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ABSTRACT 
 
Time to event data arise in several fields including biostatistics, demography, economics, engineering and 
sociology. The terms duration analysis, event-history analysis, failure-time analysis, reliability analysis, and transition 
analysis refer essentially to the same group of techniques although the emphases in certain modeling aspects 
could differ across disciplines. SAS® procedures LIFETEST, LIFEREG, PHREG, RELIABILITY, and 
QLIM have different capabilities for analyzing duration data. Methods include Kaplan-Meier estimation, 
accelerated life-testing models, and the ubiquitous Cox model. Recent developments in SAS extend their 
reach to include analyses of multiple failure times, recurrent events, frailty models, Markov models and use of 
Bayesian methods. We present an overview of these methods with examples illustrating their application in 
the appropriate context. 
 
INTRODUCTION 
 
Survival Analysis is a collection of methods for the analysis of data that involve the time to occurrence of some 
event, and more generally, to multiple durations between occurrences of different events or a repeatable 
(recurrent) event. From their extensive use over decades in studies of survival times in clinical and health related 
studies and failures times in industrial engineering (e.g., reliability studies), these methods have evolved to 
special applications in several other fields, including demography (e.g., analyses of time intervals between 
successive child births), sociology (e.g., studies of recidivism, duration of marriages), and labor economics 
(e.g., analysis of spells of unemployment, duration of strikes). Books and monographs continue to be 
published in this area that attest to its rich methodology and versatility. See references for a partial list. 
 
The typical context in biostatistics is a data gathering process that records an event time T measured from a 
specified time origin in a sample of patients. However, when follow up ends the event may not have occurred 
in some patients resulting in right censored event times. What we know is that T exceeds U, where U is the follow 
up time. The survival times of these patients are censored, and U is called the censoring time. Censoring will also 
occur if say a patient dies from causes unrelated to the endpoint under study, or withdraws from study for 
reasons not related to the endpoint. Such patients are lost to follow up. When there is a competing risk for the 
endpoint of death, it is important to ascertain whether death is due to the cause under study. Other forms of 
censoring are possible depending on the type of study. For example, if the true event time T is not observed 
but is known to be less than or equal to V, we have a case of left censoring. If all that is known about T is that it 
is somewhere between two times U and V (U<V), we say it is interval censored.   
 
Generally, one records a number of covariates z (e.g., age, gender, comorbidity, treatment assignment etc.) 
whose influence on the distribution of T is of interest. Due to the longitudinal feature of the data gathering 
process some covariates are time-invariant while others could be time-varying. The latter may arise from 
intermediate events that influence the distribution of T. Multi-state models provide a means of analyzing data 
with multiple event times.  
 
Despite our best intention in recording all covariates relevant to a specific analysis, we might encounter 
heterogeneity in patient samples that cannot be explained by the observed covariates alone. Unobserved 
heterogeneity is likely in observational studies. Frailty models and finite-mixture models can be very informative in 
this regard. 
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For time-fixed covariates z, the survival distribution = > = −( | ) [ | ] exp( ( | ))S t P T t H tz z z  is expressed in 

terms of the cumulative hazard = ∫0( | ) ( | )
t

H t h u duz z  where ( | )h t z  denotes the hazard function. (The 

relationship between S and H is more subtle when the distribution T is not continuous). We may interpret 
∆( | )h t tz as a conditional probability because ∆ ≈ < + ∆ ≥( | ) [ | , ]h t t P T t t T tz z . For this reason ( | )h t z  is 

often referred to as the instantaneous risk of the event happening at time t. Other useful summary quantities in 
survival analysis are (suppressing dependence on z): 
 

Mean survival time, µ
∞

= = ∫0( ) ( )E T S t dt  

 Mean survival restricted to time L, µ = = ∫0(min( , )) ( )
L

L E T L S t dt  

 Percentiles of survival distribution, = > ≤ −inf{ 0 : ( ) 1 }pt t S t p , 0<p<1 

 Mean residual life at time t, 
∞−= − > = ∫1( ) ( | ) { ( )} ( )

t
r t E T t T t S t S u du  

 

Just as H determines S, the relationship between r and S is ( )− −= −∫1 1

0
( ) (0){ ( )} exp { ( )}

t
S t r r t r u du . Because 

survival data are often quite skewed with long right tails, the restricted mean survival or the median survival 
time are generally preferred as summary statistics. 
 
The objectives in a survival analysis may include estimation of one or more of these statistics at specified 
covariate profiles and quantifying the influence of z (e.g., treatments, demographics) on survival. These goals 
can be achieved through modeling how z impacts T directly or indirectly through for example, the hazard

( | )h t z . However, an initial analysis would typically employ nonparametric methods to estimate the survival 
function and summary statistics, and a comparison across several groups or sub-populations. 
 

I. NONPARAMETRIC ANALYSIS 
 
Procedure LIFETEST is the mainstay of nonparametric survival analysis. For right censored data it computes 
the Kaplan-Meier (product limit) estimator of the survival distribution S, its quartiles and the restricted mean 

Lµ . It provides tests of comparison of the survival distribution across two or more populations including 
adjustment of the p-value for multiple comparisons if warranted, and tests of trend for ordered alternatives. 
Using ODS graphics with the PLOTS= option can produce exquisite graphs for estimates for S, its 
derivatives, and pointwise confidence intervals or a confidence band for S. 
  
ILLUSTRATIVE EXAMPLE 1 
 
McGilchrist & Aisbett (1991) describe a study in 38 kidney dialysis patients where the time in days to 
infection at the catheter insertion point was recorded. Each patient (i) has two times. After the first insertion 
of the catheter, the time to infection 1iT if observed is recorded. If the catheter is removed for any reason 
other than infection, 1iT  is considered right censored at the removal time 1iU . If infection occurs, the 
catheter is removed, the patient is treated and cleared of the infection and then after some time, a second 
catheter is inserted. The second time to infection 2iT , measured from the time of second insertion, is either 
observed or right censored if the catheter removed at time 2iU  for any reason other than infection. 
 
