
BIOSTATISTICS METHODS 
FOR TRANSLATIONAL & CLINICAL RESEARCH

DAY #4: REGRESSION APPLICATIONS, PART C

MULTILE REGRESSION APPLICATIONS



This last part is devoted to Multiple 
Regression applications; it covers two topics:    
(1) For interactions, we re-visit and expands 
the topic of bioassays, and                           
(2) As an example of non-linear models, I’ll 
show you how to study “seasonal diseases”-

 a case similar to that of quadratic regression -
 with two predictor terms representing the 

same “predictor source”
 

where we
 

search 
for an

 
optimal condition for the outcome.



DEFINITION

“Biological assays”
 

or “bioassays”
 

are a set of 
methods for estimating the potency

 
or strength

 of an “agent”
 

by utilizing the “response”
 caused by its application  to biological material 

or experimental living “subjects”.



COMPONENTS OF A BIOASSAY

•
 

The subject
 

is usually an animal, a 
human tissue, or a bacteria culture,

•
 

The agent
 

is usually a drug,
•

 
The response

 
is usually a change in a 

particular characteristic
 

or even the 
death of a subject; the response could 
be binary or on continuous

 
scale.



DIRECT ASSAYS
•

 
In direct assays, the doses of the standard and 
test preparations are “directly measured”

 
for 

an “event of interest”.
•

 
When an (pre-determined) event of interest 
occurs, e.g.. the death of the subject, and the 
variable of interest

 
is the dose

 
required to 

produce that response/event for each subject. 
•

 
In other words: (Binary) Response is fixed, 
Dose is a Random Variable.



INDIRECT ASSAYS
•

 
In indirect assays, the doses of the standard and 
test preparations are applied and we observe the 
response that each dose produces; for example, 
we measure the tension in a tissue or the 
hormone level or the blood sugar content. For 
each subject,

 
the dose is fixed in advance, the 

variable of interest
 

is not the dose
 

but the 
response

 
it produces in each subject. 

•
 

Doses are fixed, Response is a Random 
Variable; statistically, indirect assays are more 
interesting and also more difficult.



For Indirect Assays, depending on the 
“measurement scale”

 
for the response –

 
our 

Random Variable, we have:

(1) Quantal assays, where the response is
 binary: whether or not an event (like the death 

of the subject) occur,

(2) Quantitative assays, where measurements for 
the response are on a continuous

 
scale. This is 

our main focus; the dependent variable Y.



The common indirect assay is usually one in 
which the ratio of equipotent doses is estimated 
from “curves”

 
or “lines”

 
relating quantitative 

responses and doses for the two preparations. 
The shape

 
of these curves or lines further 

divides Quantitative Indirect Assays into:

(1) Parallel-line assays
 

are those in which the 
response is linearly related to the log dose,

(2) Slope ratio assays
 

are those in which the 
response is linearly related to the dose

 
itself.



PARALLEL-LINE ASSAYS
•

 
Parallel-line assays

 
are those in which the 

response is linearly related to the log dose.
•

 
From the definition of

 
“relative potency”

 
ρ, the 

two equipotent doses
 

are related by DS

 

= ρDT

 

.
•

 
The model: E[YS

 

|XS

 

=log(DS

 

)] = α
 

+βXS

 

, for 
Standard and, for same dose of Test

 
we have 

E[YT

 

| XS

 

=log(DS

 

= ρDT

 

)= (α
 

+ βlogρ) + βXT
•

 
We have 2 parallel lines with a common slope

 β
 

and different intercepts.



The primary aim
 

of a statistical analysis is to 
estimate the “relative potency”

 
of an agent or 

stimulus
 

; a point estimate as well as 
confidence limits (i.e. 95% confidence 
interval). Theses Estimate are obtained as a 
result of the “statistical model”

 
–

 
two lines 

with a common slope and different intercepts.



POINT ESTIMATE
•

 
The model: E[YS

 

|XS

 

=log(DS

 

)] = α
 

+βXS

 

, for 
Standard and, for the same dose

 
we have   

E[YT

 

| XS

 

=log(DS

 

= ρDT

 

)= (α
 

+ βlogρ) + βXT

•
 

Result: We can estimate of logρ, called M, by 
subtracting the intercepts and divided

 
by the 

common slope; let m be a point estimate of M. 
•

 
Then we can obtain a point estimate r of ρ

 
by 

exponentiating “m”.
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EXAMPLE
•

 
In this example, the test and standard preparations 
of the agent are tested at the same three dose 
levels (.25, .50, and 1.0 mg/cc); and there are 8 
replications

 
at each dose of each preparation.

