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Summary. Motivated by a study exploring geographic disparities in test scores among fourth graders in North Car-
olina, we develop a multivariate mixture model for the spatial analysis of correlated continuous outcomes. The re-
sponses are modeled as a finite mixture of multivariate normals, which accommodates a wide range of marginal
response distributions and allows investigators to examine covariate effects within subpopulations of interest. The
model has a hierarchical structure incorporating both individual- and areal-level predictors as well as spatial random
effects for each mixture component. Conditional autoregressive priors on the random effects provide spatial smooth-
ing and allow the shape of the multivariate distribution to vary flexibly across geographic regions. By integrating over
this distribution, we obtain region-specific joint, marginal, and conditional inferences of interest. We adopt a Bayesian
modeling approach and develop an efficient posterior sampling algorithm that relies primarily on closed-form full con-
ditionals. Our results show that students in the central and coastal counties of North Carolina demonstrate higher
achievement on average than students in the other parts of the state. These findings can be used to guide county-
level initiatives, such as school-based literacy programs, to improve elementary education.

1. Introduction

In 2002, the United States (U.S.) Congress enacted the No Child Left Behind (NCLB) Act requiring states

to administer annual standardized tests to all students in federally funded schools (No Child Left Behind Act,

2002). In North Carolina, these tests are known as end-of-grade (EOG) tests. The EOG tests measure student

performance on grade-based goals, objectives, and competencies as set forth by the state’s education depart-

ment (North Carolina Department of Public Instruction, 2006). In particular, the mathematics tests measure

competency in areas such as arithmetic operations, measurement, and geometry, while the reading tests measure

competency in areas such as vocabulary and reading comprehension. The raw EOG scores are subsequently

categorized into four achievement levels: 1) insufficient mastery; 2) inconsistent mastery; 3) consistent mastery;
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and 4) superior performance (North Carolina Department of Public Instruction, 2007, 2008). Results of EOG

tests have important implications for both individual schools and school districts, as they may affect state and

federal funding levels.

Because scores can vary across geographic areas, there has been growing interest in examining regional

differences in test scores, both at the national and state level. North Carolina, like many other states, is working

to close the gap between low-performing schools and those meeting NCLB standards. Despite this goal, relatively

few studies have examined geographic disparities in EOG performance in an effort to identify high- and low-

performing schools and school districts. In fact, we found only one related study examining gender differences

in test performance across large national Census divisions (Pope and Sydnor, 2010). Thus, there remains a need

for a comprehensive study of varying test performance across a refined geographic scale. By pinpointing schools

that fail to meet adequate yearly standards set forth by NCLB, state and local education officials can develop

targeted interventions to improve school performance in the areas of most need. Directed efforts such as these

provide new opportunities to close the achievement gap in EOG test scores.

With these goals in mind, researchers from Duke University and the University of Michigan recently conducted

a study to better understand factors influencing variation in EOG scores among elementary school children from

across North Carolina. As a first step, the investigators obtained math and reading test scores for fourth graders

from all 100 countries in the state following completion of the 2008 school year, the most recent year for which

such data were available. The data were then geo-referenced by residential address and subsequently linked at

the county level to data from the 2005–2009 American Community Survey (U.S. Census Bureau, 2010). The aims

of the study were to examine statewide variation in EOG test scores and to identify individual- and county-level

predictors of EOG performance.

From an analytic perspective, the EOG data posed several unique challenges. First, math and reading scores

tend to be highly correlated measures; we therefore needed a flexible spatial model that could account for both

within-subject and within-county associations. We also wanted a model that could yield accurate predictions

of average student performance for each county while inducing spatial smoothing among sparsely populated

counties where predictions may be less reliable. And finally, we wanted a model that was robust to region-

specific departures from normality in light of the skewness observed in the data. This paper describes a new

multivariate spatial mixture model specifically designed to address these multiple aims.

Our proposed model capitalizes on recent developments in spatial modeling of multivariate, areal-referenced

data, i.e., data in which the spatial units consist of discrete regions of space such as counties. Modeling of

such data typically proceeds by introducing a set of region-specific random effects, which are then linked via

a multivariate conditionally autoregressive (MCAR) prior distribution (Mardia, 1988). Previous applications

of joint spatial models for areal data have focused on normal responses (Gelfand and Vounatsou, 2003), count

responses for disease mapping (Carlin and Banerjee, 2002; Jin et al., 2005; Zhang et al., 2009; Congdon, 2010),

and categorical responses (Gelfand and Vounatsou, 2003; Wall and Liu, 2009).
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In many applications, the response variables are continuous but non-normally distributed, either due to

multimodality, heavy skewness, or both. In such cases, mixture models can provide a flexible framework for

modeling the response distribution and can improve model fit. There is a well-established literature on mixture

models for non-spatial data (Mclachlan and Peel, 2000; Frühwirth-Schnatter, 2006). In the spatial setting,

several authors have proposed mixture models for point-referenced data — i.e., data indexed by a set of specific

geographic coordinates. Gelfand et al. (2005) used a Dirichlet process mixture model to examine precipitation

measurements at fixed locations in southern France. Kottas and Sansó (2007) extended the approach by allowing

the point locations to be random. Ji et al. (2009) used a similar Poisson point-process mixture model to identify

cell abundance patterns from fluorescent intensity images of lymphatic tissue. For multivariate point-referenced

data, Reich and Fuentes (2007) proposed a semiparametric mixture model specified through a stick-breaking

process. In the areal setting, Green and Richardson (2002) and Lawson and Clark (2002) proposed univariate

mixture models for mapping disease relative risks. More recently, Wall and Liu (2009) developed a spatial latent

class model for multivariate binary data and modeled the latent class indicators using a multinomial probit model

with spatially correlated error terms.

We extend this work by developing a multivariate spatial finite-mixture model for continuous, areal-referenced

data. We introduce spatial random effects for each mixture component, as well as for the mixing weights, to

allow the shape of the multivariate response distribution to vary in flexible ways across geographic regions and

covariate profiles. As such, our model provides a practical approach to multivariate spatial density estimation.

By integrating across this mixture density, one can obtain region-specific inferences and model-based predictions

of interest. We adopt a Bayesian inferential approach, and for posterior computation develop an efficient Markov

chain Monte Carlo (MCMC) algorithm that combines closed-form Gibbs and Metropolis steps.

The remainder of the paper is organized as follows: Section 2 describes the EOG testing data; Section

3 outlines the proposed model and discusses prior specification, posterior computation, and model selection;

Section 4 presents results from two simulation studies highlighting important features of the model; Section 5

applies the method to the EOG data; and the final section provides a discussion and directions for future work.

