
PubH 7470: STATISTICS 
FOR TRANSLATIONAL & CLINICAL RESEARCH

Supplement for Analysis: Use of FIELLER’S THEOREM for

THE ESTIMATION OF RATIOS



THE GAP
•

 
Most teaching and learning programs in Statistics 
and Biostatistics –

 
ours included -

 
focus on the 

differences
 

(& the sums) of parameters, 
statistics, or random variables

•
 

However, in many applications we have to deal 
with ratios of parameters, statistics, or random 
variables

•
 

Reason? Statistics puts more emphasis on 
“additive models”; most plausible biological and 
biomedical models are “multiplicative”.



RELATIVE RISK
•

 
Relative Risk has been a popular parameter in 
epidemiology studies; a concept used for the 
comparison of two groups or populations with 
respect to an unwanted event.  

•
 

It is the ratio
 

of incidence rates
 

or disease 
prevalences; usually, one group is under 
standard condition against which the other group 
(exposed) is measured. 

•
 

Relative Risk
 

is a ratio: Risk Ratio, a ratio of 
two proportions.



ODDS RATIO
•

 
When incidence and prevalence are low (rare 
diseases), the Relative Risk and the Odds Ratio are 
approximately equal.

•
 

Odds Ratio is more popular because it is estimable 
in retrospective designs; in practice, we calculate 
Odds Ratio and interpret it like Relative Risk.

•
 

But Odds Ratio is still a ratio
 

of parameters; maybe it’s 
a different

 
kind of ratios –

 
a ratio of ratios



DIAGNOSTIC TESTS
• Some of the indices of diagnostic accuracy are 

the “Likelihood Ratios”, each is the ratio of two 
probabilities

• Both are expressible as functions of sensitivity 
and specificity.
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COMPARISON OF SCREENING TESTS 
WITH BINARY ENDPOINT

We can perform two separate Chi-square 
tests

 
or McNemar Chi-square tests

 
–

 depending on the design, one for cases and 
one for controls; for an overall level of , 
each test is performed at 

 
/2. That is, we 

compare sensitivities and we compare 
specificities separately: No Problem here.



MEASURING DIFFERENCES
•

 
If the difference between two diagnostic tests are 
found to be significant; the level of difference 
should

 
be summarized and presented.

•
 

The two commonly used parameters are the ratio 
of two sensitivities (RS+)

 
and the ratio of two 

specificities (RS-);
 

ratios of two proportions.



There are many other examples: 
Etiologic Fraction (Causal Inference), 
Standardized Mortality Ratio 
(Environmental & Occupational Health), 
Effect Size (Clinical Trials), etc…



DIRECT ASSAYS
•

 
In direct assays, the doses of the standard and test 
preparations are “directly measured”

 
for an 

“event of interest”
 

(with intra-subject dose 
escalation).

•
 

When an event of interest occurs, e.g.. the death 
of the subject, and the variable of interest is the 
dose

 
required to produce that event for each 

subject. The value is called “individual effect 
dose” (IED).



Since the “concentration”
 

and the “dose” are 
inversely proportional -

 
when concentration is high, 

we need a smaller dose to reach the same response. 
In other words , we define the “relative potency” or

 
 

“ratio of concentrations” of the test to standard
 

as 
the “ratio of doses”

 
of the standard to test:
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PARALLEL-LINE ASSAYS
•

 
Parallel-line assays

 
are those in which the 

response is linearly related to the log dose.
•

 
From the same definition of

 
“relative potency”

 
, 

the two doses are related by DS

 

= DT

 

.
•

 
The model: The above assumption leads to: 
E[YS

 

|XS

 

=log(DS

 

)] = 
 

+XS

 

,                           
E[YT

 

| XS

 

=log(DS

 

= DT

 

)] = (
 

+ log) + XT
•

 
We have 2 parallel lines

 
with a common slope 

and different intercept.