•
 

It is designed with 8 dishes/plates, each contains 6  
identical bacterial cultures -

 
one in a “well”

 (randomized complete block design), also called 
“6-point assay”; the response was the amount of 
decrease in growth.



Dose (D; mmgcc) 0.25 0.50 1.00 0.25 0.50 1.00
X = log10(Dose) -0.602 -0.301 0.000 -0.602 -0.301 0.000
Response (Y; mm) 4.9 8.2 11.0 6.0 9.4 12.8

4.8 8.1 11.5 6.8 8.8 13.6
4.9 8.1 11.4 6.2 9.4 13.4
4.8 8.2 11.8 6.6 9.6 13.8
5.3 7.6 11.8 6.4 9.8 12.8
5.1 8.3 11.4 6.0 9.2 14.0
4.9 8.2 11.7 6.9 10.8 13.2
4.7 8.1 11.4 6.3 10.6 12.8

Preparation
Standard Preparation Test Preparation

Graph of the “response”
 

versus “log dose”
 

follows





Doing correctly, we should fit the two 
straight lines with a common slope. Here, 
each line was fitted separately –

 
not right 

but can use to see if data fit the model.

When we learn Simple Linear Regression, 
we solved the problem by calculating the 
weighted average

 
of the two estimated 

slopes. Another approach, which turns out  
more simple, is Multiple Linear Regression.



MULTIPLE REGRESSION
•

 
An alternative approach is pooling data from 
both preparations and using “Multiple 
Regression”;

•
 

Dependent Variable: Y = Response;                     
Two Independent Variables or predictors are:       
X = log(Dose)

 
&                                            

P = Preparation
 

(a “dummy variable”
 

coded 
as P = 1 for “Test”

 
and P = 0 for “Standard”)



1

2

120

210

10

210

SlopeCommon 
Intercepts of Difference

)(
)(

:ionPrepararatTest 
)(

:nPreparatio Standard
)(

:ModeltheFrom

β
β

βββ
βββ

ββ

βββ

=
=

++=
++=

+=

++=

X
XYE

XYE

PXYE

T

S



1

2

2

1

210

log

; "intercepts of difference"  theis β
and slopecommon   theis β

)(
:Model Regression Multiple

β
βρ

βββ

==

++=

M

PXYE

X = log(Dose) & P = Preparation



DELTA METHOD
If Y is a function of two random variables X1

 

and 
X2

 

then we have approximately, with partial 
derivatives evaluated at the mean values:

)(),(2)()( 2

2

2
21

21
1

2

1

XVar
x
yXXCov

x
y

x
yXVar

x
yYVar ⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
≅

δ
δ

δ
δ

δ
δ

δ
δ

In the current application: The point estimate 
of log(Relative Potency) is b2

 

/b1
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SLOPE RATIO ASSAYS
•

 
Slope-ratio assays

 
are those in which the response is 

linearly related to the dose
 

itself.
•

 
From the definition of

 
“relative potency”

 
ρ, the two 

equipotent doses
 

are related by DS

 

= ρDT

 

.
•

 
The model: E[YS

 

|XS

 

=DS

 

)] = α
 

+βXS

 

, for its equipotent
 dose

 
E[YT

 

| XS

 

=DS

 

= α
 

+ βρXT

 

; the lines have the same 
intercept -

 
the mean response at zero dose.

•
 

Result: We have two straight lines with a 
common intercept

 
and different slopes.



The primary aim
 

of a statistical analysis is to 
estimate the “relative potency”

 
ρ

 
of

 
an agent 

or stimulus
 

; a point estimate as well as 
confidence limits (i.e. 95% confidence 
interval). These Estimate are obtained as a 
result of the “statistical model”

 
–

 
now a 

different model, two straight lines with a 
common intercept but different slopes.