2. The EOG Data

Table 1 provides a summary of the EOG data. For the purposes of our analysis, we restricted the sample to

non-Hispanic white and non-Hispanic black students due to small sample sizes in other race and ethnicity groups

and to the impact of English as a second language on early school performance. Of the 78380 students, roughly

half were male, about one third were non-Hispanic black, and just over 43% received free or reduced-price lunch

at school through a federal subsidy program. The math scores ranged from 319 to 373 with a median of 352, and

the reading scores ranged from 313 to 370 with a median of 346. Approximately three quarters of the students

achieved consistent mastery or higher on the math exam, and nearly 63% achieved consistent mastery or better

on reading.
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Table 1. Summary statistics for the EOG data (N = 78380).
Variable Median (IQR)

Math Score 352 (345, 358)

Reading Score 346 (339, 353)

County Median Household Income ($) 44319 (39676, 51110)

County Sample Size 443 (203, 874)

n (%)

Male 39555 (50.47)

Non-Hispanic Black Race† 25219 (32.18)

Enrolled in Free or Reduced-Price Lunch Program† 33959 (43.33)

Math Achievement Level

Insufficient Mastery (Score ≤ 335) 4470 (5.70)

Inconsistent Mastery (Score 336–344) 15040 (19.19)

Consistent Mastery (Score 345–357) 37956 (48.43)

Superior Performance (Score ≥ 358) 20914 (26.68)

Reading Achievement Level

Insufficient Mastery (Score ≤ 334) 11439 (14.59)

Inconsistent Mastery (Score 335–342) 17618 (22.48)

Consistent Mastery (Score 343–353) 30879 (39.40)

Superior Performance (Score ≥ 354) 18444 (23.53)

†Non-Hispanic black race and free lunch enrollment coded as binary (yes/no) variables.

Figure 1 presents a bivariate histogram of the raw math and reading scores (panel a), as well as a histogram

of the standardized residuals based on an ordinary least squares (OLS) regression that included as predictors

gender, race, enrollment in a free- or reduced-price lunch program, and county median household income (panel

b). The distribution of the residuals is skewed toward lower values, particularly for reading, and the kurtoses

in both directions are slightly negative. The univariate Kolmogorov-Smirnov tests on the residuals rejected the

null hypothesis of normality (p < 0.01 for both outcomes), suggesting that the bivariate response distribution

might be better modeled as a low-dimensional finite mixture of normals rather than as a single bivariate normal

distribution.

There is also substantial variation in test scores across the state. Figure 2 shows the studentized OLS residuals

averaged by county for both math and reading. The spatial pattern is similar for both math and reading, with

negative residuals clustering in the interior northeast, along the eastern southern border, and in the western-most

counties, while pockets of positive residuals appear in the center of the state and along the southern border in

the west. This pattern suggests positive spatial autocorrelation in the residuals, violating the OLS assumption

of independently distributed errors. This points to the need for a model that explicitly accounts for spatial

dependence, since ignoring such spatial structure could lead to biased inferences and inaccurate assessments of

parameter uncertainty.
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Fig. 1. Bivariate histogram of (a) the raw math and reading scores and (b) OLS standardized residuals for the 2008 fourth-
grade EOG test scores.

3. Spatial Mixture Model

3.1. Model Specification

To develop the multivariate spatial mixture model, we focus on the bivariate case. It is conceptually straight-

forward to extend the approach to three or more outcomes.

A very general specification of the bivariate spatial mixture model can be expressed as:

yij |ϕi,ψi ∼
K∑
k=1

πijkN2(ηijk,Σk)

ηijk =

(
η1ijk
η2ijk

)
=Xijβk + V iαk + ϕik

πijk =
ex

′
ijγk+v′

iδk+ψik∑K
h=1 e

x′
ijγh+v′

iδh+ψih
, i = 1, . . . , n; j = 1, . . . , ni; k = 1, . . . ,K, (1)

where yij = (y1ij , y2ij)
′ denotes a 2×1 vector of math and reading scores for the j-th student in the i-th county;

Xij =

(
x′
ij 0
0 x′

ij

)
is a 2× 2p matrix of subject-level covariates with corresponding 2p× 1 component-specific

fixed effects βk = (β′
1k,β

′
2k)

′; V i =

(
v′i 0
0 v′i

)
is a 2×2r matrix of county-level covariates with corresponding

2r×1 component-specific fixed effects αk = (α′
1k,α

′
2k)

′; ϕik = (ϕ1ik, ϕ2ik)
′ is a 2×1 vector of component-specific

spatial random effects for the i-th county, with ϕi = (ϕ′
i1, . . . ,ϕ

′
iK)′; Σk is the component-k 2 × 2 variance-

covariance matrix of yij , conditional on ϕik; γk and δk are p× 1 and r × 1 vectors of mixing-weight regression
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Fig. 2. Quintiles of county-averaged (a) math and (b) reading studentized residuals for the 2008 fourth-grade EOG scores.

parameters with γ1 ≡ 0 and δ1 ≡ 0 for identifiability; and ψik is a spatial random effect for county i and mixing

weight k, where ψi1 ≡ 0 and ψi = (ψi1, . . . , ψiK)′. Throughout, we assume the same set of covariates for the

component means and the mixing weights, although in general this restriction is not necessary.

Model (1) is appealing because it allows the shape of the joint response distribution to change flexibly across

spatial units and covariate levels. In particular, the within-component linear predictors (the ηijk’s) permit the

locations of the mixture components to vary throughout the population, while the mixing-weight parameters

allow the mass of the response distribution to shift in unique ways between individuals and counties. Together,

these features produce distinct response distributions for each covariate profile and areal unit, thus allowing us

to obtain county-level predictions of EOG performance.
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3.2. Prior Distributions

For parameter estimation, we adopt a fully Bayesian approach, assuming prior distributions for all model param-

eters. First, to allow for spatial smoothing and borrowing of information across counties, for each k, we assign

component-specific conditionally autoregressive (CAR) priors (Besag, 1974; Besag et al., 1991) to the spatial

random effects — a bivariate CAR prior for ϕik and a univariate CAR prior for ψik:

ϕik|ϕ(−ik),Λik ∼ N2

(
ξk
∑
l∈∂i

wil
wi+

ϕlk,Λik

)
, k = 1, . . . ,K (2)

ψik|ψ(−ik), τ
2
ik ∼ N

(
ζk
∑
l∈∂i

wil
wi+

ψlk, τ
2
ik

)
, k = 2, . . . ,K, (3)

where ∂i denotes the set of neighbors for county i, ξk and ζk are spatial smoothing parameters, wil is an

unnormalized proximity measure, wi+ =
∑
l∈∂i wil, Λik = Λk/wi+ is a component-specific scaled variance-

covariance matrix for ϕik conditional on ϕ(−ik), and τ2ik = τ2k/wi+ is a component-specific scaled variance

parameter for ψik. For the EOG study, we adopt intrinsic CAR (ICAR) priors to provide maximal smoothing

of sparsely populated regions:

ϕik|ϕ(−ik),Λk ∼ N2

(
1

mi

∑
l∈∂i

ϕlk,
1

mi
Λk

)
(4)

ψik|ψ(−ik), τ
2
k ∼ N

(
1

mi

∑
l∈∂i

ψlk, τ
2
k/mi

)
, (5)

where mi denotes the number of neighbors sharing a geographic border with county i. Following Brook’s Lemma

(c.f., Banerjee et al., 2004), priors (4) and (5) give rise to improper joint distributions for ϕk and ψk:

ϕk|Λk ∝ exp

(
−1

2
ϕ′
k

[
(M −A)⊗Λ−1

k

]
ϕk

)
(6)

ψk|τ2k ∝ exp

(
− 1

2τ2k
ψ′
k(M −A)ψk

)
, (7)

where ϕk = (ϕ′
1k, . . . ,ϕ

′
nk)

′, ψk = (ψ1k, . . . , ψnk)
′, M = diag(m1, . . . ,mn), and A is an n× n adjacency matrix

with aii = 0, ail = 1 if counties i and l are neighbors, and ail = 0 otherwise. Because (M − A) is singular,

the joint distributions in (6) and (7) are over-parameterized and thus improper, although the conditional prior

distributions given by equations (4) and (5) are themselves proper. Propriety of the posterior, when a fixed

effect intercept is included in the model, is achieved using a sum-to-zero constraint on the spatial random effects

(Banerjee et al., 2004).