The sample data are 1 1 2 2{( , , , , ) : 1 }i i i i iX X i nδ δ ≤ ≤z  where min( , ), [ ]ij ij ij ij ij ijX T U T Uδ= = ≤  j=1,2 and ijδ  
denotes the event indicator. Censoring is assumed independent of infection times. The data set KIDNEY has 
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two records per patient with variables TIME, FAIL and covariates AGE (=average age between the 
insertions of the catheter), and GENDER. PATIENT and INSERT identify patient and the two infection 
times. Nonparametric methods use the accumulating count of events up to time t,

δ
=

= ≤ =∑ 1
( ) [ , 1]n

j ij iji
N t X t  and the number at risk at time t, 

=
= ≥∑ 1

( ) [ ]n
j iji

Y t X t . 
 
a.  ESTIMATION OF SURVIVAL CURVES 
 
The following syntax will produce the product-limit estimates of infection time by insertion for females and 
males. Use of formats when applicable makes the output display more readable. 
 
proc format; 
value gender 0='male' 1='female'; 
value insert 1='first' 2='second'; 
run; 
 
ods graphics on; 
proc lifetest data=kidney 
 plots=survival(nocensor cb=hw cl strata=panel atrisk=0 to 600 by 50); 
strata insert gender; 
time time*fail(0); 
format gender gender. insert insert.; 
run; 
ods graphics off; 
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The NOCENSOR option suppresses the display of censored times (with the symbol + ); the CB=HW option 
displays the simultaneous Hall-Wellner 95% confidence band for the survival curves; CL displays the lower 
and upper limits of the pointwise 95% confidence interval, and at the foot of each plot the ATRISK option 
shows the number of patients at risk of infection at specified times. STRATA=panel requests display of the 
four individual plots in a 2×2 panel, instead of the default overlay.  For the first catheter insertion it appears 
that females have a longer infection-free duration than males. Stratified by INSERT the default logrank test 
for comparing the time to infection distributions for males and females is requested by  
 
strata insert/group=gender test=logrank; 
 
The test is significant (p=.0009). However, when comparisons are made separately at each catheter insertion 
this significance is seen in the figure below for the first insertion (left panel) and not the second insertion 
(right panel) (p=.2343). Pointwise 95% confidence intervals are also displayed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. CUMULATIVE HAZARD AND KERNEL-SMOOTHED HAZARD 
 
The option method=pl nelson in the LIFTEST statement adds to the default table of Kaplan-Meier 
estimates the Nelson-Aalen estimate of the cumulative hazard for each stratum specified in the strata 

statement. With strata defined by INSERT, the estimate is −= ∫ 1

0
ˆ ( ) { ( )} ( )

t

j j jH t Y u dN u , j=1, 2. It could be 

used to obtain an estimator of the survival curve ˆ ˆ( ) exp( ( ))j jS t H t= − . In addition, the PLOTS option in the 
syntax below produces an estimate of the kernel-smoothed hazard function using the Epanechnikov kernel 
and bandwidth of 35 days. Optimal selection of a bandwidth by minimizing the mean integrated squared 
error was not feasible with this small data set. The risk of infection appears to first increase and then taper 
off, but another increase is seen for the second catheter insertion. The sharp rise towards the end is 
somewhat typical in this context. However, another choice of kernel or bandwidth might depict a different 
pattern. Larger bandwidth produces smoother curves. 
 
ods graphics on; 
proc lifetest data=kidney method=pl nelson  

plots(only)=hazard(kernel=e bw=35); 
strata insert; 
time time*fail(0);  
format insert insert.; 
run; 
ods graphics off; 

 
 

Statistics and Data AnalysisSAS Global Forum 2010

 



5 
 

 
 
 

II. PARAMETRIC MODELS-ACCELERATED FAILURE TIME MODEL 
 
Procedures LIFEREG and RELIABILITY can be used for inference from survival data that have a 
combination of left, right and interval censored observations. The accelerated failure time (AFT) model is 
specified by  µ σε= +logT  with location and scale parameters µ, σ, respectively. Covariate effects are 
modeled by µ β′= 1z , and additionally if plausible heteroscedasticity by σ β′= 2log z  By specifying a 
distribution for the random variable ε, independent of z, one induces a distribution on T.   Estimation of 
parameters β β1 2( , )  is via maximum likelihood.  Survival distributions within the AFT class are the 

exponential, Weibull, lognormal and loglogistic. All distributions have the functional form γα= 0( ) (( / ) )S t S t
where 1 , log , 0, 0σ γ µ α α γ−= = > > , and 0S is a known survival distribution 
 
SAS also allows the generalized gamma (GG) distribution which has an additional shape parameter. Here ε 
has the one-parameter log-gamma distribution with shape parameter k>0, i.e., 0S is the gamma survival 
distribution with shape parameter k. A re-parameterization suggested by Prentice (1974), recasts the GG in 
the AFT form β σ′= +1 0logT Zz where δ −= 2 ,k σ σδ=0 and the distribution of Z is defined for all δ≠0. In 
the limit as δ→0, Z converges to the standard normal. SAS calls δ the shape and σ 0  the scale of the GG. 
Defined in this way, GG returns three special cases:  with δ=0 the log normal; with δ=1 the Weibull;  with 
δ=1 and σ 0 =1 the exponential. Testing of these restrictions within the parent GG is valid under maximum 
likelihood (ML) via for example, likelihood ratio and Lagrangian multiplier (score) tests.  
 
a.  FITTING PARAMETRIC MODELS 
 
 Initially we assume the within-patient times 1 2( , )i iT T are independent, making our sample comprise of 76 
individual catheter insertions. The dist=gamma option requests fitting the GG to the model with covariates 
age and gender (Table 1, column 1). Wald tests produced by default indicate that age is not significant 
(p=.57), but gender is strongly significant (p<.0001). The positive estimated β-coefficient for female gender 
shows that female dialysis patients have a longer infection-free time compared to male patients. 
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proc lifereg data=kidney; 
class gender; 
model time*fail(0)=age gender/dist=gamma; 
format gender gender.; 
run; 
 

Table 1: Summary of results of fitting parametric AFT models to infection times 

 Maximum likelihood estimate (standard error) 

Parameter GG Lognormal Weibull Exponential Loglogistic 

Intercept 3.4188(0.5322) 3.4490(0.4939) 4.2916(0.5505) 4.4025(0.4971) 3.4052(0.4636) 

AGE –0.0054(0.0097) –0.0054(0.0097) –0.0042(0.0103) –0.0046(0.0094) –0.0073(0.0093) 

GENDER-
female 

1.3830(0.3283) 1.3269(0.3261) 0.9655(0.3248) 0.8853(0.2871) 1.5526(0.3265) 

Scale 1.1863(0.1085) 1.1847(0.1077) 1.1031(0.1035) 1(fixed) 0.6793(0.0720) 

Shape –0.0473(0.3164) 0(fixed) 1(fixed) 1(fixed) na 

–2 log L 197.032 197.053 206.197 207.348 198.532 

BIC 218.686 214.375 223.520 220.340 215.855 
LM test 
p-value 

na .887 <.0001 Shape <.001 
Scale  .316 

na 

 
The log-normal, Weibull and exponential models can be fitted directly by changing the dist= option (e.g.,  
dist=lnormal) or by restricting the GG model’s shape and scale parameters. Then Lagrangian multiplier (LM) 
1-degree of freedom chi-square tests are produced. 
 
