each of the 44 physician there are two 
continuous independent variables, the revenue (dollars 
per hour)  and work load at the emergency service 
(hours) and two binary variables, gender (Female/Male) 
and residency training in emergency services (No/Yes).  



No. of Visits Complaint Gender Residency Revenue Hours
2014 2 Y F 263.02 1287.25
3091 3 N M 334.94 1588.00
879 1 Y M 206.42 705.25

1780 1 N M 236.32 1005.50
3646 11 N M 288.91 1667.25
2690 1 N M 275.94 1517.75
1864 2 Y M 295.71 967.00
2782 6 N M 224.91 1609.25
3071 9 N F 249.32 1747.75
1502 3 Y M 269.00 906.25
2438 2 N F 225.61 1787.75
2278 2 N M 212.43 1480.50
2458 5 N M 211.05 1733.50
2269 2 N F 213.23 1847.25
2431 7 N M 257.30 1433.00
3010 2 Y M 326.49 1520.00
2234 5 Y M 290.53 1404.75
2906 4 N M 268.73 1608.50
2043 2 Y M 231.61 1220.00
3022 7 N M 241.04 1917.25
2123 5 N F 238.65 1506.25
1029 1 Y F 287.76 589.00
3003 3 Y F 280.52 1552.75
2178 2 N M 237.31 1518.00
2504 1 Y F 218.70 1793.75
2211 1 N F 250.01 1548.00
2338 6 Y M 251.54 1446.00
3060 2 Y M 270.52 1858.25
2302 1 N M 247.31 1486.25
1486 1 Y F 277.78 933.95
1863 1 Y M 259.68 1168.25
1661 0 N M 260.92 877.25
2008 2 N M 240.22 1387.25
2138 2 N M 217.49 1312.00
2556 5 N M 250.31 1551.50
1451 3 Y F 229.43 9.73.75
3328 3 Y M 313.48 1638.25
2928 8 N M 293.47 1668.25
2701 8 N M 275.40 16.52.75
2046 1 Y M 289.56 1029.75
2548 2 Y M 305.67 1127.00
2592 1 N M 252.35 1547.25
2741 1 Y F 276.86 1499.25
3763 10 Y M 308.84 1747.50



The interpretation or meaning of the 
“Regression Coefficients” could be seen 
as follows – which is similar to the case 
of the “normal Error Regression Model”. 



MEASURE OF ASSOCIATION 
   Consider the case of a binary covariate X, 
say, representing an exposure (1 = exposed, 
0 = not exposed). We have the following: 
 
 
 
 
      
This quantity, represented by exp(β1), is the 
relative risk associated with the exposure. 
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   Similarly, we have for a continuous 
covariate X and consider any value x of X, 
 
 
 
 
      
This quantity, represented by exp(β1), is 
the relative risk associated with one unit 
increase in the value of X, from x to (x+1). 
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ESTIMATION OF PARAMETERS 
   Under the assumption that Yi is distributed 
as Poisson with the above mean, the 
Likelihood Function is given by: 
 
 
 
 
from which estimates of the two regression 
coefficients β0 and β1 can be obtained by 
the Maximum Likelihood procedure. 
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EXAMPLE #1 
Refer to the Emergency Service data and suppose we want to 
investigate the relationship between the number of complaints Y 
(adjusted for number of visits) and residency training X. It may be 
perceived that by having training in the specialty a physician would 
perform better and, therefore, less likely to provoke complaints. An 
application of the simple Poisson regression analysis yields: 
 
 
 
      
The result indicates that the common perception is almost true, that 
the relationship between the number of complaints and no 
residency training in emergency service is marginally significant (p 
= 0.0779); the relative risk associated with no residency training is: 
   exp(.3041) = 1.36  
Those without previous training is 36 percent more likely to receive 
the same number of complaints as those who were trained in the 
specialty. 

 Variable Coefficient St Error z-Statistic p-Value
Intercept -6.7566 0.1387 -48.714 <0.0001
No Residency 0.3041 0.1725 1.763 0.0779



a SAS program would include these instructions: 
 
DATA EMERGENCY; 
INPUT VISITS CASES RESIDENCY; 
LN = LOG(VISITS); 
CARDS; 
(Data); 
PROC GENMOD DATA EMERGENCY; 
CLASS RESIDENCY; 
MODEL CASES = RESIDENCY/ DIST = POISSON LINK = LOG OFFSET = LN; 
 
where EMERGENCY is the name assigned to the data 
set, VISITS is the number of visits, CASES is the number 
of complaints (Y), and RESIDENCY (X) is the binary 
covariate indicating whether the physician received 
residency training in the specialty. The option CLASS is 
used to declare that the covariate is categorical. 

