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STATISTICS 
FOR TRANSLATIONAL & CLINICAL RESEARCH

From Basic to Translational:

DIRECT BIOASSAYS & 
Estimation of Ratios



Laboratory 
Research

Clinical Research Population 
Research

T1 T2

Translational Research
 

is the component of 
basic science

 
that interacts with clinical 

research (T1) or with population research (T2).



We often emphasize more on the first area of 
translational research, T1; they are research 
efforts and activities needed to bring 
discoveries in the laboratories to the bed sides. 

And it is hard to pinpoint precisely the 
starting point of “T1”; many believe that 
translational research starts with “biological 
assays”

 
–

 
or bioassays, but some could point 

to In Vitro or In Vivo which are pre-clinical. 



DEFINITION
•

 
“Biological assays”

 
or “bioassays” are 

methods for estimating the potency
 

or strength 
of an “agent”

 
or “stimulus”

 
by utilizing the 

“response”
 

or “effect”
 

or “reaction”
 

caused by 
its application  to biological material or 
experimental living “subjects”.

•
 

Simple examples:                                           
(1) Six

 
aspirin

 
tablets can be fatal

 
to a child; 

(2) Certain dose
 

of a lethal drug
 

can kill
 

a cat.



From Webster International Dictionary:

“Biological Assay is the estimation of the 
strength of a drug by comparing

 
its effect on 

biological material, as animals or animal 
tissue, with those of a standard product.”

In other words, we (usually) can only
 

estimate  
“relative

 
potency”

 
of an agent, not

 
its “potency”.



COMPONENTS OF A BIOASSAY

•
 

The subject is usually an animal, a 
human tissue, or a bacteria culture,

•
 

The agent
 

is usually a drug, a chemical
•

 
The response

 
is usually a change in a 

particular characteristic
 

or even the 
death of a subject; responses can be 
binary or measured on continuous scale.



(1) There are deterministic
 

or non-stochastic 
assays; but they are not  subjected to statistical 
analyses –

 
so they are not our targets. 

(2) An assay is stochastic
 

if the relative 
potency is influenced by factors other than the 
preparations; i.e. extraneous factors

 
which 

cannot be completely controlled
 

or explained. 
In other words, the response is subjected to a 
random error; e.g. either the “dose”

 
or

 
the 

“response”
 

is a “random variable”
 

–
 

depending 
on the design.



BASIC PROCESS
•

 
For stochastic assays, our only targets, we 
refer to the relationship

 
between stimulus 

level and the response it produces as “a 
regression model”.

•
 

A “test
 

preparation”
 

of the stimulus -
 

having 
an unknown

 
“potency”

 
-

 
is “assayed”

 
to find 

the response.
•

 
We find the dose

 
of the standard preparation 

which produces the same
 

response (as that 
by test preparation).



There are two types of bioassays:

(1) direct assays
 

and                         
(2) indirect assays.

They are both stochastic



DIRECT ASSAYS
•

 
In direct assays, the doses of the standard and 
test preparations are “directly measured”

 
for 

(or until) an “event of interest”. Response is 
fixed (binary), dose is random.

•
 

When an event of interest occurs, e.g.. the 
death of the subject, and the variable of 
interest

 
is the dose

 
required to produce that 

response/event for each subject. The value is 
called “individual effect dose”

 
(IED).

•
 

For example, we can increase the dose until 
the heart beat (of an animal) ceases to get IED.



Typical Experiment:
A group of subjects (e.g. animals) are randomly 
divided into two subgroups

 
and then IED of a 

standard preparation is measured in each 
subject of group 1; the IED of the test or 
unknown preparation is measured in each 
subject of group 2. The aim is to estimate the 
“relative potency”, that is the “ratio of 
concentrations”

 
of the test relative to standard 

to produce the same biological effect/event.



Keep in mind that the “concentration” and the 
“dose”

 
are inversely proportional

 
-

 
when 

concentration is high, we need a smaller dose 
to reach the same response. In other words , 
we define the “relative potency”

 
or the “ratio 

of concentrations”
 

of the test to standard as 
the “ratio of doses”

 
of the standard to test:
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When the relative potency  
 

> 1, the Test 
Preparation is stronger (we need a larger 
dose of the Test in order to produce the same 
response) –

 
and vice versa. Pairs of doses 

that give the same response are termed 
“equipotent”, meaning “same strength”. 