For lognormal: δ =0 : 0.H  Use dist=gamma noshape1 shape1=0;   
For Weibull: δ =0 : 1.H  Use dist=gamma noshape1 shape1=1; 
For exponential: δ σ= =0 0: 1, 1.H Use dist=gamma noshape1 shape1=1 noscale scale=1; 
For GG vs exponential, SAS does not produce a joint test 2 df LM test. However, in all situations except for 
comparing GG to loglogistic one can perform a likelihood ratio test (LRT). The LM test and LRT are 
asymptotically equivalent. In this example, compared to the GG model the simpler lognormal model is 
acceptable. It also has the lowest BIC.  
 
b.  ESTIMATION OF PERCENTILES 
 
In the AFT model β σε′= +logT z  for a specified covariate profile z the 100(1−p)-th percentile pt of the 

event time T  is obtained from β σ′= +exp( )p pt wz where pw is the corresponding percentile of ε . Although 
statistics computed via the output statement from the fitted model in LIFEREG may be used for this 
purpose, an easier approach is to use PROC RELIABILITY. Suppose we want estimates and 95% 
confidence intervals for the 25th, 50th and 75th percentiles for females age=44 years and males age= 49 years. 
These are approximately the median ages in the data set. We add these two profiles to the data set kidney: 
 
data covar; 
input gender age @@; 
datalines; 
1 44 0 49  
; 
run; 
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data kidney2; 
set covar(in=one) kidney; 
if one then control=1; 
else control=0; 
run; 
 
The same lognormal model statistics of Table 1 column 2 are obtained using the syntax below. The 
OBSTATS options produce the desired estimates. The ODS statements are added to permit some editing of 
the output data set ModObstats. The control= option reduces observation-wise calculations to the six 
records in ModObstats for the control variable value=1 only.  Results are shown in Table 2. 
 
ods select ModObstats; 
proc reliability data=kidney2; 
class gender; 
distribution lognormal; 
model time*fail(0)=age gender/obstats(quantiles=.25 .50 .75 control=control); 
format gender gender.; 
run; 
 

Table 2: Estimates of percentiles in lognormal model 

  Age Gender  p Estimate 
95% Lower 

CL 
95% Upper 

CL 

44 female 0.25 44.2 30.9 63.3 

44 female 0.50 98.3 69.6 138.9 

44 female 0.75 218.7 148.3 322.5 

49 male 0.25 10.9 6.2 19.2 

49 male 0.50 24.2 13.9 42.0 

49 male 0.75 53.7 30.2 95.4 

 
The LOGSCALE statement in RELIABILITY permits modeling heteroscedasticity in the scale parameter σ . 
For example  logscale age gender; models 20 21 22log [ ]Age Gender femaleσ β β β= + + = resulting in a 
6-parameter model. It turns out that 21 22( , )β β are not significant indicating that our simpler model is 
adequate. Generally, when specifying the covariates for (µ,σ) one should consider exclusion restrictions where 
at least one covariate present in 1 1µ β′= z is excluded in 2 2logσ β′= z , and vice versa. This could ensure 
stability in ML estimates and estimated standard errors. Exclusions restrictions are informed by the subject 
matter rather than statistical considerations. 
 
c.  JOINT MODELING OF INFECTION TIMES 
 
Consider a joint model for the infection times 1 2( , )i iT T allowing correlation between them. Create one record 
for both infection times, transform to the log scale logij ijy T∗ =  and create a variable ijUB (upperbound) as  

logij ijUB X=  if 0ijδ = (censored); log( )ij ijUB X c= + if 1ijδ =  (infection time) where c  is an arbitrary 

positive constant. Our model is β′= +*
ij ij ijy uz  with 1 2( , )i iu u ~Normal (0, ρ σ σ1 2, , ) , but the observed 

analysis variable is: 
 ≥=  <

*

* *
1

if 
if 

ij ij ij
ij

i ij ij

UB y UB
y

y y UB
. 
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The following syntax sets up the data set BIVAR with one record per patient.  
 
proc sort data=kidney; by patient; run; 
data bivar; 
merge kidney(keep=insert patient time fail age gender where=(insert=1)) 
 kidney(keep=insert patient time fail where=(insert=2) 
    rename=(time=time2 fail=fail2)); 
by patient; 
drop insert; 
ub=log(time+10); ub2=log(time2+10); /*c=10*/ 
lgtime=log(time);  lgtime2=log(time2);  
if fail=0 then ub=lgtime;  
if fail2=0 then ub2=lgtime2; 
run; 
 
We use the same covariates (AGE, GENDER) in the two-equation model although generally covariate 
specification should consider exclusion restrictions. PROC QLIM estimates the joint model by maximum 
likelihood (Table 3). 
 
proc qlim data=bivar; 
class gender; 
format gender gender.; 
endogenous lgtime~censored(UB=UB); 
endogenous lgtime2~censored(UB=UB2); 
model lgtime=age gender; 
model lgtime2=age gender; 
run; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Wald test for no correlation 0 : 0H ρ = is not significant. The gender effect is strong for the first 
insertion but weak for the second supporting what we had seen in our nonparametric analysis. Standard 
errors are obtained from the Hessian matrix based on the second derivative of the log-likelihood. Optionally, 
with covest=qml added to the PROC QLIM statement, quasi-maximum likelihood (QML) standard errors 

Table 3. Parameter estimates for joint model for infection times 

Parameter  DF Estimate 

Standard 
Error 

(Hessian) t Value 
Approx 

Pr > |t| 

Standard 
Error 

(QML) 

lgtime.Intercept  1 3.411765 0.702542 4.86 <.0001 0.532027 

lgtime.age  1 –0.013135 0.013567 –0.97 0.3330 0.011349 

lgtime.gender female 1 1.743168 0.453233 3.85 0.0001 0.434777 

lgtime.gender male 0 0 . . . . 

_Sigma.lgtime  1 1.205189 0.150094 8.03 <.0001 0.117485 

lgtime2.Intercept  1 3.481873 0.662375 5.26 <.0001 0.649470 

lgtime2.age  1 0.004995 0.013432 0.37 0.7100 0.013230 

lgtime2.gender female 1 0.866471 0.457612 1.89 0.0583 0.506512 

lgtime2.gender male 0 0 . . . . 

_Sigma.lgtime2  1 1.102781 0.148801 7.41 <.0001 0.131952 

_Rho  1 0.144550 0.181132 0.80 0.4249 0.209544 
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are obtained as a ‘sandwich’ of the Hessian and outer product (OP) matrices. QML standard errors are shown 
in the last column of Table 3. To obtain standard errors from OP only use  covest=op. Although 
asymptotically equivalent, in finite samples the results from the three methods could differ.  
 
d.  FRAILTY MODEL 
  
Another approach to incorporating correlation between the infection times is through a shared frailty ν i , a 
random effect, via β ν σε′= + +log .ij ij i ijT z Under the assumption that 1 2( , )i iT T are conditionally independent 

given ν 1 2( , , ),i i iz z ML estimation of the marginal model based on the data δ = ≤ ≤{( , , ) : 1, 2,1 }ij ij ijX j i nz can 

be carried out under assumed parametric distributions on ν ε( , ).i ij Currently there is no direct SAS procedure 
to carry out the computations. However, informed by LIFEREG for suitable starting values of the model’s 
parameters, PROC NLMIXED can be used to optimize the marginal likelihood. Post estimation provides 
empirical Bayes (EB) estimates of ν i , ie, ν( | ).iE data The plot below shows the EB estimates and 95% 
confidence limits for the 38 patients in the sample for the Weibull model with ν νν σ σ− 2 2~ ( ½ , ).i N  The frailty 
effect is strong with a LRT p-value<.01, but the effect appears to be influenced by patient #21.  
 