To ensure a well-identified model, we assign weakly informative proper priors to the remaining model parame-

ters. For the within-component fixed effects, we assume exchangeable normal priors: β1k and β2k ∼ Np(µβ ,Σβ),

α1k and α2k ∼ Nr(µα,Σα) for k = 1, . . . ,K. For the fixed effects within the mixing weights, γk and δk, we

assign Np(µγ ,Σγ) and Nr(µδ,Σδ) priors, respectively, for k = 2, . . . ,K. Throughout, we assume that the prior

hyperparameters (µβ , Σβ , etc.) are identical across components, but in general this is not required. To complete
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the prior specification, we assign conjugate inverse-Wishart IW(κ0,S0) and IW(ν0,D0) priors respectively to

Σk and Λk, and a conjugate inverse-gamma IG(g, s) prior to τ2k (k = 2, . . . ,K).

Note that the proposed model accommodates a wide range of dependence structures. First, Σ12k, the off-

diagonal element of Σk, controls the component-specific within-subject association between outcomes. In the

EOG study, for example, a positive value for Σ12k implies that, for component k, students with high math scores

also tend to have high reading scores conditional on the county-level random effects. Similarly, Λ12k, the off-

diagonal element of Λk, accounts for the component-specific, between-subject/within-region association between

outcomes. In the EOG study, Λ12k > 0 implies that, for component k, counties with higher mean math scores

tend to have higher mean reading scores, adjusting for observed covariates. And finally, the CAR priors on ϕik

and ψik capture associations between counties, implying that adjoining counties behave similarly with respect to

their response distributions. Numerous submodels can be obtained by setting one or more of these association

parameters to zero. For example, setting Λ12k = 0 ∀k implies no between-subject/within-county association in

responses. This is tantamount to assigning separate univariate CAR priors to ϕ1ik and ϕ2ik. Further restricting

Σ12k to 0 for all k would imply that there is no within-subject association between responses, and hence the

outcomes are uncorrelated at all levels of the model.

3.3. Posterior Computation and Model Comparison

Posterior inference proceeds via data augmentation by introducing a discrete latent labeling variable, Cij , that

takes the value k (k = 1, . . . ,K) with probability πijk defined in equation (1). Letting θk = {βk,αk,ϕk,Σk,Λk}

denote the within-component parameters and υk = {γk, δk,ψk, τ2k} denote the mixing-weight parameters, the

joint posterior is given by:

π (θ1, . . . ,θK ,υ2, . . . ,υK |y) ∝
K∏
k=1


n∏
i=1

ni∏
j=1

[
πijkN2(yij ;ηijk,Σk)

]I(Cij=k) ×

exp

(
−1

2
ϕ′
k

[
(M −A)⊗Λ−1

k

]
ϕk

)
π(βk)π(αk)π(Σk)π(Λk)

}
×

K∏
h=2

exp

(
− 1

2τ2h
ψ′
h(M −A)ψh

)
π(γh)π(δh)π(τ

2
h) (8)

where I(·) denotes the indicator function and the π(·)’s represent the prior distributions for their respective

parameters, as described in the previous section.

For posterior computation, we propose an MCMC algorithm that combines draws from full conditionals with

Metropolis-based updates. After assigning initial values to the model parameters, the algorithm iterates between

the following steps:

(a) For k = 2, . . . ,K, update γk and δk using random-walk Metropolis steps;

(b) For k = 2, . . . ,K and i = 1, . . . , n, update ψik using random-walk Metropolis;

(c) For k = 2, . . . ,K, update τ2k from its closed-form full conditional distribution;
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(d) For all (i, j), sample the mixture component indicators from a discrete distribution taking values {k =

1, . . . ,K} with posterior probabilities {pij1, . . . , pijK} as described in the Appendix;

(e) For k = 1, . . . ,K, sample the component-specific parameters β1k, β2k, α1k, α2k, Σk, Λk, and ϕik (i =

1, . . . , n) from their closed-form full conditionals

(f) At the end of each MCMC iteration, apply a sum-to-zero constraint to ϕk (k = 1, . . . ,K) and ψk (k =

2, . . . ,K).

Explicit details of the algorithm are provided in the Appendix. An appealing feature of the MCMC algorithm

is that the within-component regression parameters and spatial effects have convenient closed-form full condi-

tionals, leading to straightforward and efficient posterior sampling. Only the mixing-weight parameters require

Metropolis-based updates.

Convergence is monitored by running multiple chains from dispersed initial values and performing standard

Bayesian diagnostics, such as trace plots and evaluation of the Brooks-Gelman-Rubin statistic (Gelman et al.,

2004). Careful attention to such diagnostics is especially important for complex latent variable models to ensure

parameter identifiability. In our experience, the proposed MCMC algorithm is generally robust to choices of

initial values, with the possible exception of the mixing parameters γ and δ, which can be slow to converge

for poorly chosen starting values. One way to choose initial values for these parameters is to perform a K-

level cluster analysis, fit a multinomial logit regression to the resulting cluster indicators, and use the ensuing

parameter estimates as starting values.

A well-known computational challenge for Bayesian finite mixture models is “label switching” in which draws

of component-specific parameters may be associated with different components labels during the course of the

MCMC run. Consequently, component-specific posterior summaries that average across the draws will be invalid.

As a solution, Stephens (2000) proposed a post-hoc relabeling algorithm based on a Kullback-Leibler divergence

function. We apply this approach for the analysis of the EOG data described in Section 5.

For model comparison, we adopt the deviance information criterion (DIC) proposed by Spiegelhalter et al.

(2002). DIC includes a goodness of fit term along with a penalty for model complexity. Models with smaller DIC

are considered preferable. For the EOG application, we apply a modified version of DIC recently recommended

by Celeux et al. (2006) for finite mixture models. This modified DIC, termed DIC3, uses the posterior predictive

density of y to estimate the penalty term, and is closely related to a measure put forward by Richardson (2002)

to avoid overfitting the number of mixture components.