SAS SAMPLE 



Model with Several Covariates  
Suppose we want to consider k covariates, X1, 
X2, …, Xk, simultaneously. The model is: 
 
 
 
where λ(xji’s) is called the “risk” of/for 
observation unit i (1 ≤ i ≤  n), xji is the value of 
the covariate Xj measured from subject i. 
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Also similar to the simple regression 
case, exp(βi) represents: 
 (i) The Relative Risk associated with, 
say, an exposure if Xi is binary (exposed 
or Xi=1 versus unexposed or Xi=0), 
or: 
(ii) The Relative Risk due to one unit 
increase in the value of Xi if Xi is 
continuous (Xi=x+1 versus Xi=x). 



After estimates b’s of regression coefficients  
β‘s and their standard errors have been 
obtained, a 95 percent confidence interval for 
the log of the Relative Risk associated with 
the ith factor is given by: bi ± SE(bi). These 
results are necessary in the effort to identify 
important risk factors for the Poisson 
outcome, the “count”.  



Note:  

We form confidence intervals of the 
regression coefficient before exponentiating 
(the endpoints) to obtain relative risks. 



Before such analyses are done, the problem 
and the data have to be examined carefully.  

If some of the variables are highly correlated, 
then one or fewer of the correlated factors are 
likely to be as good predictors as all of them; 
information from other similar studies also has 
to be incorporated so as to drop some of these 
correlated explanatory variables.  

The uses of products, such as x1*x2, and higher 
power terms, such as x1

2, may be necessary 
and can improve the goodness-of-fit.  



We are assuming a log-linear regression model 
in which, for example, the Relative Risk  due to 
one unit increase in the value of a continuous 
Xi (Xi = x+1 versus Xi = x) is independent of x. 
Therefore, if this “linearity” seems to be 
violated, the incorporation of powers of Xi 
should be seriously considered. The use of 
products will help in the investigation of 
possible effect modifications.  



There are no simple diagnostic tool, such 
as Scatter Diagram for Normal Error 
Regression Model, for detecting lack of 
linearity. One might consider to include a 
quadratic term and see if it’s significant. 



And, finally, the messy problem of missing 
data; most packaged programs would delete 
a subject if one or more covariate values are 
missing. 



TESTING HYPOTHESES 
   Once we have fit a multiple Poisson regression model and 
obtained estimates for the various parameters of interest, we want 
to answer questions about the contributions of various factors to 
the prediction of the Poisson-distributed response variable. There 
are three types of such questions: 
  (i) An overall test: taken collectively, does the entire set of 
explanatory or independent variables contribute significantly to the 
prediction of response? 
 (ii) Test for the value of a single factor: does the addition of one 
particular variable of interest add significantly to the prediction of 
response over and above that achieved by other independent 
variables? 
(iii) Test for contribution of a group of variables: does the addition 
of a group of variables add significantly to the prediction of 
response over and above that achieved by other independent 
variables? 



OVERALLL REGRESSION EFFECTS 

 We first consider the first question stated 
above concerning an overall test for a model 
containing k factors. The null hypothesis for 
this test may be stated as: "all k independent 
variables considered together do not explain 
the variation in the response any more than the 
size alone". In other words, 
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If H0 is true, the average/mean response 
has nothing to do with the predictors. 
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      This can be tested using the Likelihood Ratio 
Chi-square test at k degrees of freedom: 
     X2 = 2{lnLk – lnL0} 
where lnLk is the log likelihood value for the 
model containing all k covariates and lnL0 is 
the log likelihood value for the model 
containing only the intercept. Computer 
packaged program, such as SAS PROC 
GENMOD, provides these log likelihood values 
but in separate runs. 
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If this overall test is “significant”, it only 
means “one or some of the regression 
coefficients (the “slopes”) not equal to 
zero; it does not tell us which 
coefficients are not zero or which factor 
or factors are related to the response. 
This is similar to performing the one-
way ANOVA F-test before checking for 
pairwise differences. 



TESTING FOR SINGLE FACTOR 
• The question is: “Does the addition of one 

particular factor of interest add 
significantly to the prediction of 
Dependent Variable over and above that 
achieved by other factors?”. 