Data are very simple: two (2) independent 
samples, the type you usually have for two-

 sample t-test or Wilcoxon test; but we will not
 compare them using a test of significance. We 

want to estimate
 

“Relative Potency”:



Recall that we define the “relative potency”
 as the “ratio of concentrations”

 
of the test to 

standard, or the “ratio of doses”
 

of the 
standard to test, point estimate is easy.

The more difficult part is its precision and 
confidence interval; we would need a 
Statistical Model.



For students of statistics or biostatistics, 
the only new feature

 
is learning to deal 

with the “ratio
 

of sample means” –
 instead of the usual “difference of 

sample means”. For example, what is 
“exact”

 
variance? We usually 

approximate it by using “Delta Method”



INDIRECT ASSAYS
•

 
In indirect assays, the doses of the standard and 
test preparations are are applied and we observe 
the “response”

 
that each dose produces; for 

example, we measure the tension in a tissue or 
the hormone level or the blood sugar content. 
For each subject,

 
the dose is fixed in advance, 

the variable of interest is not the dose
 

but the 
response it produces in each each subject; The 
response could be binary or continuous.

•
 

Statistically, indirect assays are more interesting 
(and, of course, also more difficult).



In Indirect Assays, the dose is fixed and the 
response is random; and that response could 
be a measurement or the occurrence of an 
event

 
(whereas the response in Direct Assays 

is always binary, the occurrence of an event).



MEASUREMENT SCALE

Depending on the “measurement scale”
 

for the 
response

 
(of indirect assays), we have:

(1) Quantal assays, where the response is 
binary: whether or not an event (like the 
death of the subject) occurs,

(2) Quantitative assays, where measurements 
for the response are on a continuous scale.



The common indirect assay is usually one in 
which the ratio of equipotent doses is estimated

 from curves
 

relating quantitative responses and 
doses for the two preparations. The shape

 
of 

these “curves”
 

further divides quantitative 
indirect assays into:

(1) Parallel-line assays
 

are those in which the 
response is linearly related to the log dose,

(2) Slope-ratio assays
 

are those in which the 
response is linearly related to the dose itself.



CHEMICAL CONSTITUENTS
Indirect assays are also divided into “analytic 

dilution” or “comparative dilution”.

(i) Analytic dilution assays
 

are such that the test 
and standard preparations behaved as though 
they are identical (same constituents),

 
except for 

the concentration,

(ii) In Comparative assays, the two preparations 
are not the same; For example, the concentration 
of one protein is estimated by using a different 
protein as standard.



For analytic dilution assays, the only 
difference is “concentration”; the 
constant

 
relative potency is the reciprocal 

of the “dilution factor”. In other words, 
its existence/solution is global –

 
that is, a 

solution always exists and is a constant.



For comparative dilution assays, the response-
 producing constituents in the two preparations are 

only qualitative similar; value of the relative 
potency may not be constant. In other words, its 
existence is “local”. Statistical analyses are 
mostly

 
the same; however, the existence or 

solution for a relative potency may depend upon 
the particular experiment, material, or techniques.



Unless we know the chemical/biological 
system well, most of the times it is 
impossible to tell a analytic dilution assay

 from a comparative assay
 

from the 
resulting data. The exception is perhaps 
Direct Assays.



A MODEL FOR DIRECT ASSAYS
It is commonly assumed that the test doses 
and the standard doses follow two normal 
distributions with the same variance:
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RESULTS
The following results

 
can be obtained 

approximately
 

by Taylor’s expansion:
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SKETCH OF PROOF
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Two things should be noted here: (1) We do not 
have the “exact”

 
variance, we approximate it 

using the Delta method;  (2) The variance of 
the estimated relative potency r can be easily 
obtained, at least approximately, but

 
the normal 

distribution for r, the ratio of sample means, 
may fit very poorly –

 
especially when the 

sample sizes are often rather small. 