MULTIPLE REGRESSION
•

 
A common approach is pooling data from both 
preparations and using “Multiple Regression”.

•
 

Dependent Variable: Y = Response;                          
Two Independent Variables are:                             
X = log(Dose)

 
&                                                      

P = Preparation
 

(a “dummy variable”
 

coded as      
P = 1 for “Test”

 
and P = 0 for “Standard”)
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SLOPE RATIO ASSAYS
•

 
Slope-ratio assays

 
are those in which the response 

is linearly related to the dose
 

itself.
•

 
From the same

 
definition of

 
“relative potency”

 
, 

the two doses are related by DS

 

= DT

 

.
•

 
The model: The above assumption leads to:
E[YS

 

|XS

 

=DS

 

)] = 
 

+XS

 

,  
E[YT

 

| XS

 

=DS

 

= DT

 

] = 
 

+ XT

 

.
•

 
We have 2 straight lines with a common 
intercept and different slopes.



MULTIPLE REGRESSION
•

 
Same regression setup, different models;

•
 

Dependent Variable: Y = Response;                      
Two Independent Variables are:                   
X = Dose

 
&                                                    

P = Preparation
 

(a “dummy variable”
 

coded 
as P = 1 for “Test Preparation”

 
and P = 0 for 

“Standard Preparation”)
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MULTIPLE REGRESSION #2
Let Y be the response, XS

 

and XT

 

the doses; 
defined for use with

 
the

 
combined sample

 
as 

follows: for any observation on S, set XT

 

=0, for 
any observation on T, set XS

 

=0:
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COMMON FORM
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If we do the “usual”
 

way by taking logs:

BAr logloglog 
Then, in forming confidence intervals for 

 
(r is an 

estimate of ), we assume that logA and logB are 
(asymptotically/approximately) normally distributed 
which contradict  the fact that A and B themselves are 
normally distributed. The result is based on inflated 
variances (variance of lognormal distribution is 
larger than variance of normal distribution) which 
is inefficient because confidence intervals are too 
long –

 
unnecessarily.



Example: Focusing on Risk Ratio 
(ratio of 2 proportions, Lui 
(Contemporary Clinical Trials, 2006) 
found that the log transformation 
method could lead to intervals which 
are many times longer than those by 
competing methods - as much as 40 
times  in some configurations – an 
obvious  loss of “efficiency”.



FIELLER’S THEOREM

If r = A/B is an estimate of
 

, we consider the 
statistic (A-

 
B) which is distributed as normal 

because both A and B are normally distributed and 
is 

 
a constant. We derive mean and variance of 

that statistics which lead to confidence limits for .

Let C =
 

A-
 

B, distributed as normal 
We first find the mean & variance of C
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Recall: C =
 

A-
 

B is distributed as normal 
We first find the mean & variance of C
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DIRECT ASSAYS
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where t.975

 

is the 97.5th

 
percentile of the t distribution 

with (nS

 

+ nT

 

-
 

2) degrees of freedom. 

The two roots
 

for obtained by solving the quadratic 
equation in within the probability statement will yield 
the 95% confidence limits rL

 

and rU

 

.



Recall:

When you have a quadratic equation  
ax2 + bx + c = 0; first step is checking 
b2-4ac. If it’s positive, 2 roots exist:
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RESULTS
The first one is the 95% CI directly from the Fieller’s 
theorem, the second one is an approximation

 
because 

the term “g”
 

is often rather small.
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EXACT RESULT

Standard Test
2.42 1.55
1.85 1.58

2 1.71
2.27 1.44
1.7 1.24

1.47 1.89
2.2 2.34

Total 13.91 11.75
Mean 1.987 1.679
Variance 0.1136 0.1265
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APPROXIMATE  RESULT

Standard Test
2.42 1.55
1.85 1.58

2 1.71
2.27 1.44
1.7 1.24

1.47 1.89
2.2 2.34

Total 13.91 11.75
Mean 1.987 1.679
Variance 0.1136 0.1265
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PARALLEL-LINE ASSAYS
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where t.975

 

is the 97.5th

 
percentile of the t 

distribution with dfE

 

degrees of freedom. 