 
 

III. SEMIPARAMETRIC MODEL-PROPORTIONAL HAZARDS MODEL 
 
The workhorse of survival analysis for over three decades, the proportional hazards model (PHM) assumes 

0( | ) ( )exp( )h t h t β′=z z where 0h is an unspecified baseline hazard function and the parameter β is unknown. 

For time-invariant covariates, exp( )
0( | ) ( )S t S t β′= zz  where 0S is the survival function corresponding to 0h . 

Given two covariate profiles 1 2,z z  the hazard ratio 1 2 1 2( | )/ ( | ) exp(( ) )h t h t β′= −z z z z is constant in time. 
The stratified PHM given by 0( | ) ( )exp( )k kh t h t β′=z z maintains the proportional hazards assumption in each 
stratum k for a K-level stratification factor. For example, survival data from a multicenter clinical trial are 
often analyzed with center as the stratifying variable. 
 
In addition to analysis based on the traditional PHM, enhancements to PROC PHREG allow for several 
additional data structures. These include time-dependent covariates, multiple failure times, recurrent events, 
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and delayed entry or left censoring.  Although many covariates of interest are assessed at t=0, for example, 
age at entry, gender, race, comorbid conditions, baseline clinical measurements, we may have some covariates 
measured during the period of follow-up making them time-dependent. Intermediate events that may occur 
during follow-up could influence occurrence of the primary event of interest. Multiple events of different 
types or recurrences of the same event are typical in longitudinal studies or in data structures that are 
clustered (e.g., animals within the same litter). A unified approach to analysis of event history data has been 
explicated (Anderson et al, 1993) based on the theory of multivariate counting processes. 
 
Suppose there are K event types. Let ( )kN t denote the number of type k events that have occurred by time t;  

( )kY t  denotes the number of individuals at risk for the type k event just before t; and z(t) the covariate 
history observed just prior to t. Conditional on the prior history (denoted by t −ℑ ) the multiplicative intensity 
model (MIM) is ( ( )| ) ( ) ( | ( ))k t k kE dN t Y t t t dtα−ℑ = z where 0( | ( )) ( )exp( ( ) )k k kt t t tα α β′=z z . For a single event 
type, the MIM reduces to the previously described PHM. To harness the power of PHREG to fit the MIM, 
some preliminary data processing may be required to structure the event history and covariate data 
appropriately to permit the correct evaluation of the at-risk sets.   
 
a. FITTING THE PHM  

 
Consider again the two times to infection since insertion of the catheter in 38 dialysis patients. The following 
syntax fits the PHM to both infection times, 0 1 2( | ) ( )exp( )k k k kh t h t AGE GENDERβ β= +z where 
INSERT=k. Because 1 2( , , 1, 2)k k kβ β = may be correlated a robust covariance is requested by the 
COVSANDWICH (AGGREGATE) option and all standard errors used in subsequent inference will use this 
covariance. The class statement uses GLM coding. Results of maximum partial likelihood estimation are in 
Table 4. We notice that the effect of gender is strong for the first infection time, with a lower infection rate 
among female patients compared to male patients. The comparison for the second infection time is not 
significant. These conclusions are in line with our previous nonparametric and parametric analyses. 
 
proc phreg data=kidney covsandwich(aggregate); 
id patient; 
class gender insert/param=glm; 
strata insert; 
model time*fail(0)=age*insert gender*insert; 
format gender gender. insert insert.; 
run; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Parameter estimates in PHM model for infection times 

Parameter   DF 
Parameter 

Estimate 
Standard 

Error 
StdErr 
Ratio 

Chi-
Square 

p-
value 

age*insert first  1 0.00964 0.01115 0.901 0.7467 0.3875 

age*insert second  1 –0.00332 0.01064 0.751 0.0971 0.7553 

gender*insert female first 1 –1.38599 0.44621 1.062 9.6479 0.0019 

gender*insert female second 1 –0.54276 0.60239 1.316 0.8118 0.3676 

gender*insert male first 0 0 . . . . 

gender*insert male second 0 0 . . . . 
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Because we have used GLM coding in the class statement, all contrast statements shown below must be 
provided in the comparative style: female vs male. For computing hazard ratios (HR) and 95% confidence 
intervals use: 
 
contrast 'HR female vs male at INSERT=1' gender*insert 1 0 -1/estimate=exp; 
contrast 'HR female vs male at INSERT=2' gender*insert 0 1 0 -1/estimate=exp; 
 

Contrast Estimate 
Standard 

Error 
95% Confidence 

Limits p-value 

HR female vs male at INSERT=1 0.2501 0.1116 0.1043 0.5996 0.0019 

HR female vs male at INSERT=2 0.5811 0.3501 0.1785 1.8925 0.3676 
 
A forthcoming enhancement to the HAZARDRATIO statement would give the same results from a single 
statement:  hazardratio "Gender effect" gender/cl=wald; The label is optional. 
 
Because the gender effect is dissimilar for the two catheter insertions, a test of equality of the gender effect is 
unwarranted. However, for illustration this test of equality 0 21 22:H β β=  is obtained from 
 
contrast "Same Gender Effect" gender*insert 1 -1 -1 1; 
 
The resulting Wald test is barely significant (p=0.038).  
 
ILLUSTRATIVE EXAMPLE 2 
 
Data set BMT contains follow up data on 137 patients who underwent a bone marrow transplant for 
treatment of acute leukemia (Klein & Moeschberger, 1997). These data have been analyzed extensively to 
meet different objectives using different strategies. We focus here on two events death/relapse combined and 
the event of platelet recovery when a patient’s platelets return to normal levels. It is an important indicator of 
prognosis of survival. Initially following surgery all patients have depressed platelet count. Subsequently, in 
120 patients recovery to normal levels was observed (PRI=1). TRETP is the recovery time. For the other 17 
patients without platelet recovery (PRI=0), TRETP is set to missing. TFREEST denotes the time to 
death/relapse which was observed in 83 patients (DFI=1), 67 of whom had platelet recovery.  Event times 
are in days from transplant. TFREEST is censored (DFI=0) if  the event death/relapse has not occurred at 
the end of follow-up. 
 
b.  FITTING A PHM WITH TIME-DEPENDENT COVARIATES 
 
In the analysis of TFREEST we will create a multiple record file to handle the time-dependent status of 
platelet recovery. Details of SAS code to create the long file BMT_LG is given in Gardiner, Luo & Lin 
(2008). All patients begin at TSTART=0. For a patient who had platelet recovery we create two records one 
of each time interval (0, TRETP] and (TRETP, TFREEST]. For the first record define TSTOP=TRETP, 
PLSTATUS=0, STATUS=0 and STRATUM=‘01’. For the second record define TSTART=TRETP, 
TSTOP=TFREEST, PLSTATUS=1, STATUS=DFI and STRATUM=‘12’. 
 