Several approaches can be used to determine the number of classes, K. One pragmatic approach (and the one

adopted here) is to impose an upper bound (say, Kmax) on the number of classes, and then use a model selection

criteria such as DIC to choose the optimal value of K = 1, . . . ,Kmax. In our application, we set Kmax = 2

because we hypothesized the existence of at most two latent classes within the student population (namely,

“high” and “low” performers), and because inspection of the unimodal residual plot in Figure 1(b) suggested

that a low-dimensional mixture would adequately capture important features of the data. A more formal —
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albeit computationally challenging — approach would be to treat K as a random variable and employ either

a dimension-switching MCMC algorithm (Green, 1995) or recast the model as an infinite mixture vis-à-vis a

stick-breaking representation (Sethuraman, 1994). We consider extensions to infinite mixtures further in the

Discussion section.

4. Simulation Studies

To examine the performance of our model, we conducted two simulation studies. For the first study, we generated

200 datasets from a basic two-component mixture model without covariates. Our aims here were threefold: 1)

to evaluate MCMC performance, 2) to ensure that we obtained reasonable parameter estimates under the true

model, and 3) to highlight the model as a practical approach to spatial density estimation whereby the shape of

the response distribution is allowed to vary flexibly across spatial units. To emulate the EOG data, we used the

North Carolina county-level adjacency matrix for the simulation. This matrix contains 512 adjacencies among

the 100 North Carolina counties. For the purposes of the simulation, counties were labeled “1” to “100”. Because

the (M −A) matrix in equations (6) and (7) is singular, the spatial random effects cannot be simulated directly.

We therefore introduced the spatial smoothing parameters, ξ and ζ, defined in equations (2) and (3), and set

them equal to 1 − 1E-6. We then generated spatial random effects according to joint distributions (6) and (7)

augmented with the smoothing parameters. Next, for each county, we simulated 80 math and reading scores

from the following two-component mixture model:

yij |ϕi,ψi ∼
2∑
k=1

πijkN2

 β10k + ϕ1ik

β20k + ϕ2ik

 ,Σk


logit(πij2) = γ0 + ψi, i = 1, . . . , 100; j = 1, . . . , 80, (9)

where πij2 denotes the weight for the second mixture component. For k = 1, 2 we assigned independent N(0, 1000)

priors to β10k and β20k, and IW(3, I2) priors to Σk and Λk; for γ0, we assigned a N(0, 1000) prior; for ϕik =

(ϕ1ik, ϕ2ik)
′ and ψi, we assigned bivariate and univariate intrinsic CAR priors, respectively; and for τ2, the

conditional variance of ψi, we assigned an IG(0.01, 0.01) prior.

For each simulation, we ran 2000 MCMC iterations in R version 2.14 (R Development Core Team, 2011)

using a burn-in of 1000, which was sufficient to ensure convergence based on standard diagnostics. To avoid label

switching, we simulated extremely well-separated mixture components, effectively imposing the order constraints

β101 < β102 and β201 < β202.

Table 2 presents the posterior means, averaged across the 200 simulations, along with 95% coverage rates

and the true parameter values used to generate the data. The posterior estimates showed minimal bias, and the

coverage rates were near the nominal values for all parameters. Figure 3 displays the bivariate densities from a

randomly selected simulation study. Panel (a) shows the true (i.e., simulated) density for an “average” county

in which the random effects were set to 0. Panel (b) displays the corresponding model-estimated density, and
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Table 2. Average posterior estimates and 95% coverage probabilities across 200 simulated datasets.
Mixture Average Posterior

Component Parameter Description True Value Mean 95% Coverage

1 β101 Math Intercept 340 340.01 0.93

β201 Reading Intercept 330 330.02 0.95

Σ111 Var(y1ij |ϕ1i1) 20 20.10 0.96

Σ121 Cov(y1ij , y2ij |ϕi1) 10 10.17 0.94

Σ221 Var(y2ij |ϕ2i1) 36 36.34 0.95

Λ111 Var(ϕ1i1) 9 8.77 0.96

Λ121 Cov(ϕ1i1, ϕ2i1) 3 2.80 0.95

Λ221 Var(ϕ2i1) 4 3.49 0.91

2 β102 Math Intercept 360 360.01 0.97

β202 Reading Intercept 345 345.01 0.96

Σ112 Var(y1ij |ϕ1i2) 50 50.04 0.96

Σ122 Cov(y1ij , y2ij |ϕi2) 20 19.99 0.93

Σ222 Var(y2ij |ϕ2i2) 40 40.10 0.96

Λ112 Var(ϕ1i2) 4 3.53 0.93

Λ122 Cov(ϕ1i2, ϕ2i2) 6 5.73 0.92

Λ222 Var(ϕ2i2) 16 15.74 0.93

Mixing Weight γ0 Mixing Weight Intercept 0.75 0.75 0.96

Parameters τ2 Var(ψi) 1 1.00 0.94

panels (c) and (d) show the estimated densities for two randomly selected counties. The white circles denote the

true component means: β01 = (340, 330)′ and β02 = (360, 345)′. As expected, the estimated average density in

panel (b) closely mirrors the true density. Panel (c) shows a county in which the mixture components diverge

and there is a shift in mass toward the lower component. In panel (d), the component locations shift toward

higher math and reading values and the mass is concentrated on the upper component.

While we expect the proposed mixture model to perform well for multimodal data, one might wonder whether

the same holds for unimodal but skewed data such as the EOG scores. To address this question, we conducted

a second simulation in which we generated data from a 5-df bivariate skew-t distribution with location β0 =

(350, 360)′, skewness λ = (2,−2)′, and scale Σ =

 300 50

50 400

. This parameterization yielded a bivariate

distribution similar to the empirical histogram of EOG scores shown in Figure 1(b). As in the first simulation

study, we used the North Carolina adjacency matrix and generated 80 observations from each of the 100 counties.

Using bivariate CAR random effects, we allowed the location and skewness parameters to vary across the counties.

We then fitted the two-component model given in equation (9). For comparison, we also fitted a single-component

bivariate normal spatial model, which might be regarded as a conventional approach to analyzing such data. We

also computed DIC statistics to further compare the one- and two-component models.

Figure 4 presents the true bivariate density (panel a) along with the estimated “average” densities (random

effects set to zero) from the two-component (panel b) and one-component (panel c) models. Compared to the one-

component model, the two-component model was able to reproduce the true density reasonably well, although
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Fig. 3. True and estimated posterior densities from a randomly selected dataset from the first simulation study. Panel

(a) shows the true simulated density for an “average” county (random effects set equal to zero); panel (b) depicts the

corresponding model-estimated density; panel (c) presents the estimated density for a county (County 31) in which the

components split apart; and panel (d) shows the estimated density for a county (County 100) in which the component

locations shift toward higher values and more mass is concentrated on the upper component. White circles represent the

true component means: β01 = (340, 330)′ and β02 = (360, 345)′.

even the two-component model failed to fully capture the kurtosis displayed in panel (a). The one-component

model, on the other hand, was unduly influenced by the tails of the skew-t distribution; as a result, its mass is

far more dispersed than that of the two-component model. In terms of DIC, the two-component model vastly

outperformed the one-component model (139487 vs. 142566, respectively), confirming that the proposed method

provides superior fit over the conventional approach even for unimodal, skewed data.
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Fig. 4. True and estimated bivariate densities for simulation study 2. Panel (a) presents true 5-df bivariate skew-t distribution;

panel (b) presents the estimated density for an “average county” (random effects set to zero) from the two-component mixture

model; and panel (c) presents the estimated density for an average county from the one-component model.