HOMOGENEITY OF VARIANCES
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responses have equal variances; and this can 
be tested using F = sS
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which distributed as 

F(nS
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-1) under the null hypothesis



ANALYTIC DILUTION ASSAYS

•
 

Analytic dilution assays
 

are those for which the 
test and standard preparations behaved as though 
they are identical, except for the concentration; 
that is  XS

 

= XT

 

.
•

 
It can be seen that the homoscedascity assumption 
is no longer valid because Var(XS

 

) 
 

Var(XT

 

) if 
1, the cases that we are interested in; previous 
method for C.I., even poor, does not apply.



AN EXAMPLE 
A standard preparation and an unknown or test preparations of 
a lethal drug are infused into cats. The (measured) response is 
the amount of this drug

 
(in cc) per kilogram of body weight of 

the cats needed to produce cardiac arrest.
Standard Test

2.42 1.55
1.85 1.58

2 1.71
2.27 1.44
1.7 1.24

1.47 1.89
2.2 2.34

Total 13.91 11.75
Mean 1.987 1.679
Variance 0.1136 0.1265

Perhaps the case of a 
comparative assay



POSSIBLE SOLUTION FOR
 ANALYTIC DILUTION ASSAYS

•
 

From XS

 

= XT

 

, taking the log we get:             
log XS = log 

 
+ log XT

 

;
 

then we can preserve 
the homogeneity variances for log doses.

•
 

But that is like assuming
 

the dosages are 
distributed as log-normal

 
with equal variability.

•
 

The advantages of doing analysis on log dosages 
are (i) variance estimates can be pooled to have 
more precise estimation

 
and (ii) relative potency 

is obtained as the antilog of the difference of 
means

 
rather than the ratio, an easier procedure.



RESULTS FOR DILUTION ASSAYS

Let z’s be the means and sp

 

the (pooled) standard 
deviation on the “natural log scale”, the point estimate 
and the 95% confidence interval for the relative 
potency 

 
are, where t.975

 

is the 97.5th

 
percentile of the 

t distribution with (ns

 

+nT

 

-2) degrees of freedom:
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EXAMPLE, Part A
If we approximate the sampling distribution of r 
by normal, we can form a 95% CI the usual way; 
but result is rather poor: 
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EXAMPLE, Part B

Standard Test
0.884 0.438
0.615 0.457
0.693 0.536
0.821 0.365
0.531 0.215
0.385 0.637
0.788 0.849

Mean 0.674 0.451
Variance 0.031 0.041

Same example, but on 
natural log scale:
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But this is a case where log transformation is not needed



WHAT DO WE DO WITH RATIOS?

(1)
 

We take the log of the point estimate
(2)

 
Form Confidence interval on log scale

(3)
 

Then exponentiating the endpoints
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ABOUT STEP #1
In general, by first taking log of the point 
estimate -

 
log of ratio of sample means in the 

case of “Direct Assays”–
 

then we treat the “log 
of numerator”

 
and “log of denominator”

 
as 

normally distributed. In other words, we treat 
the sample mean as log normal in the next step, 
contradicting the Central Limit Theorem. This 
may be more serious.



THE COMBINED RESULT
•

 
Together, the two-step procedure produce confidence 
intervals which are often too long.


 

Focusing on Risk Ratio
 

(ratio of 2 proportions, Lui 
(Contemporary Clinical Trials, 2006) found that the log 
transformation method could lead to intervals which are 
many times longer than those by competing methods -

 
as 

much as 40 times  in some configurations –
 

an obvious  
loss of “efficiency”.



LET START OVER

T

T

S

T

S

Dose
Dose





lnlnln S 



Here the question is not an “if a log 
transformation is needed”; the question is 
“how should we do it right”? if not handled 
well, even the point estimate may be “off”.