POINT ESTIMATE

•
 

The model: E[YS

 

|XS

 

=DS

 

)] = α
 

+βXS

 

, for same 
dose

 
E[YT

 

| XS

 

=DS

 

= α
 

+ βρXT

 

; the lines have 
the same intercept α

 
-

 
the mean response at 

zero dose. Slopes are different by a factor ρ.
•

 
Result: We can obtain ρ, the relative potency, 
as the ratio

 
of two slopes; then we can obtain 

a point estimate r as:
 

r= bT

 

/ bS

 

.
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Unlike the case of Parallel Line Bioassays, 
where we could

 
(weighted) average the two 

slopes. The of Slope Ratio Bioassays are 
different; even if we want, we cannot use 
Simple Linear Regression

 
to fit two lines 

with a common intercept. We have to turn to 
get help from Multiple Linear Regression; 
the good news is we can do it in more than 
one way.



MULTIPLE REGRESSION
•

 
An alternative approach is pooling data from 
both preparations and using “Multiple 
Regression”;

•
 

Dependent Variable: Y = Response;                     
Two Independent Variables are:                   
X = Dose

 
&                                                    

P = Preparation
 

(a “dummy variable”
 

coded 
as P = 1 for “Test”

 
and P = 0 for “Standard”)
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MULTIPLE REGRESSION #2
Let Y be the response, XS

 

and XT

 

the doses. 
Consider the following model in which for any 
observation on S, set XT

 

=0, for any observation 
on T, set XS

 

=0;
 

the model may include control 
observations for which we set XS

 

= XT

 

= 0:
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In both Multiple Regression models for 
Slope-Ratio assays, point estimate of 
Relative potency is obtained from 
computer output; and we can use Delta 
Method to calculate Variance/Standard 
Error.

 
That is possible with the option 

“COVB”
 

in PROC REG.



POLYNOMIAL REGRESSION
•

 
The second-order or quadratic model could be used when 
the true relationship may be unknown but the second 
degree polynomial provides a better fit

 
than a linear one.

•
 

If a quadratic model fits, perhaps an useful application 
would be to maximize/minimize the “Mean Index”,

 β1

 

x+ β2

 

x2, in order to determine the value of X at which 
the Mean of Y attains its maximum or minimum value

 (depending on the sign of β2

 

).
•

 
The following application is based on this idea of 
optimization involving two related predictor variables.



A MYTH OR A SCIENCE?

•
 

Just like “Palm Reading”, Horoscope is very 
popular in all continents!

•
 

Believers say that your DOB partially
 

determines 
your life: How happy

 
you are, How successful

 you are, How healthy
 

you are; Even revealing 
something about your spouse and your kids !

•
 

So, let first focus on the aspect of health.



OTITIS MEDIA: INFLAMMATION OF THE MIDDLE EAR



OTITIS MEDIA
•

 
Is Inflammation of the middle-ear space, often 
referred to as “Children Ear Infection”.

•
 

Is the 2nd most prevalent disease
 

on earth, 
affects 90% of children by age 2 (in the US).

•
 

Costs 3.8 billions in direct costs
 

(physician 
visits, tube placements, antibiotics, etc…) and 
1.2 billions in indirect costs (lost works by 
mothers, etc...); in 1995 dollars.

•
 

Causes hearing loss, learning disabilities, and 
other middle-ear sequelae.



AS A CHILDREN DISEASE

•
 

It is the most common diagnosis
 

at 
physician visits

 
ahead of well-child, URI, 

injury, and sore throat.
•

 
It is responsible for 24.5 million physician 
visits in 1990, increased 150% from 1975; 
probably due to increased awareness and 
more aggressive diagnoses.



Perhaps it is the most typical “public health 
problem”; and its most interesting 
characteristic is that it is a “seasonal disease”

 –
 

just like the most prevalent disease on earth, 
the common cold.



DOB AS A DISEASE INDICATOR

•
 

Other examples
•

 
Nilsson et. al.  Season of births as predictor of 
atopic manifestations. Archives of Disease in 
Childhood, 1997. (food allergies, asthma, etc…)

•
 

Torrey et. al. Seasonal birth patterns of neurological 
disorders. Neuro-epidemiology, 2000.



LITERATURE REVIEWS

•
 

Most or all investigators, with emphasis on 
“season”, often divide the year into four 
seasons

 
and compare them using either a Chi-

 square test
 

or a One-way Analysis of 
Variance F-test

 
depending on the endpoint 

being discrete or continuous!
•

 
What are the problems

 
with this vastly 

popular
 

approach to investigating seasonality?