PROCESS FOR 95% C.I.

The two roots for obtained by solving the quadratic 
equation in within the probability statement will 
yield the 95% confidence limits ML

 

and MU

 

.
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RESULTS
95% Confidence limits from the Fieller’s theorem   

(g is often very small; sometimes can treat (1-g) as 1)
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Dose (D; mmgcc) 0.25 0.50 1.00 0.25 0.50 1.00
X = log10(Dose) -0.602 -0.301 0.000 -0.602 -0.301 0.000
Response (Y; mm 4.9 8.2 11.0 6.0 9.4 12.8

4.8 8.1 11.5 6.8 8.8 13.6
4.9 8.1 11.4 6.2 9.4 13.4
4.8 8.2 11.8 6.6 9.6 13.8
5.3 7.6 11.8 6.4 9.8 12.8
5.1 8.3 11.4 6.0 9.2 14.0
4.9 8.2 11.7 6.9 10.8 13.2
4.7 8.1 11.4 6.3 10.6 12.8

Preparation
Standard Preparation Test Preparation

EXAMPLE



NUMERICAL RESULT

In our numerical example, we have m=.1454, 
t.975

 

(df=35)=2.03, common slope is b=11.21, 
nS

 

=nT

 

=24, D=2.8998, and s2=.1583 leading to:

g = .0003

95% confidence limits for M is (.124,.167)

95% confidence interval for relative potency is 
(1.33,1.47) which includes point estimate of 1.4



SLOPE-RATIO ASSAYS
Let Y be the response, XS

 

and XT

 

the doses; 
defined for use with

 
the

 
combined sample

 
as 

follows: for any observation on S, set XT

 

=0, for 
any observation on T, set XS

 

=0:
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USE OF FIELLER’S THEOREM
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where t.975

 

is the 97.5th

 
percentile of the “t”

 distribution with dfE

 

degrees of freedom. 



PROCESS FOR 95% C.I.

The two roots for obtained by solving the quadratic 
equation in within the probability statement will 
yield the 95% confidence limits RL

 

and RU

 

.
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RESULTS
The first one is the 95% CI directly from the 
Fieller’s theorem, the second one is for the special 
case of the 5-point slope ratio assays.
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RATIO OF PROPORTIONS
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APPROACH #1
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APPROACH #2

2006) Trials Clinicalry Contempora (Liu,
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THE CHOICES

•
 

It’s not clear if it’s better to use the variance or 
the estimated variance (as in Biological 
Assays); Liu (CCT, 2006) used variance but 
gave no explanation/justification.

•
 

But he got into a new problem: the resulting 
quadratic equation may have no real roots in 
some simulation configurations.



Lui (Contemporary Clinical Trials, 2006) 
applied Fieller’s Theorem to study “Risk 
Ratio”; showed that the use of Fieller’s 
Theorem/method would

 
lead to more efficiency 

(i.e. shorter intervals) but, more important,
 

it 
improves coverage probability.

I “believe”
 

that the results apply to quantitative 
bioassays–

 
e.g. ratio of regression coefficients .



ODDS RATIO
•

 
Does Fieller’s Theorem work for Odds Ratio?

•
 

Odds Ratio is a “ratio of ratios”; its estimated 
numerator and denominator are not normally 
distributed

 
–

 
more like log normal; is Fieller’s 

Theorem-based method robust in this case?
•

 
Maybe not, I do not know; at least I’m not sure. 

•
 

Perhaps the “log transformation”
 

method works 
well for Odds Ratio; and it has been one of a 
few ratios that we handle properly.



#8.  ISSUES OF THE DAY:

Read and present the article by Lui in 
Contemporary Clinical Trials, 2006.
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