For a patient who did not have platelet recovery we create a single record: TSTOP=TFREEST, 
PLSTATUS=0, STATUS=DFI and STRATUM=‘02’.  PLSTATUS defines the platelet recovery status just 
prior to TSTOP and STATUS indicates whether or not death/relapse occurred at TSTOP. All time-invariant 
covariates are retained on each record. For this illustration we consider disease group (DGROUP) only. The 
variable STRATUM is created for convenience. It can be used to verify counts of events and censored values.  
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proc format; 
value dgroup 1='ALL' 2='AML low risk' 3='AML high risk'; 
value plstatus 0='before' 1='after'; 
run; 
Consider estimation of the PHM 0( | ( )) ( )exp( ( ) )h t t h t t β′=z z for the risk of death/relapse. With dummy 
variables HAML and LAML for AML-high risk and AML-low risk the linear predictor ( )t β′z is defined as: 

1 2 3 4 5( ) ( ) ( )H L H LAML AML PLSTATUS t AML PLSTATUS t AML PLSTATUS tβ β β β β+ + + × + × which 
is 1 2H LAML AMLβ β+ for t <TRETP, and 1 4 2 5 3( ) ( )H LAML AMLβ β β β β+ + + + for t ≥TRETP.  
 
Estimation of the β-parameters is carried out by maximum partial likelihood estimation: the counting process 
style input must be used in the model statement to create the appropriate risk sets at each death/relapse time. 
 
proc phreg data=bmt_lg; 
class  plstatus(ref='before') dgroup(ref='ALL')/param=ref; 
model (tstart, tstop)*status(0)=dgroup|plstatus/rl; 
hazardratio dgroup/diff=ref cl=wald; 
format dgroup dgroup. plstatus plstatus.; 
run; 
 

Table 5: Parameter estimates from PHM for time to death/relapse 

Parameter   DF 
Parameter 

Estimate 
Standard 

Error 
Chi-

Square Pr > ChiSq 

dgroup AML high risk  1 0.83069 0.69324 1.4358 0.2308 

dgroup AML low risk  1 1.05334 0.71832 2.1503 0.1425 

plstatus after  1 –0.45715 0.62896 0.5283 0.4673 

plstatus*dgroup after AML high risk 1 –0.52620 0.75215 0.4894 0.4842 

plstatus*dgroup after AML low risk 1 –1.85157 0.78769 5.5254 0.0187 

 
The HAZARDRATIO statement is needed to produce the estimates of hazard ratios and 95% confidence 
intervals (Table 6). They are not produced by default because the dgroup|plstatus specification in the model 
is viewed as containing an interaction of dgroup with plstatus. The option DIFF=ref requests hazard ratios 
for the two AML disease groups with ALL as referent, and CL=wald gives the 95% confidence limits. 
 
With the aforementioned parameterization, in the first row of Table 6 the point estimate is obtained from 
Table 5:  exp 1 4

ˆ ˆ( )β β+ =exp(0.83069−0.52620)=1.356. Compared to the ALL patient group, the AML low 
risk group has improved prognosis for survival after platelet recovery (p=0.012). The same results can be 
obtained from contrast statements including p-values. 
 
 

Table 6: Hazard Ratios for Disease Group 

Description 
Point 

Estimate 
95% Wald 

Confidence Limits 

dgroup AML high risk vs ALL At plstatus=after 1.356 0.765 2.403 

dgroup AML low risk vs ALL At plstatus=after 0.450 0.241 0.840 

dgroup AML high risk vs ALL At plstatus=before 2.295 0.590 8.930 

dgroup AML low risk vs ALL At plstatus=before 2.867 0.701 11.719 
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c.  PLOTTING SURVIVAL CURVES 
 
The PLOTS=survival option in the PROC PHREG statement produce graphs of estimated survival curves at 
specified covariate profiles. Consider the six profiles defined by DGROUP and PLSTATUS output to the 
data set COVAR. 
 
proc sort data=bmt_lg out=covar(keep=dgroup plstatus) nodupkey; 
by dgroup plstatus; 
format dgroup dgroup. plstatus plstatus.; 
run; 
 
The BASELINE statement and its options produce the Nelson-Aalen estimator of the survival function at a 

fixed profile 0z using: ( )0 0 0
ˆ ˆˆ( | ) exp ( , )exp( )S t H t β β′= −z z where (0 ) 1

0 0
ˆ ˆ( , ) { ( , )} ( ),

t
H t S u dN uβ β −= ∫

( 0 )
1

ˆ ˆ( , ) ( )exp( ( ) )n
ii

S t Y t tβ β
=

′=∑ z and ( )N t is the counting process for death/relapse events in the sample. 
Survival curves derived from a PHM with time-dependent covariates should be interpreted with caution. For 

example, the relationship ( )00
( | ( )) exp ( )exp( ( ) )

t
S t t h u u duβ′= −∫z z holds under the assumption of strict 

exogeneity of the accumulating covariate process t→ ( ).tz  By strict exogeneity we mean that t→ ( )tz evolves 
as [ ( )| , ( )] [ ( )| ( )]P t t T t t t P t t t+ ∆ ≥ + ∆ = + ∆z z z z . See Lancaster (1990) for further discussion. 
 
The following syntax will produce the plots shown next.  
 
ods graphics on/width=4in height=4in; 
proc phreg data=bmt_lg plots(overlay=group)=survival; 
class  plstatus(ref='before') dgroup(ref='ALL')/param=ref; 
model (tstart, tstop)*status(0)=dgroup|plstatus; 
baseline covariates=covar out=surv survival=survival/method=ch group=dgroup 

rowid=plstatus; 
format dgroup dgroup. plstatus plstatus.; 
run; 
ods graphics off; 
 
Six curves are displayed in three panels. The GROUP= option collates the curves by disease group, and 
ROWID appropriately labels the curves. Further modification of the plots (e.g., changing colors, title, line 
type, axes and legends) would need more manipulation of the output graphics file through PROC 
TEMPLATE, or some editing of the plot with the ODS graphics editor. See Statistical Graphics using ODS in 
SAS/STAT® User’s Guide. An alternative is to use the SURV output dataset to plot the curves by PROC 
GPLOT. 
 
d.   MULTI-STATE MODELS 
 
Although not discussed in detail here, the same technique of expanding the data set appropriately could be 
used in other settings including analyses of recurrent events, multiple failure times and competing risks 
models. For example, if platelet recovery is viewed as an intermediate event along with the terminal event 
death/relapse, another expansion of the data set BMT_LG would place all 137 patients at risk of each event, 
together with 120 records for the post-recovery transition to the terminal event. The data set will have 394 
records. This is a three-state model with transitions 0→1 (platelet recovery), 0→2 (death/relapse without 
platelet recovery), and 1→2. The multiplicative intensity model 0( | ( )) ( )exp( ( ) )hj hj hjt t t tα α β′=z z with 

stratum-specific covariates and hj denoting the h→j transition can be analyzed using PHREG. See Gardiner et 
al, (2008).  
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Disease–free survival plots 
 
dgroup=1: ALL 
dgroup=2: AML-low risk 
dgroup=3: AML-high risk 
plstatus: Platelet recovery status (time-
dependent). 
 