POINTS TO CONSIDER
•

 
There is no universal agreement on the definition 
of seasons, plus regional differences (for example, 
the Midwest's winter is more than 3 months; we 
have 2 seasons a year, Winter

 
& Road Repair).

•
 

There are no reasons to believe
 

that the risk 
associated with time of the year is similar within 
seasons and different between seasons. If there 
is any risk associated with time of the year, that 
level of risk must change

 
gradually

 
, not 

abruptly, as time progresses.



A NEWER APPROACH

•
 

DOB will be treated as a continuous variable 
with a circular distribution.  

•
 

Many endpoints may be considered
 

but let focus 
on a continuous endpoint (representing a 
“possible cause”) as a show case of MLR

•
 

I like to see this as a study of an important public 
health problem (a disease with high prevalence) 
focussing on a widespread exposure (indoor 
pollution).



DATA FOR ILLUSTRATION

•
 

Study population: 592 infants within Health 
Partners system. Pregnant women were 
enrolled, and followed. Cord blood

 
was 

collected at time of birth and  blood samples
 were analyzed by ELISA for pneumococcal 

IgG antibody
 

for 7 serotypes. 
•

 
Specific Aims: we focus on DOB and see how 
it’s related to the disease by seeing how it’s 
related to antibodies.



DOB REPRESENTATION
The DOB for each infant is represented by 

an angle, called θ, between 00 and 3600:

January 1st

DOB

θ



CONVERSION FORMULA

•
 

The angle θ
 

representing each DOB is 
calculated using the following conversion:

θ
 

= (DOB -
 

January 1st)/(365 or 366)*3600

•
 

Each θ
 

is an angle ranging from 00

 
to 3600

•
 

For example, if an infant was born on October 
2nd, 1991, then:

θ
 

= (10/02-01/01)/(365)*3600; or 270.250



PARAMETERIZATION: RESULT

•
 

The DOB, represented by θ, becomes a 
continuous variable with a circular

 
distribution 

without a true zero origin point
 

(that is, any other 
date can be used as time origin in the place of 
January 1st

 
; we would have the same results 

regardless of choices).
•

 
The DOB, represented by θ, is characterized by 
two (2) component: sine (sinθ) & cosine (cosθ).



LOW ANTIBODY: A CAUSE?
•

 
Otitis Media is often referred to as “Ear 
Infection”; bacteria  have a definite role here.

•
 

The disease occurs early in life before infants 
have their own completed immune system; their 
ability to fight infection consist only of what they 
are inherited from their mother.

•
 

Streptococcus pneumoniae (Spn) causes about 50 
percent of recurrent Accute Otitis Media episodes. 

•
 

Therefore, the role of cord blood Pneumococcal 
IgG antibody

 
is important. 



HYPOTHESIS
•

 
Low maternal

 
concentration of IgG

 antibody results in low neonatal
 

antibody
 and early onset of OM, which leads to 

recurrent and chronic diseases.
•

 
I’ll only use type 19F (Ant19F), on log 
scale

 
-

 
because skewed distribution), one of 

the seven serotype, for illustration. 



In other words:

The dependent variable is:                    
Y = Antibody, type 19F –

 
on log scale

Target predictors? Sine(θ) and Cos(θ), 
together they represent the DOB.



MULTIPLE REGRESSION

•
 

We are interested in whether there is a  
relationship between infants’

 
DOBs and their 

type 19F IgG antibody concentrations, so we fit 
a linear multiple regression model.

•
 

Y= Ant19F
 

is the response variable and 
X1

 

=sin(θ)
 

and X2

 

=cos(θ)
 

are two covariates:
Model:

Mean(Ant19F) = β0 +β1 *sin(θ)+β2 *cos(θ)



This model is similar to a polynomial regression; 
just like (X and X2), the two predictors Sin(θ) and 
Cos(θ) are representing the same “predictor 
source”–

 
so that coefficients  β1

 

and  β2 do not 
follow the usual interpretation. Therefore, we will 
investigate their roles

 
together.



MULTIPLE REGRESSION 
RESULTS

Factor
 
Coefficient Estimate   St Error   p-value

Intercept
 

b0

 

=.57    .08   <.001   
sin(θ) b1

 

=.38
 

.11
 
<.001

 cos(θ) b2

 

=.01
 

.11
 
.095

The p-value for sin(θ) is very small, indicating 
that DOB, part of which is represented by 
sin(θ),

 
is a significant factor

 
in predicting 

infants’
 

antibody 19F concentration.