Figure 5 presents contour plots comparing the true and two-component estimated densities, both overall and

for selected counties. As panel (a) indicates, the two-component model accurately estimated the location of the

true density, although with greater dispersion. In panels (b)-(d), the two-component model identified the location

shifts in the county-specific densities, but was unable to model the extreme skewness exhibited in panels (c) and

(d). While a higher-order mixture might provide better fit, identifiability problems could arise in attempting

to fit a high-dimensional mixture to unimodal data. It is also possible that with only 80 replicates per county

in the simulation study, there was insufficient sample size to capture all aspects of the county-specific densities.

Ultimately, however, mixtures based on multivariate normals may lack the flexibility required to model extremely
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skewed data. An alternative might be to develop a model based on mixtures of skew-elliptical distributions, such

as skew-normal or skew-t densities. We consider this extension further in Section 6.
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Fig. 5. Contour plots for (a) an “average” county and (b)-(d) selected simulated counties. Solid lines represent true densities

and dashed lines are estimated contours from the two-component model.
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5. Analysis of the EOG Data

Next, we fit the following two-component spatial mixture model to the EOG data:

yij |ϕi,ψi ∼
2∑
k=1

πijkN2

 η1ijk

η2ijk

 ,Σk


η1ijk = β10k + β11k ×Maleij + β12k ×NHBij + β13k × Freelunchij + α11k ×Medinci + ϕ1ik

η2ijk = β20k + β21k ×Maleij + β22k ×NHBij + β23k × Freelunchij + α21k ×Medinci + ϕ2ik

logit(πij2) = γ0 + γ1 ×Maleij + γ2 ×NHBij + γ3 × Freelunchij + δ1 ×Medinci + ψi,

i = 1, . . . , 100; j = 1, . . . , ni; k = 1, 2, (10)

where yij is a vector of math and reading scores for the j-th subject in the i-th county, Male is a dichotomous

indicator of male gender, NHB is a dichotomous indicator taking the value 1 if the student is non-Hispanic black

and 0 if non-Hispanic white, Freelunch is a dichotomous indicator taking the value 1 if the student participated

in a free or reduced-price lunch program and 0 otherwise, Medinc denotes county median household income (in

$1000s), and πij2 denotes the weight for the second mixture component.

As in the simulation studies, we assigned a bivariate CAR prior to ϕik and a univariate CAR prior to ψi.

We assumed weakly informative proper priors for all other model parameters: for β1k = (β10k, β11k, β12k, β13k)
′,

β2k = (β20k, β21k, β22k, β23k)
′ and γ = (γ0, γ1, γ2, γ3)

′, we assigned conjugate N4(0, 1000I4) priors; for α11k, α21k

and δ1, we assigned N(0, 1000) priors; for Σk and Λk, we assigned IW(3, I2) priors; and for τ2 we assigned an

IG(0.01, 0.01) prior. We ran two initially dispersed chains for 20000 iterations each, discarding the first 10000 as

burn-in. To reduce autocorrelation, we retained every tenth iteration.

Model diagnostics indicated efficient mixing and rapid convergence of the chains. Figure (6) presents the post–

burn-in trace plots for four selected model parameters: β111, the component-1 math coefficient for male gender;

γ3, the mixing weight coefficient for Freelunch; τ2, the variance of ψi; and Λ222, the variance of ϕ2i2. The chains

overlapped substantially, with no evidence of label switching within individual chains, and hence Stephens’s

(2000) relabeling algorithm converged rapidly. The component labels did require reordering across chains, but

the proper labeling was easily identified so that the chains could be combined for summary purposes. For

each of the four parameters, the Brooks-Gelman-Rubin upper credible interval was ≤ 1.21, indicating adequate

convergence of the chains.

To evaluate the performance of our model, we compared our proposed model to three submodels:

1) A one-component version of the proposed spatial mixture model with a bivariate CAR prior for ϕi;

2) A two-component fixed-effects model excluding ϕik and ψi; and

3) A two-component model with component-specific ϕik but no ψi.

Table 3 provides the model comparison results for the various models. The two-component random effects

models substantially outperformed submodels 1 and 2. Overall, the full model had the best performance,
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Fig. 6. Post–burn-in MCMC trace plots for four parameters from the proposed model: (a) β111, the component-1 math

coefficient for male gender; (b) γ3, the mixing weight coefficient for Freelunch; (c) τ2, the variance of ψi; and (d) Λ222, the

variance of ϕ2i2. Horizontal lines denote the posterior means from the combined chains. BGR = Brooks-Gelman-Rubin

upper credible interval.

suggesting that incorporating the random effects ψi into the mixing weights provided a modest additional benefit

relative to submodel 3.

Table 4 presents the posterior means and 95% credible intervals (CrIs) for the proposed model parameters.

The results suggest that there are two distinct mixing components, or “latent subpopulations” of students.

Subpopulation 1 contained an estimated 58% of the overall population, and was characterized by comparatively

low mean math and reading scores for the reference group (β101 = 349.25 and β201 = 344.50). In addition, NHB

race and free/reduced lunch enrollment were associated with lower math and reading scores. Higher county

median income was associated with a slight increase in reading scores (α211 = 0.05; 95% CrI=[0.00, 0.09]).

Subpopulation 2 contained the remaining 42% of the overall population and was associated with roughly a 10-

point increase in scores for the reference group compared to subpopulation 1 (β102 = 358.04 and β202 = 354.15).
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Table 3. Model comparison statistics for analysis of the EOG data.
Model Description D pD DIC3 ∆

One-Component Model 1068553 174 1068727 —

Two-Component Fixed Effects Model 1067255 28 1067283 1444

Two-Component Model Excluding ψi 1065144 295 1065439 1844

Proposed Model 1064990 328 1065318 121

In both groups, males had lower adjusted reading scores than females (e.g., β211 = −1.74; 95% CrI=[-1.98, -

1.49]); however, in subpopulation 2, males had higher adjusted math scores (β112 = 0.91; 95% CrI=[0.71, 1.13]).

These findings are consistent with previous research on gender disparities in standardized test scores, which has

shown that boys tend to score lower than girls in reading but modestly higher in math and science, particularly

in the upper tails of the test-score distribution (Pope and Sydnor, 2010). In terms of variability, subpopulation

1 displayed more individual-level and county-level heterogeneity than subpopulation 2. Not surprisingly, the

within-subject correlations between math and reading (captured by ρ1 and ρ2) were moderately high for both

subpopulations. In addition, the model accounted for almost all of the spatial association in the data: Moran’s

tests on the county-averaged residuals from the model yielded no evidence of residual spatial correlation (p = 0.99

for the math residuals and p = 0.84 for the reading residuals).