• The Null Hypothesis for this test may 
stated as: "Factor Xi does not have any 
value added to the explain the variation in 
Y-values over and above that achieved by 
other factors ". In other words, 
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• The Null Hypothesis is  
• Regardless of the number of variables in the model, 

one simple approach is using 
 
• where bi is the corresponding estimated regression 

coefficient for factor Xi and SE(bi) is the estimate of 
the standard error of bi, both of which are printed by 
standard computer packaged programs such as 
SAS. In performing this test, we refer the value of the 
z score to percentiles of the standard normal 
distribution; for example, we compare the absolute 
value of z to 1.96 for a two-sided test at the 5 percent 
level. Note: No use of t-distribution here. 
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EXAMPLE #2 
Refer to the data set on emergency service; 
Using all four covariates, we found that only 
the effect of work load (Hours) is significant 
at the 5 percent level. 

 Variable Coefficient St Error z-Statistic p-Value
Intercept -8.1338 0.9220 -8.822 <0.0001
No Residency 0.2090 0.2012 1.039 0.2988
Female -0.1954 0.2182 -0.896 0.3703
Revenue 0.0016 0.0028 0.571 0.5775
Hours 0.0007 0.0004 1.750 0.0452



Given a continuous variable of interest, one 
can fit a polynomial model and use this type of 
test to check for linearity. It can also be used 
to check for a single product representing an 
effect modification. For example, to focus on 
the quadratic term of: 
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TESTING FOR A GROUP OF VARABLES 
• The question is: “Does the addition of a group 

of factors add significantly to the prediction of 
Y over and above that achieved by other 
factors? 

• The Null Hypothesis for this test may stated 
as: "Factors {Xi+1 , Xi+2,…, Xi+m}, considered 
together as a group, do not have any value 
added to the prediction of the Mean of Y that 
other factors are already included in the 
model". In other words, 

0β...ββ:H mi2i1i0 ==== +++



• This “multiple contribution” test is often used 
to test whether a similar group of variables, 
such as demographic characteristics,  is 
important for the prediction of the mean of Y; 
these variables have some trait in common.  

• Another application: collection of powers 
and/or product terms. It is of interest to assess 
powers & interaction effects collectively before 
considering individual interaction terms in a 
model. It reduces the total number of tests & 
helps to provide better control of overall Type I 
error rates which may be inflated due to 
multiple testing. 



The process can also be used to test 
for the contribution of a categorical 
covariate which is represented by 
several “dummy variables”. 



EXAMPLE #3 
In this example, the dependent variable is the number of 
cases of skin cancer. Data involve only two covariates; 
age and location, both are categorical. We use seven 
dummy variables to represent the eight age groups 
(with “85+” age group being the baseline) and one for 
location (with Minneapolis-St. Paul as the baseline)  

Skin Cancer Data
City:
Age Group Cases Population Cases Population
15-24 1 172,675 4 181,343
25-34 16 123,063 38 146,207
35-44 30 96,216 119 121,374
45-54 71 92,051 221 111,353
55-64 102 72,159 259 83,004
65-74 130 54,722 310 55,932
75-84 133 32,185 226 29,007
85+ 40 8,328 65 7,538

Minneapolis-St. Paul Dallas-Ft. Worth



SEQUENTIAL ADJUSTMENT 
 In the type 3 analysis, we test the significance of 
the effect of each factor added to the model 
containing all other factors – like in most common 
multiple regression analyses; that is to investigate 
the additional contribution of the factor to the 
explanation of the dependent variable. Sometimes, 
however, we may be interested in a hierarchical or 
sequential adjustment. For example, we focus on 
the quadratic term (adjusted) in addition to the 
regular term (unadjusted). This can be achieved 
using  PROC GENMOD by requesting the type 1 
analysis option  



OVERDISPERSION 
The Poisson is a very special distribution; its 
mean µ and its variance σ2 are equal. If we use the 
variance-mean ratio as a dispersion parameter 
then it is 1 in a standard Poisson model, less than 
1 in an under-dispersed model, and greater than 1 
in an over-dispersed model. Over-dispersion is a 
common phenomenon in practice and it causes 
concerns because the implication is serious; the 
analysis which assumes the Poisson model often 
under-estimates standard errors and, thus, 
wrongly inflates the level of significance.  



MEASURING OVERDISPERSION 

After a Poisson regression model is fitted, 
dispersion is measured by the scaled deviance 
or scaled Pearson chi-square; it is the 
deviance or Pearson chi-square divided by the 
degrees of freedom (number of observations 
minus number of parameters). The deviance is 
defined as twice the difference between the 
maximum achievable log likelihood and the log 
likelihood at the maximum likelihood 
estimates of the regression parameters.  



EXAMPLE 
Refer to the data set on emergency service 
with all four covariates, we can see that both 
indices are greater than 1 indicating an over-
dispersion. In this example, we have a sample 
size of 44 but five degrees of freedom lost due 
to the estimation of the five regression 
parameters, including the intercept. 