Within each disease group the survival plots are 
for two “what if” scenarios: (i) for a patient 
without platelet recovery (lower curve), (ii) for 
another patient with platelet recovery (upper 
curve). All curves are estimated at the same grid 
of event times (76 distinct times for 83 events). 
Plots are computed directly from the formula 

( )0 0 0
ˆ ˆˆ( | ) exp ( , )exp( )S t H t β β′= −z z  

for a fixed profile 0z . 
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IV. BAYESIAN ANALYSES 
 
Frequentist analyses are based on the distribution of the data y that leads to a likelihood function L(θ; y) with 
parameters θ considered as fixed constants. It is the distribution of  y that provides a basis for statistical 
inference on the unknown θ. We cannot make probabilistic statements about θ. Rather, the distributional 
properties of its estimator ˆ ˆ( )=θ θ y such as consistency, asymptotic normality are used to make inferences 
about  θ. For example, the classical 100(1−α)% confidence interval for a 1-dimensional parameter θ with 
confidence limits ˆ ˆLCL(θ),UCL(θ)  and ˆ ˆ[LCL(θ)<θ<UCL(θ)]=1 αP −  for all values of θ is a probability 
statement about the confidence limits and not the parameter θ.  
 
The Bayesian paradigm on the other hand places a distribution on θ, the prior distribution π(θ) which 
expresses our degree of belief in θ, and when combined with L(θ; y) gives the posterior distribution π(θ|y) of 
θ given y. Because Bayes’ theorem gives π(θ|y) ∝ L(θ; y) π(θ) the term Bayesian analysis is applied to 
inferences drawn from the posterior distribution. For instance, the aforementioned frequentist confidence 

interval for θ can be replaced by a probability statement [ ]= ( | )
b

a
P a b u duθ π< < ∫ y based on the posterior 

distribution. If this probability is (1−α) we call (a, b) a 100(1−α)% credible interval for θ. 
 
A closed-form expression for π(θ|y) can only be derived in a relatively few cases. Therefore, a general 
approach is to simulate π(θ|y) by drawing samples ( ){ : 1 }b b B≤ ≤θ  and use them for inference. For example, 

the posterior mean is calculated as 1 ( )
1

B b
b

B−
=

= ∑θ θ and an equal-tail 95% credible interval for a one 

dimensional  θ is the interval between the 2.5-th and 97.5-th percentiles of the sample. The theory underlying 
the simulation approach is the Markov Chain Monte Carlo (MCMC) method that constructs a Markov chain 
whose stationary distribution is the posterior distribution. The process of drawing samples from the posterior 
distribution is based on Metropolis-Hastings algorithms or its variants (e.g., Gibbs sampler). The MCMC 
procedure designed to analyze Bayesian models fuels the capability of LIFEREG and PHREG to provide a 
Bayes solution to several survival models. 
 
The BAYES statement in both LIFEREG and PHREG invokes the Bayes engine. For most analyses none of 
the myriad of options in the BAYES statement needs to be explicitly specified. However, a diligent 
investigation of the results should be undertaken to ascertain convergence of the underlying Markov Chain to 
its stationary distribution and whether the samples from the posterior exhibit dependencies.  Several useful 
diagnostics and plots are produced by default if ODS Graphics is enabled with the PLOTS request. Finally, 
the posterior sample can be saved in a data set with the OUTPOST option for additional analyses. For 
quantities of interest such as the hazard ratio and percentiles of the survival curve that can be expressed as a 
function g(θ), the posterior sample ( ){ ( ) : 1 }bg b B≤ ≤θ  is used to describe summary statistics for g(θ). 
 
The following are standard MCMC options in the BAYES statement (default in parenthesis). 
 
SEED= sets the random number generator for simulating the Markov chain samples (time of day). 
NBI= # burn-in iterations discarded before the samples are saved (2000). 
NMC=# iterations after burn-in (10000) 
THIN=k retains one in every k samples after burn-in (k=1) 
 
The initial values (0 ) ( 0 ) ( 0 ) ( 0 )

1 2( , , , )Kθ θ θ=θ  are arbitrary (can be set by INITIAL=). One iteration of the Gibbs 
sampler produces (1) (1) (1) (1)

1 2( , , , )Kθ θ θ=θ  based on component-by-component random draws from 
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conditional distributions: (1)
1θ drawn from (0) ( 0 )

1 2( | , , , )Kπ θ θ θ y , (1)
2θ drawn from (1) ( 0 ) ( 0 )

2 1 3( | , , , )Kπ θ θ θ θ y ,…, 
(1)θK drawn from (1) (1) (1)

1 2 1( | , , , )K Kπ θ θ θ θ − y . After B iterations this leads to the chain ( ){ : 1 }b b B≤ ≤θ . 
 
a.  BAYESIAN ANALYSIS WITH LIFEREG  
 
Consider the model log i i iT β σε′= +z for the time to death/relapse (TFREEST) in bone marrow transplant 
patients with disease group (DGROUP) as covariate. For a Bayes analysis, a prior distribution on 

0 1 2( , , )β β β=β is specified through COEFFPRIOR and for σ  through SCALEPRIOR. The following 
syntax fits a Weibull model with a normal prior 6

3~ (0,10 ),Nβ I and gamma prior 4 4~ (10 ,10 )Gσ − − . Several 
options need not be explicitly stated as they are the defaults.  After a burn-in of 4000, one-half of the 20000 
samples is retained. The data set BMT is the single record per patient file (137 patients). The order=freq 
option is used to preserve the previously used parameterization with the ALL group as referent. 
 
ods graphics off; 
proc lifereg data=bmt order=freq; 
class dgroup; 
format dgroup dgroup.; 
model tfreest*dfi(0)=dgroup/dist=weibull; 
bayes seed=3538623 outpost=post_w nbi=4000 nmc=20000 thin=2  
 coeffprior=normal(var=1E6)scaleprior=gamma(shape=1E-4, iscale=1E-4); 
run; 
ods graphics close; 
 
Trace, autocorrelation and density plots are produced for each of the four parameters θ = 0 1 2( , , , ).β β β σ  It is 
imperative that these (and other diagnostics) be examined before any conclusions are drawn from the 
simulated posterior samples ( ){ : 1 }b b B≤ ≤θ . The results shown on the next page are almost perfect. The trace 
plot show excellent mixing, the autocorrelation decreases to near zero, and the density is bell-shaped. The 
trace plots are centered near their respective posterior mean and traverse the posterior space with small 
fluctuations. For the intercept 0β which corresponds to the ALL group, the trace plot is centered near the 
posterior mean of 7.0. Samples in both tails are covered. These results exhibit convergence of the Markov 
chain to its stationary distribution. The Geweke test (not shown) produced by default, compares the posterior 
mean from the early part (first 10%) of the Markov chain to posterior mean from the latter part (last 50%). 
There are no differences for each of the parameters. 
 