Figure 7 presents the predicted math and reading scores by county for reference group individuals (i.e.,

non-Hispanic white females not enrolled in a free- or reduced-price lunch program). Here, the between-county

variation reflects both observed differences in county median household income as well as the latent heterogeneity

captured by the spatial random effects. The spatial patterns of the predicted scores were similar to those for

the OLS residuals in Figure 2, but with increased smoothing, particularly among the central “Piedmont” and

southwest counties. This feature is expected, since the CAR priors act as spatial smoothers. In general, the

northeastern and central Piedmont counties had higher predicted scores than those in the interior northeast, south

central, and southwestern portions of the state. The predicted math scores for the reference group ranged from

352 to 356 across the state (panel a). Outlined on the map are Union County (along the southern border), which

had the highest predicted math score at 356.4 [95% CrI=[355.5, 357.5]), and Avery County (in the northwest),

which had the lowest predicted score at 352.1 [95% CrI=[350.2, 354.4]). There was also modest variation in

the predicted reading scores across the state (panel b). The predicted reading scores ranged from 348 to 353,

and showed a spatial pattern similar to the predicted math scores. Camden County, located in the northeastern

corner of the state, had the highest predicted reading score (352.6, 95% CrI=[351.0, 354.3]), and Graham County

in the southwest had the lowest predicted score (347.6, 95% CrI=[345.2, 349.7]).

Figure 8 displays four model-estimated bivariate densities for the reference cohort. Panel (a) presents the

density for an “average” county with household income set at the statewide median value and random effects

fixed at 0. Panels (b)-(d) display the densities for three selected counties: Camden County, which had the

highest predicted reading score and a top 10% math score; Bertie County, which was in the bottom 5% for both

math and reading; and Orange County, which had top 5% predicted math and reading scores. The county-
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Table 4. Posterior means and 95% credible intervals (CrIs) for the proposed model.
Mixture Posterior

Component (%) Parameter Description Mean 95% CrI

1 (58%) β101 Math Intercept 349.25 (348.67, 349.77)

β111 Male -0.19 (-0.41, 0.05)

β121 NHB Race -3.12 (-3.45, -2.77)

β131 Free/Reduced Lunch -2.50 (-2.83, -2.18)

α111 Median HH Income ($1000s) 0.03 (-0.01, 0.08)

β201 Reading Intercept 344.50 (343.84, 345.07)

β211 Male -1.74 (-1.98, -1.49)

β221 NHB Race -2.95 (-3.31, -2.56)

β231 Free/Reduced Lunch -2.98 (-3.32, -2.62)

α211 Median HH Income ($1000s) 0.05 (0.00, 0.09)

Σ111 Var(y1ij |ϕ1i1) 57.58 (55.77, 59.34)

Σ121 Cov(y1ij , y2ij |ϕi1) 35.26 (33.11, 37.19)

Σ221 Var(y2ij |ϕ2i1) 67.56 (65.37, 69.63)

ρ1 Corr(y1ij , y2ij |ϕi1) 0.57 (0.55, 0.58)

Λ111 Var(ϕ1i1) 7.95 (5.36, 11.31)

Λ121 Cov(ϕ1i1, ϕ2i1) 4.58 (2.58, 7.14)

Λ221 Var(ϕ2iϕ2i1) 5.04 (3.09, 7.61)

2 (42%) β102 Math Intercept 358.04 (357.69, 358.41)

β112 Male 0.91 (0.71, 1.13)

β122 NHB Race -3.35 (-3.77, -2.96)

β132 Free/Reduced Lunch -2.71 (-3.03, -2.37)

α112 Median HH Income ($1000s) 0.02 (-0.02, 0.05)

β202 Reading Intercept 354.15 (353.77, 354.52)

β212 Male -0.37 (-0.60, -0.14)

β222 NHB Race -3.55 (-3.96, -3.09)

β232 Free/Reduced Lunch -2.73 (-3.07, -2.37)

α212 Median HH Income ($1000s) 0.05 (0.02, 0.08)

Σ112 Var(y1ij |ϕ1i2) 36.08 (34.63, 37.53)

Σ122 Cov(y1ij , y2ij |ϕi2) 21.76 (21.61, 22.93)

Σ222 Var(y2ij |ϕ2i2) 40.52 (38.95, 42.17)

ρ2 Corr(y1ij , y2ij |ϕi2) 0.57 (0.56, 0.58)

Λ112 Var(ϕ1i2) 3.35 (2.00, 5.20)

Λ122 Cov(ϕ1i2, ϕ2i2) 1.65 (0.71, 2.84)

Λ222 Var(ϕ2i2) 1.69 (0.91, 2.84)

Mixing Weight γ0 Mixing Weight Intercept 0.15 (-0.06, 0.37)

Parameters γ1 Male -0.04 (-0.13, 0.04)

γ2 NHB Race -1.26 (-1.39, -1.11)

γ3 Free/Reduced Lunch -0.89 (-1.01, -0.77)

δ1 Median Household Income 0.02 (0.01, 0.04)

τ2 Var(ψi) 0.43 (0.25, 0.69)
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Fig. 7. Predicted (a) math and (b) reading scores for reference group, by county.

specific densities vary in both their location and distribution of mass relative to the average density presented

in panel (a). In particular, Camden County shifted toward higher math and reading scores, reflecting the more

favorable outcomes for this county, while Bertie county had a noticeable shift in mass toward the lower mixture

component. Orange County, like Camden County, showed a shift in mass toward more favorable outcomes, but

with a longer-tailed distribution, reflecting more heterogeneity for this county.

By integrating across these bivariate densities, we can obtain county-specific predictions of interest. For

example, to predict an individual’s joint probability of inconsistent or insufficient mastery in both the math and

reading, defined as a math score < 344 and a reading score < 342 (Table 1), we evaluated the following integral:

(1− πij2)

∫ 344

−∞

∫ 342

−∞
N2(ηij1,Σ1)dy2ijdy1ij + πij2

∫ 344

−∞

∫ 342

−∞
N2(ηij2,Σ2)dy2ijdy1ij .
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(d) Orange County

Fig. 8. Estimated county-specific densities for the reference group. Panel (a) presents the estimated density for an “average”

county, and panels (b)-(d) show the estimated densities for three selected counties.

A similar approach was used to compute additional joint probabilities of interest. Using the cut-off values defined

in Table 1, we calculated four joint probabilities of policy interest: (a) the probability of inconsistent or insufficient

mastery in both math and reading (labeled “low math/low reading”); (b) the probability of inconsistent or

insufficient math, but consistent or superior reading (“low math/high reading”); (c) the probability of consistent

or superior math, but inconsistent or insufficient reading (“high math/low reading”); and (d) the probability of

consistent or superior performance on both exams (“high math/high reading”). Figure 9 displays the county-
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specific averages for these four joint probabilities for the reference group.