 Criterion df Value Scaled Value
Deviance 39 54.52 1.3980
Pearson Chi-Square 39 54.42 1.3700



FITTING OVERDISPERSED MODEL 

PROC GENMOD allows the specification of a 
scale parameter to fit over-dispersed Poisson 
regression models. Instead of a variance equal 
to the mean, 
     Var(Y) = µ 
it allows the variance function to have a 
multiplicative “over-dispersion factor” ϕ 
(specified by users): 
     Var(Y) = ϕµ 



EXAMPLE #4 

 Variable Coefficient St Error z-Statistic p-Value
Intercept -8.1338 0.9220 -8.822 <0.0001
No Residency 0.2090 0.2012 1.039 0.2988
Female -0.1954 0.2182 -0.896 0.3703
Revenue 0.0016 0.0028 0.571 0.5775
Hours 0.0007 0.0004 1.750 0.0452

Refer to the data set on emergency service; 
Using all four covariates, we have the 
following results by fitting the “regular” 
Poisson Model. 

 Criterion df Value Scaled Value
Deviance 39 54.52 1.3980
Pearson Chi-Square 39 54.42 1.3700



The model could be fitted in the usual way, 
and the point estimates of regression 
coefficient are not affected. The covariance 
matrix, however, is multiplied by ϕ.  

There are two options available for fitting 
over-dispersed models; the users can control 
either the scaled deviance (by specifying 
DSCALE in the model statement) or the scaled 
Pearson chi-square (by specifying PSCALE in 
the model statement). The value of the 
controlled index becomes 1; the value of the 
other is close to but may not be equal to 1. 



Note: a SAS program would include this instruction: 
 
MODEL CASES = GENDER RESIDENCY REVENUE HOURS/  
                   DIST = POISSON LINK = LOG OFFSET = LN(DSCALE); 



NEW RESULTS 
 Variable Coefficient St Error z-Statistic p-Value
Intercept -8.1338 1.0901 -7.462 <0.0001
No Residency 0.2090 0.2378 0.879 0.3795
Female -0.1954 0.2679 -0.758 0.4486
Revenue 0.0016 0.0033 0.485 0.6375
Hours 0.0007 0.0004 1.694 0.0903

 Criterion df Value Scaled Value
Deviance 39 39.00 1.000
Pearson Chi-Square 39 38.22 0.980

As compared to the results of the regular model, the 
point estimates remain the same but the standard 
errors are larger; the effect of work load (Hours) is 
no longer significant at the 5 percent level. 



STEPWISE REGRESSION 
In many applications, our major interest is to identify 
important risk factors. In other words, we wish to identify 
from many available factors a small subset of factors that 
relate significantly to the outcome, e.g. the disease under 
investigation. In that identification process, of course, we 
wish to avoid a large Type I ( false positive ) error. In a 
regression analysis, a Type I error corresponds to 
including a predictor that has no real relationship to the 
outcome; such an inclusion can greatly confuse the 
interpretation of the regression results. One popular 
procedure is “Stepwise Regression” 



With Poisson Regression, it is still 
desirable and possible to perform 
stepwise regression. Unfortunately, 
PROC GENMOD does not have an 
automatic option; one has to run it many 
times and, at each step, choose to add or 
remove a variable “manually”.  



With “Poisson Regression”, we “lost” these 
tools that we use with NERM: 

R2  and all coefficients of partial determination 
(there are some substitutes but not as good) 

All graphs (Scatter diagram, all residual plots, 
and Variable-added Plot) 

Least Squares method (but MLE is better) 

All other methods/tools are unchanged (test 
for single factors, stepwise, etc…) 



However, if Y is distributed as 

Poisson, try Y = √Y; it both stabilizes 
the variance and improves normality. 
Then you could get approximate 
results using PROC REG and the 
Normal Error Regression Model (If Y is 
binary, you would have no choice but 
Logistic Regression). 



Readings & Exercises 
• Readings: A thorough reading of the 

text’s section 14.3 (pp.618-622) is highly 
recommended. 

• Exercises: None 



Due As Homework 
22.1 Refer to dataset “Emergency Service”, let Y = Number 

of Complaints and four independent variables, X1 = 
Gender, X2 = Residency, X3 = Revenue, and X4 = Hours; 
choose coding 0/1 for X1 and X2. 

    a)  Fit the Poisson Regression Model using PROC 
GENMOD and confirm the results of Example #2. 

    b) Using the same data set, take the square root of Y and 
use as the new Dependent Variable and fit the Normal 
Error Regression Model using PROC REG; draw your 
conclusions on effects of covariates. 

    c) Comment on the similarities or differences between 
the two sets of results obtained in (a) and (b). 
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