“USUAL”
 

ESTIMATION OF 
LOG NORMAL MEANS

}zexp{

Mean?for  Interval confidenceit  Is
}ln{}{

:Data

2/1

_

11

n
sz

xxz

z

n
iii

n
ii











However, ?).mean" geometric"
 create reason we  theall  this(Is  estimate
  to),zexp( ,Mean" Geometric" form then ,z

by ln estimate  We,mean  with Lognormal
as ddistribute is X if ,method" usual" By this

_







}
)1(22

zexp{

 tingexponentia then )
2

( estimate should  We(1)

}zexp{

 tingexponentia then )( estimate of Instead (1)
:Therefore

2
ln  :satisfies X of  ofMean 

),N( is Z Lognormal is X

42

2/1

2_

2

2/1

_

2

2
















n
s

n
szs

n
sz

θθ

zzz

z















According to Land (Technometrics, 1972), 
result #2 (constructing confidence intervals for 
ln(θ) then exponentiating endpoints) was 
proposed (in a personal communication to Land) 
by Cox and Land called it “Cox’s method”).

Zhou and Gao (Stat Med, 1997) showed that 
result #1 (usual method) is inappropriate (very 
wrong

 
coverage) and recommended Cox method  

(result #2) for moderate to large sample.

Think of cases with large σ2!



The ratio of these two “Corrected
 

Geometric 
means”

 
will serve as point estimate of “Relative 

Potency”
 

using data from Direct Bioassays.
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CORRECTED RESULTS
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If the two samples have equal variances 
on the log scale, then the original estimate 
–

 
the ratio of sample means –

 
turns out 

accidentally correct!



Conclusion:
There are more than one way to estimate 
the relative potency, which is a ratio. It 
could be more interesting if the Standard 
and Test samples could be  assayed in 
the same individuals!



The following is an interesting related problem 
where we have to deal with the estimation of a ratio:
A tobacco product [D10 ]PheT can be administered in 2 
different ways: oral or smoking; these are given in random 
order to 16 healthy individuals. The substance is then 
monitored repeatedly from sample of blood and urine; with a 
long washout period between administrations. The next 
slides give these data; each number is a conventional 
pharmacokinetic parameter: Area under the Curve (AUC).

For each type of samples, blood or urine, the 
parameter of interest if the smoking to oral ratio



MODEL & STATISTICAL PROBLEM
Oral consumption would lead to measurement X, 
from plasma or urine, with negligible error 
because the whole amount was consumed where 
as smoking  would lead to a measurement Y or 
more considerable error because different people 
smokes differently. Therefore the data would be 
suitable to frame as a “Regression through the 
Origin” (no intercept). And the parameter of 
interest is the slope; the question is how would 
we obtain an optimal estimate:

βXY 



GENERAL SOLUTION
For each mode of administration, we have a 
“ratio” for each individual, ri = yi /xi with 
“variance” Var(ri ); an optimal estimate of the 
ration across individuals is the “weighted 
average” of individual ratios – each is 
weighted by the inverse of the variance:
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We consider 3 cases: (1) Var(yi ) is a 
constant, (2) Var(yi ) is proportional to 
xi , and (3) Var(yi) is proportional to xi

2



Case #1: Var(yi ) is a constant
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This is the “Least Squares” estimate of the 
slope in the regression model without intercept



Case #2: Var(yi ) is proportional to xi
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Case #3: Var(yi ) is proportional to xi2
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This is the “(arithmetic) mean of the ratios”



EXERCISES
6.1

 

For each type of assays, comparative and dilution, how do we test for null 
hypothesis   H0

 

: =1? And what does the answer imply?
6.2

 

The following table on the left

 

gives the doses (cc per 100g of body weight) 
obtained from two groups of mice for two preparations of insulin, labeled as A and 
B. Estimate the relative potency (treating A as standard) and interpret the result, 
including testing for homodasticity.

6.3

 

For the data in exercise 2.2, find the ratio of standard deviation estimator. How do 
we find the 95% confidence interval for relative potency using this estimator?

6.4

 

The table on the right provide the data from three preparations; preparation C is the 
standard and A and B were compared with C, (a) Estimate the relative potency of A 
to C and B to C, including testing for homodasticity, (b) Is there any difference 
between A and B relative to C? Should we compare the estimates?

Standard(A) Test(B)
2.4 5.2
1.9 8

2 4.8
2.3 6.5
1.7 7

8.1
6

C A B
21 18 35.5
26 13 39
19 13.5 38.5
16 11.5 37
22 15 34
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