ANTIBODY: RESULTS

•
 

Since DOB is represented by two variables (sin(θ) 
and

 
cos(θ)), it is difficult to interpret the two 

regression coefficients individually.
•

 
By taking the derivative of:

Mean(Ant19F) = b0

 

+ b1

 

*sin(θ) + b2

 

*cos(θ)
relative to θ

 
and set it to zero, we get two angles in 

(0,360): 88.50

 
(max.; Ant19F=2.59) and 268.50 

(min.; Ant19F=1.21), which correspond to April 
1st

 
& September 30th

 
. 



An Illustration of The Horoscope
•

 
I divide the year into 4 seasons : (i) February 16 -

 
May 

15
 

(centered at April 1, date with maximum antibody), 
(ii) May 16 -

 
August 15, (iii) August 16 -

 
November 15

 (centered at September 30, date with minimum antibody), 
and (iv) November 16 -

 
February 15. The following 

Table shows a rather symmetric distribution of antibody 
level, type 19F

•
 

Season  GM of Antibody
 

95% Confidence Interval
 2/16-5/15                      2.264         (1.714,2.992)

 5/16-8/15                      1.942         (1.432,2.633)           
8/16-11/15                    1.375         (0.930,2.032)

 11/16-2/15                    1.735         (1.290,2.333)



RESULTS/IMPLICATION
•

 
The results imply that infants born during 
the Spring season (as April 1st

 
suggests) 

tend to have a higher antibody concentration 
than infants born during the Fall season (as 
September 30th

 
suggests).

•
 

Therefore infants born in Spring should 
have a lower risk of disease than infants 
born in Fall. We proved Horoscope!



Why Antibody has anything to do with 
DOB? Does horoscope have some 
scientific supports?



ANTIBODY: INTERPRETATION
•

 
The finding that infants born in the Fall have low 
antibody levels compared to those born in the 
Spring probably due to  different levels of maternal 
exposure preceding the infant’s birth. 

•
 

Pregnant women have the greatest exposure 
potential to pneumococcal bacteria during winter, 
peak antibody levels would follow that exposure, 
resulting in greater amounts of antibody transferred 
to infants born in the Spring.

•
 

Result:
 

amount of time a pregnant women staying 
indoor would be predictive of cord blood antibody.



SOURCES OF EXPOSURE
•

 
Some difference in the findings (Low-antibody kids 
in late September, representing the lack of

 exposure by the
 

mothers).
 

It’s not sole determinant. 
•

 
The other source is the exposure by the newborns

 (houses are closely sealed in the Winter, starting in 
November to March, likely leading to more severe 
indoor pollution when newborns suffer).

•
 

Disease occurrence  due to both
 

sources, lack of
 exposure

 
by mother (Fall) and exposure by

 
the

 
child 

(Winter): total combined effect is peaked in late 
October to late December

 
when disease occurs.



MORE GOOD NEWS:

The other piece of good news is that more kids 
in Minnesota are born in Spring-Summer than 
Fall-Winter:

•
 

Maximum: 188 births/day in June-July
•

 
Minimum:  165 births/day in Dec.-January

(Family planning ? By parents, and by doctors?)



SEASONAL BIRTHS PATTERN

165

188



There are other smaller cycles:

(1)
 

Hours of the Day: Blood Pressure 
or Time to take medication? 

(2)
 

Days of the Week: “Weekend 
Effects”

 
in scheduling surgeries, say 

C-sections?



Suggested Exercise
#5

 
Use the data set in the following Table, 

a)
 

Use data from the Standard Preparation & Scatter diagram 
to verify the linear regression of Y versus X = log(dose) fits 
better than Y versus X = Dose;

b)
 

Formally test (at α
 

= .05) that the lines are parallel;
c)

 
Find a point estimate of the log(Relative Potency);

d)
 

Calculate the Standard Error of the estimate in (c).

Dose 5.76 9.6 16 32.4 54 90 150
Response 33.5 36.2 41.6 32 32.6 35.7 44

37.3 35.6 37.9 33.9 37.7 42.8 43.3
33 36.7 40.5 30.2 36 38.9 38.4

37 42 40.3 44.2
39.5 43.7

Vitamin D3 (Standard) Cod-liver Oil (Test)
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