Table 7 reports the simple statistics, percentiles, credible intervals, and high probability density (HPD) 
intervals for each of the parameters based on the posterior sample of 10000. Because the priors used are non-
informative, the mean, standard deviation and credible interval should be fairly close to the corresponding 
maximum likelihood estimates (estimate, standard error, 95% CI). 
 

Table 7. Posterior Statistics for parameters from Bayes analysis of the Weibull model  

Parameter N Mean 
Standard 

Deviation 

Percentiles Posterior Intervals 

25% 50% 75% 
Equal-Tail 

Interval 
HPD Interval 

ALL 10000 7.0373 0.3506 6.7969 7.0253 7.2601 6.3857 7.7702 6.3528 7.7304 

AML low risk 10000 1.1346 0.4947 0.8006 1.1330 1.4620 0.1684 2.1239 0.1479 2.0888 

AML high risk 10000 –0.4810 0.4517 –0.7835 –0.4756 –0.1777 –1.3781 0.3898 –1.3442 0.4197 

Scale 10000 1.6934 0.1621 1.5804 1.6826 1.7967 1.4026 2.0383 1.3750 2.0048 
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b.  ESTIMATION OF PERCENTILES 
 
For the Weibull, the p-th  percentile is exp( )p pt wβ σ′= +z where log( log(1 ))pw p= − − . A Bayes estimate is 

constructed from the posterior samples ( ) ( ) ( )exp( ), 1, ,b b b
p pt w b Bβ σ′= + =z  . Results are shown for the 

median in Table 8, right hand side panel with corresponding nonparametric and MLE estimates for 
comparison. The results are obtained by processing the OUTPOST=post_w data set. Similar, but not 
necessarily identical results can be derived using PROC MCMC using its MONITOR option.  
 

Table 8: Estimate of Median disease-free survival (in days) 

 

Nonparametric  MLE (Weibull) Bayes (Weibull) 

Median 
95% Confidence 

Interval 
 

Median 
95% Confidence 

Interval 
Posterior 

Mean 
Equal-Tail 

Credible Interval 

ALL 418 192 … 590.58    307.42   1134.53 650.88 317.45 1256.91 

AML low risk 2204 641 … 1810.64 951.49 3445.55 2023.39 1010.18 3898.97 

AML high risk 183 113 390 376.73 214.80 660.72 395.38 211.05 682.01 

Likewise, disease-free survival at t  days can be estimated from ( ) ( )( | , ) exp( exp( ))b bS t yθ = − −z  b= 1,…,B 
where ( ) ( ) ( )(log )/b b by t β σ′= − z . For an example see SAS/STAT®: The MCMC Procedure. 
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c.   BAYESIAN ANALYSIS IN PHREG 
 
There are two approaches to a Bayes analysis of the PHM 0( | ( )) ( )exp( ( ) )h t t h t t β′=z z .The first is based on 
the partial likelihood L(β; y) combined with a prior π(β) which produces the posterior π(β|y). The baseline 
hazard 0( )h t is left unspecified. Inference is made from samples ( ){ : 1 }b b B≤ ≤β drawn from π(β|y). Thus the 
partial likelihood is treated as a likelihood function just as in the previous analysis. The second approach 
discussed later parameterizes 0( )h t by a finite-dimensional parameter λ,  0 0( ) ( , )h t h t= λ producing a full 
likelihood L(θ; y), where θ=( β,λ). 
 
Returning to our analysis of the time to death/relapse among bone marrow transplant patients we consider 
the PHM with disease group DGROUP, the time-dependent indicator PLSTATUS(t) of return of platelets to 
normal levels, and their interaction. This is a 5 parameter model. The extended file BMT_LG is used. The 
BAYES statement invokes the analysis. Options are the same as in LIFEREG. We only need to specify a 
prior for β which is taken here as 6

5~ (0,10 ).Nβ I  
  
ods graphics on; 
proc phreg data=bmt_LG; 
class plstatus(ref='before') dgroup(ref='ALL')/param=ref; 
model (tstart, tstop)*status(0)=dgroup|plstatus/ ties=breslow;  
format dgroup dgroup. plstatus plstatus.; 
bayes seed=4112010 outpost=postsample nbi=4000 nmc=20000 thin=2 
  coeffprior=normal(var=1E6); 
hazardratio dgroup/diff=ref cl=wald; 
run; 
ods graphics off; 
 
Before drawing inferences from the posterior sample, we should examine the trace, autocorrelation and 
density plots for each parameter to be content that the underlying chain has converged. The plots for the two 
parameters involving the AML low risk group shown below suggest that the mixing in the chain is acceptable, 
although we notice long correlation times. Plots for the 3 other parameters (not shown) are very similar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The HAZARDRATIO statement delivers the Bayes solution corresponding to the previous classical ML 
analysis in Table 6. These results (Table 9) can also be derived from the OUTPOST=postsample data set. We 
can also use postsample to assess the posterior probability that the HR for AML low risk vs ALL after 
platelet recovery is <1. The probability is over 99%. 
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Table 9: Hazard Ratios for Disease Group (10000 samples) 

Description Mean 
Std 

Dev 

Quantiles  

25% 50% 75% 
95% Equal-
Tail Interval 

95% HPD 
Interval 

AML high risk vs ALL At plstatus=after 1.411 0.423 1.111 1.351 1.647 0.768 2.392 0.691 2.241 

AML low risk vs ALL At plstatus=after 0.470 0.153 0.361 0.449 0.556 0.234 0.827 0.208 0.773 

AML high risk vs ALL At plstatus=before 3.711 3.827 1.625 2.674 4.420 0.649 13.191 0.294 10.046 

AML low risk vs ALL At plstatus=before 4.631 4.863 1.961 3.264 5.542 0.757 17.112 0.275 12.778 
 
d.   SURVIVAL CURVES (FROM BAYES ANALYSIS) 
 
Disease-free survival at t days for a specified covariate profile z0 is estimated from the posterior sample

( ) ( ) ( )
0 0 0( | , ) exp( ( , )exp( ))b b bS t H tβ β β′= −z z  b= 1,…,B. This approach is similar to the classical estimates 

( )0 0 0
ˆ ˆˆ( | ) exp ( , )exp( )S t H t β β′= −z z where β̂ denotes is the maximum partial likelihood estimator. 