In general, the central Piedmont and northeastern coastal counties had more favorable outcomes than counties

located in the interior northeast, along the southern border in the east, and in the north- and southwest corners

of the state. The probability of low math/low reading achievement ranged from 0.04 to 0.13 (panel a), with

Camden having the lowest (0.04, 95% CrI = [0.02, 0.06]) and Bertie County having the highest probability

(0.13, 95% CrI=[0.09, 0.17]). These results are consistent with the predicted densities shown in Figures 6 for

these counties. As panel (b) indicates, the combination of low math and high reading was a relatively rare

event, with average probabilities ranging from 0.02 to 0.07 across the state. This result is not surprising, since

students typically perform much better on math than on reading. One notable exception was Avery County

along the central western border, which had the lowest predicted math score (c.f., Figure 7), but a reading score

close to the state average at 349.40 (95% CrI=[347.67, 351.46]). High math/low reading performance was a

more common phenomenon (panel c), ranging from 0.06 to 0.16 statewide, with Graham County having the

highest probability (0.16, 95% CrI=[0.11, 0.22]). As panel (d) suggests, most students in the reference group

demonstrated consistent or superior achievement on both exams. The county averages ranged from 0.69 in Bertie

County (95% CrI=[0.65, 0.82]) to 0.87 in Camden County (95% CrI=[0.81, 0.93]), again supporting the results

shown in Figures 6(b) and 6(c).

6. Discussion

Closing the achievement gap between high- and low-performing schools is a necessary step to help all children

succeed in school (Ferguson, 2008). Although NCLB was designed to help close the gap by setting standards

for evaluating schools, significant disparities remain, both within North Carolina and across the U.S. (National

Center for Education Statistics, 2013). Therefore, it is an important public policy goal to examine regions of

varying school performance and to identify factors associated with differences in student achievement. This

will enable state education officials to direct resources to areas of greatest need. However, because few studies

have examined regional differences in student achievement, there remains a need for a systematic approach to

identifying geographic areas of high and low performance.

This paper has described a new spatial mixture model designed to meet these goals. The model incorporates

individual- and region-level predictors, accommodates complex dependence structures, enables investigators to

examine covariate effects across subgroups of the population, and supports region-specific departures from nor-

mality through the inclusion of spatial random effects for both the location parameters and the mixing weights.

By integrating across this multivariate density, one can obtain region-specific joint, marginal, and conditional

inferences of interest. In the EOG study, for example, we were able to compute county-specific joint probabilities

of low math/low reading performance, low math, high reading performance, etc. We specified the model within

a Bayesian framework and, for posterior computation, we developed a tractable MCMC algorithm that relies in

large part on easy-to-sample Gibbs steps.
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Fig. 9. Predicted joint probabilities of (a) low math, low reading; (b) low math, high reading; (c) high math, low reading; and

(d) high math, high reading for the reference group.

Our exploratory analysis of the EOG data is, to our knowledge, the first to use advanced multivariate spatial

modeling to examine geographic patterns in EOG scores at a refined geographic level. Through our analysis,

we found that non-Hispanic black race and enrollment in subsidized lunch programs were associated with lower

test scores. We also found gender gaps in EOG performance, with girls performing substantially better in

reading, particularly among students with low EOG scores, and boys scoring slightly higher in math, especially

among “high-achieving” students. These results are consistent with previous research on gender disparities in

standardized test scores (Pope and Sydnor, 2010; National Center for Education Statistics, 2013), which has

shown that boys tend to score lower than girls on standardized reading tests, but generally perform better

in math and science, particularly in the upper tails of the response distribution (i.e., among high-performing
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students). Together, these findings suggest the need to target two sets of gender disparities: first, in reading

among students with low EOG performance and second, in math among those with high EOG scores. Future work

might also examine gender-by-county interactions vis-à-vis a spatial random-coefficients model, to determine if

these disparities vary by region, a finding documented at the national level in prior work (Pope and Sydnor,

2010).

Our analysis revealed similar spatial patterns for math and reading scores, with the central Piedmont and

northern coastal counties displaying higher scores on average than counties in the interior northeast, south

central, and western-most portions of the state. These findings could be used to guide county-level initiatives to

improve elementary education. For example, by identifying counties with comparatively low reading scores, local

school boards could introduce school-based literacy programs to improve vocabulary and reading comprehension.

This is especially relevant in counties such as Graham County, which had the highest rate of high math/low

reading performance.

Our simulations demonstrated that the proposed mixture model outperforms the conventional, single-component

model, even for skewed unimodal data. However, by relying on multivariate normal distributions, we failed to

fully capture the skewness observed for some of the counties in the second simulation study. An interesting

extension, therefore, would be to develop models based on mixtures of skew-normal or skew-t distributions,

building on recent work in the univariate non-mixture setting (Genton and Zhang, 2012; Nathoo and Ghosh,

2013; Zareifard and Khaledi, 2013). This would yield a highly flexible and computationally tractable parametric

model that could accommodate both multimodality and extreme skewness.

In our application, we considered two-component mixture models, but higher-dimensional mixtures can be

envisioned. More generally, one might choose to model the multivariate distribution nonparametrically via infinite

mixtures, extending the recent work of Kottas et al. (2008) to allow for multivariate responses. Extensions

to more than two outcomes are also straightforward, although as the dimension of the problem increases, it

may become necessary to impose a structure on the class-specific error covariances, Σk, to aid in identifying

variance components. In high-dimensional settings, a factor analytic approach could be used to further encourage

dimension reduction.

Our modeling approach should also have broad applicability to other research settings. For example, the

spatial mixture model could be applied in reproductive epidemiology to explore joint spatial patterns in birth

outcomes and to obtain region-specific joint probabilities of low birth weight and preterm birth. It might also

find use in medical imaging as an extension of recent univariate methods (Ismail et al., 2013). In short, the

proposed model provides a pragmatic and flexible approach for the joint analysis of multivariate areal data. The

MCMC algorithm described in Section 3 offers a computationally tractable method for fitting such models.
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Appendix: MCMC Algorithm

1) Update γk and δk: The full conditional for p-dimensional vector γk (k = 2, . . . ,K) is given by

π(γk|·) ∝
n∏
i=1

ni∏
j=1

(
ex

′
ijγk+v′

iδk+ψik∑K
h=1 e

x′
ijγh+v′

iδh+ψih

)
Np(γk;µγ ,Σγ),

where Np(γk; ·) is a p-dimensional normal distribution evaluated at γk. Since this full conditional does

not have a closed analytic form, we update γk using a random-walk Metropolis algorithm based on a

multivariate-t3(sgT k) proposal density centered at the previous value, γold
k , where the parameter sg scales

the covariance to achieve an optimal acceptance rates, and T k is a component-specific scale matrix. To

improve mixing, we apply the adaptive proposal approach developed by Haario et al. (2005), which uses

the empirical covariance from an extended burn-in to tune T k. A similar approach can be used to update δk.

2) Update ψik: The full conditional for ψik (i = 1, . . . , n; k = 2, . . . ,K) is given by:

π(ψik|·) ∝
ni∏
j=1

(
ex

′
ijγk+v′

iδk+ψik∑K
h=1 e

x′
ijγh+v′

iδh+ψih

)
N

(
1

mi

∑
l∈∂i

ψlk, τ
2
k/mi

)
,

where mi and ∂i are defined in equation (4) of Section 3. Since this full conditional does not have a closed

form, we update ψik using random-walk Metropolis.

(3) Update τ2k : Assuming an IG(g, s) prior, draw τ2k its IG(g∗, s∗) full conditional, where g∗ = g+ (n−ω)/2,

s∗ = s+ψ′
k(M −A)ψk/2, n is the number of areal units, ω = max(1,number of “islands”), and (M −A)

is defined in equation (6).