 
We use the same COVAR data set with six profiles defined by disease groups and platelet recovery status. 
The BASELINE statement requests a data set SURV_BAYES be formed to contain the output. With 
SURVIVAL=_ALL_ we obtain at each event time the posterior mean, standard error, equal-tailed credible 
interval limits, and HPD interval limits.  For the purpose of plotting the survival curves we can use SGPLOT 
or GPLOT. However, when fully operational, under ODS graphics the PLOTS option in the PHREG 
statement together with additional options in the BASELINE statement would also yield the desired results.  
 
proc phreg data=bmt_LG ; 
class plstatus(ref='before') dgroup(ref='ALL')/param=ref; 
model (tstart, tstop)*status(0)=dgroup|plstatus;  
format dgroup dgroup. plstatus plstatus.; 
bayes seed=5808208 outpost=postsample nbi=5000 nmc=25000 thin=2 
  coeffprior=normal(var=1E6); 
baseline covariates=covar out=surv_bayes survival=_ALL_;    
run; 
 
The plots shown next are obtained by combining into one data set the survival estimates from the classical 
analysis with the posterior means from the Bayes analysis. We use GPLOT (with two plot statements) to 
exploit various options for axes, colors, legends etc.  
 
The following syntax plots the Bayes estimates and pointwise HPD bands for the DGROUP=1 (ALL 
patients). The plot is not shown. 
 
ods graphics on; 
proc sgplot data=surv_bayes(where=(dgroup=1)); 
    band x=tStop lower=lowerHPDSurvival  upper=upperHPDSurvival / 
             group=plstatus modelname="Survival" transparency=.8; 
   step x=tStop y=Survival / group=plstatus name="Survival"; 
   title "DISEASE GROUP = ALL"; 
   run; 
ods graphics off;  
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   Disease Group ALL           Disease Group AML Low Risk 

 
Disease Group AML High Risk 

 

Disease/relapse-free estimates of survival 
 
Plots for the classical analysis are obtained from the 
estimates ( )0 0 0

ˆ ˆˆ( | ) exp ( , )exp( )S t H t β β′= −z z where 

β̂  denotes the maximum partial likelihood 
estimator. 
 
Plots for the Bayes analysis are derived from the 
posterior samples 

( ) ( ) ( )
0 0 0( | , ) exp( ( , )exp( ))b b bS t H tβ β β′= −z z  

≤ ≤1 b B  which are obtained from ( ){ : 1 }b b B≤ ≤β . 
 
All calculations are made at a fixed profile z0 and at 
the same grid of event times. The two sets of 
estimates track each other, especially for after 
platelet recovery. 
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e.  PIECEWISE CONSTANT HAZARD 
 
The second approach to a Bayes analysis includes a parameterization of the baseline hazard 0( )h t in the PHM 
as a piecewise constant function. Let 0 1 10 .... J Ja a a a−= < < < < = ∞ denote a partition of the time axis into J-

intervals 1[ , ), 1,...,j ja a j J− = . The piecewise constant hazard is 0 11
( , ) [ ]J

j j jj
h t a t aλ −=

= ≤ <∑λ , with 

parameters 1( , ..., )Jλ λ=λ , 0jλ > for all j.  An alternative parameterization uses log-hazards 

1( , ..., ), logJ j jα α α λ= =α . Because the PHM is parametric in ( , )=θ λ β or ( , ),=θ α β the likelihood L(θ; y) 

can be constructed for the observed data y. Together with a specified prior π(θ) on θ we obtain the posterior 
π(θ|y)∝ L(θ; y) π(θ). The basis for inference is the sample ( ){ : 1 }b b B≤ ≤θ drawn from this distribution using 
the Gibbs sampler. The MLE of θ obtained by maximizing L(θ; y) are produced which serve as the default 
initial values for the sampler.  
 
Simply adding PIECEWISE alone to the Bayes statement triggers the following: (i) log-hazard 
parameterization (ii) J=8 intervals (iii) uniform prior ( ) 1jπ α ∝ for all j. This is the same as an improper prior 

on λ ,j that is, π λ λ−∝ 1( )j j .  Interval cut-points are chosen by default to have approximately an equal 
number of events in each interval. Of course, all of these can be changed by options. The total number of 
events in the BMT data set is 83. By default 8 intervals are constructed to have about 10-11 events in each 
interval. Increasing the number of intervals could produce unstable estimates of λ . Too few intervals could 
lead to poor fit. To obtain a feasible solution for λ the intervals must have at least one event. After trial and 
error, we use J=12. The following syntax specifies independent normal priors for ( , )α β . Correlation times are 
still large, but Geweke diagnostics are quite good. Results are in Table 10. 
 
ods graphics on; 
proc phreg data=bmt_LG; 
class plstatus(ref='before') dgroup(ref='ALL')/param=ref; 
model (tstart, tstop)*status(0)=dgroup|plstatus;  
format dgroup dgroup. plstatus plstatus.; 
bayes seed=4122010 outpost=postsample nbi=5000 nmc=30000 thin=2 
  coeffprior=normal(var=1E6) 
piecewise=loghazard(Ninterval=12 prior=normal(var=1e6)); 
run; 
ods graphics off; 
 

Table 10: Piecewise constant hazard model 

 Maximum likelihood estimates Bayes estimates  

Parameter Estimate 
Standard 

Error 
95% Confidence 

Limits 
Posterior 

Mean 
Standard 
Deviation 

95% HPD Interval 

AML: high risk 0.8414 0.6925 –0.5158 2.1986 0.8947 0.7604 –0.5284 2.4939 

AML: low risk 1.0552 0.7158 –0.3477 2.4582 1.1162 0.7902 –0.4504 2.6721 

PLSTATUS: after 
recovery 

–0.4296 0.6301 –1.6646 0.8054 –0.3246 0.6861 –1.6085 1.0542 

PLSTATUS × AML 
high risk 

–0.5548 0.7515 –2.0277 0.9181 –0.5987 0.8205 –2.3587 0.9024 

PLSTATUS × AML 
low risk 

–1.8651 0.7852 –3.4040 –0.3261 –1.9215 0.8614 –3.7017 –0.2770 
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Diagnostic plots are shown below for 2 of the 5 regression parameters. They could be compared with the 
corresponding plots shown earlier for the Cox model on page 18. 

 
A BASELINE statement is used to save the Bayes estimates of the survival curves and other optional 
quantities. Depicted below are curves for the AML low risk and AML high risk groups, paralleling the 
corresponding plots shown on page 20. The patterns are very similar, but with slightly more separation 
between estimates from the Bayes and classical analyses. 
  

 

Disease Group AML high Risk   Disease Group AML low risk 
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DATA SETS 
 
The two data sets KIDNEY and BMT used in this paper are widely circulated via the world-wide-web. We 
used the original sources McGilchrist & Aisbett (1991) and Klein & Moeschberger (1997). 
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