(4) Update Cij : For all (i, j), draw Cij from its full conditional

π(Cij |·) = Pr(Cij = k|·) = Cat(pijk), where

pijk =
πijk N2(yij ;ηijk,Σk)∑K
h=1 πijhN2(yij ;ηijh,Σh)

.

Here, Cat(pijk) denotes a “categorical” distribution taking the value k with probability pijk, πijk is the

prior probability that Cij = k, as given in equation (1) of Section 3, and N2(yij ;ηijk,Σk) denotes the

bivariate normal density from equation (1), Section 3, evaluated at yij .



Multivariate Spatial Mixture Model 25

(5) Update Σk: Assuming an IW(κ0,S0) prior, update Σk from its IW(κ∗,S∗) full conditional, where

κ∗ = κ0 +Nk, Nk is the number of observations in component k, S∗ = S0 +E
′
kEk, E = Y k − η∗

k, Y k is

an Nk × 2 matrix consisting of y1ij (first column) and y2ij (second column) response values for all (i, j) in

component k, and η∗
k is an Nk × 2 matrix consisting of η1ij (first column) and η2ij (second column) linear

predictor values for all (i, j) in component k, as defined in equation (1). Use Σk =

(
σ2
1k ρkσ1kσ2k

ρkσ1kσ2k σ2
2k

)
to obtain σ2

1|2,k = (1− ρ2k)σ
2
1k, σ

2
2|1,k = (1− ρ2k)σ

2
2k, β

∗
1k = ρkσ1k/σ2k and β∗

2k = ρkσ2k/σ1k.

(6) Update β1k and α1k: We update β1k and α1k conditional on y2k, where y2k denotes the Nk × 1 vector

of y2ij response values for all (i, j) in component k. Specifically, assuming a Np(µβ ,Σβ) prior, update β1k

from its Np(Mβ1k
,V β1k

) full conditional, where

V β1k
=

[
Σ−1
β + σ−2

1|2,k(X
′
kXk)

]−1

and

Mβ1k
= V β1

{
Σ−1
β µβ + σ−2

1|2,kX
′
k [y1k − V kα1k −Φ1k − β∗

1k(y2k − η2k)]
}
.

Here, y1k denotes the Nk × 1 vector of y1ij response values for all (i, j) in component k; Xk denotes the

Nk × p individual-level design matrix for component k; V k is an Nk × r county-level design matrix for

component k; Φ1k is an Nk × 1 stacked vector such that ϕ1ik is replicated for each observation in county i

and component k; η2k is an Nk×1 vector of η2ij values for all (i, j) in component k, as defined in equation

(1); and σ2
1|2,k and β∗

1k are defined in Step (5). A similar set of equations can be used to update the r × 1

vector α1k.

(7) Update β2k and α2k: We update β2k and α2k conditional on y1k. Specifically, assuming a Np(µβ ,Σβ)

prior, update β2k from its Np(Mβ2k
,V β2k

) full conditional, where

V β2k
=

[
Σ−1
β + σ−2

2|1,k(X
′
kXk)

]−1

and

Mβ2k
= V β1

{
Σ−1
β µβ + σ−2

2|1,kX
′
k [y2k − V kα2k −Φ2k − β∗

2k(y1k − η1k)]
}
.

Here, η1k is an Nk × 1 vector of η1ij values for all (i, j) in component k, as defined in equation (1), σ2
2|1,k

and β∗
2k are defined in Step (5), and all other elements are defined in a manner analogous to those in Step

(6). A similar set of equations can be used to update the r × 1 vector α2k.

(8) Update ϕik: For i = 1, . . . , n, draw the 2× 1 vector ϕik from its N2(Mϕ,V ϕ) full conditional, where

V ϕ =
(
NikΣ

−1
k +miΛ

−1
k

)−1

Mϕ = V ϕ

[
Σ−1
k Z

′
ik(yik −Xikβk − V ikαk) +Λ−1

k

∑
l∈∂

ϕlk

]
.

Here, Nik denotes the component-k sample size for county i; mi is the number of neighbors of county i; Zik

is a 2Nik× 2 matrix with alternating rows of (1, 0) and (0, 1); yik is a 2Nik× 1 stacked vector consisting of
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alternating Y1 and Y2 response values for each observation in county i and component k; Xik is a 2Nik×2p

design matrix for county i and component k, with rows alternating between (x′
ij ,0) and (0,x′

ij) for each

of the Nik observations in county i and component k; βk = (β′
1k,β

′
2k)

′ is a 2p×1 vector of individual-level

regression parameters; V ik is a 2Nik × 2r design matrix of county-level predictors; and αk = (α′
1k,α

′
2k)

′

is a corresponding 2r × 1 vector of county-level regression coefficients.

(9) Update Λk:

Assuming an IW(ν0,D0) prior, draw Λk from its IW(ν∗,D∗) full conditional, where ν∗ = ν + n − ω, n

is the number of areal units, ω is defined in Step (3) above, and D∗ = D0 +Φ∗′

k (M −A)Φ∗
k. Here, Φ∗

k

denotes an n × 2 matrix with first column equal to ϕ1k = (ϕ11k, . . . , ϕ1nk)
′ and second column equal to

ϕ2k = (ϕ21k, . . . , ϕ2nk)
′.
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Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. Berlin: Springer-Verlag.

Gelfand, A. E., A. Kottas, and S. N. MacEachern (2005). Bayesian nonparametric spatial modeling with Dirichlet

process mixing. Journal of the American Statistical Association 100 (471), 1021–1035.



Multivariate Spatial Mixture Model 27

Gelfand, A. E. and P. Vounatsou (2003). Proper multivariate conditional autoregressive models for spatial data

analysis. Biostatistics 4 (1), 11–15.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian Data Analysis (2 ed.). Boca Raton:

Chapman & Hall/CRC.

Genton, M. and H. Zhang (2012). Identifiability problems in some non-Gaussian spatial random fields. Chilean

Journal of Statistics 3 (2), 171–179.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika 82 (4), 711–732.

Green, P. J. and S. Richardson (2002). Hidden Markov models and disease mapping. Journal of the American

Statistical Association 97 (460), 1055–1070.

Haario, H., E. Saksman, and J. Tamminen (2005). Componentwise adaptation for high dimensional MCMC.

Computational Statistics 20, 265–273.

Ismail, S., W. Sun, F. S. Nathoo, A. Babul, A. Moiseev, M. F. Beg, and N. Virji-Babul (2013). A skew-t space-

varying regression model for the spectral analysis of resting state brain activity. Statistical Methods in Medical

Research 22 (4), 424–438.

Ji, C., D. Merl, T. B. Kepler, and M. West (2009). Spatial mixture modelling for unobserved point processes:

Examples in immunofluorescence histology. Bayesian Analysis 4 (2), 297–316.

Jin, X., B. P. Carlin, and S. Banerjee (2005). Generalized hierarchical multivariate car models for areal data.

Biometrics 61 (4), 950–961.

Kottas, A., J. A. Duan, and A. E. Gelfand (2008). Modeling disease incidence data with spatial and spatio-

temporal Dirichlet process mixtures. Biometrical Journal 50 (1), 29–42.
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