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ABSTRACT 
One of the tasks that many analysts find daunting is the construction of ESTIMATE and CONTRAST 
statements.  Admittedly, these can get very complicated, but if you start with simple examples and work 
your way to more complex situations it can help demystify the process.  This paper provides practical 
guidance on how to code ESTIMATE and CONTRAST statements, especially when the group sizes are 
unequal.  It includes an example of how to mimic the effect of the OBSMARGINS option on LSMEANS by 
using ESTIMATE statements.  It also illustrates the use of the SYMPUT function to obtain the necessary 
ESTIMATE coefficients from the data "automatically."  Concrete examples are used to help you learn 
many of the principles you need to successfully create ESTIMATE and CONTRAST statements.  Some 
familiarity with linear models is essential, but you do not need experience with any specific SAS® 
procedure.  The emphasis is on the practical, not the theoretical: no Greek letters! 

INTRODUCTION 
A situation that arises frequently in our work is that what starts as a reasonably straightforward linear 
statistical model ends up getting more and more complicated with more and more specific comparisons of 
interest.  This frequently leads to a large number of ESTIMATE or CONTRAST statements to calculate 
specific values with associated standard errors, confidence intervals, or P values.  The construction of 
those ESTIMATE and CONTRAST statements are sometimes somewhat tricky and many programmers 
find them confusing.  This paper presents concrete examples of the construction of ESTIMATE and 
CONTRAST statements, building up to a complex example that uses a stratified piecewise linear model.   
 
We will begin by describing the scientific background for the statistical model and presenting the final 
result we are trying to achieve.  Next we will go "back to basics" and consider some fairly simple 
examples of ESTIMATE and CONTRAST statements and then some more complex examples.  Along the 
way we will illustrate the effect of the OBSMARGINS option on LSMEANS and how to mimic the effect by 
using ESTIMATE statements.  Then we will show the ESTIMATE and CONTRAST statements used in the 
complex model and show how to use the SYMPUT function to automate the calculation of the ESTIMATE 
coefficients from the data. 

SCIENTIFIC BACKGROUND 
The complex model used as our example arose in connection with a study of cystic fibrosis.  Cystic 
fibrosis is a hereditary disease that leads to long term decline in lung function.  One measure of lung 
function is FEV1, the Forced Expiratory Volume in 1 second, which is obtained during a pulmonary 
function test (PFT).  Because the volume of air that can be expelled in 1 second varies considerably 
based on the size of the lung, it is common in CF to calculate a "% predicted" measure that is based on 
the sex, age, height, and race/ethnicity of the patient.  This relates the absolute FEV1 to the expected 
(mean) value based on the patient's characteristics, expressed as a percentage.  It is common practice to 
track FEV1 % predicted over time to document patients' lung function decline.  There are some 
disadvantages to modeling the % predicted values (rather than z-scores or other alternative measures), 
but this approach models the measures most commonly used clinically. 
 
Consider choosing an arbitrary point in time and assessing the lung function of a cystic fibrosis patient, as 
measured by FEV1 % predicted, before and after that index time.  At first thought, it may seem that there 
is no reason to believe the rate of decline would be any different before and after the arbitrary index time.  
However, previous research has shown that high lung function is an independent risk factor for decline.  
Therefore, patients with higher than average lung function are expected to experience a steeper than 
average decline going forward and patients with lower lung function are expected to experience a less 
steep decline going forward.  Furthermore, it stands to reason that patients with relatively high lung 
function at that index time are likely to have had more gradual prior decline than patients with relatively 
low lung function.  (This is a sort of regression to the mean effect looking backwards in time.)  These two 
factors combine to produce the expectation that patients with relatively high lung function at the index 
time are likely to show a change from mild decline to steeper decline, whereas those with relatively low 
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lung function are likely to show a change from steep decline to milder decline.  Thus, the null hypothesis 
of no change in average decline before and after an arbitrary index time may need to be adjusted 
depending on the measured lung function at that index time.   

THE STATISTICAL MODEL 
In the statistical model, we wanted to quantify the average rates of decline in FEV1 % predicted before 
and after an index time, separately by severity group.  An index pulmonary function test was defined as 
the PFT closest (within 30 days) to the first encounter within one year following the eighth or subsequent 
even numbered birthday.  (Even numbered birthdays were used to avoid having overlapping pre-index 
periods.)  The pre-index and post-index periods – each 2 years in duration – were each required to have 
≥1 encounter and ≥3 FEV1 values spanning at least six months to estimate the slope of FEV1.  Patients 
were included for as many sets of pre-index and post-index periods as they had available data. 
 
When we characterized severity using FEV1 % predicted values, we ran into the difficulty that there were 
few younger patients in the most severe categories and few older patients in the least severe categories.  
To provide for a more balanced distribution across categories by age, we characterized lung function 
relative to other CF patients at every age from 8 to 38 years using all PFTs in the dataset to establish 
age-specific deciles of FEV1 % predicted. 
 
For every patient and index value, separate regression lines were fit during each of the two-year pre-
index and post-index periods.  The index PFT was used to establish the age-adjusted decile of severity, 
but was excluded from both the pre-index and post-index periods to minimize issues associated with 
regression to the mean.  The regression lines were fit using PROC MIXED in SAS® with four random 
effects: intercept (at the index PFT) and slope before the index event, and change in intercept and 
change in slope after the index event.  

THE RESULTS 
Figure 1 shows the average pre-index and post-index fitted lines by decile; Table 1 provides the details.  
 
Figure 1: Pre- and post-index slopes and increment at index event by FEV1 decile 
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Table 1: Details of pre- and post-index slopes and increment at index event by FEV1 decile and combined 
 
 

Decile N 
Pre-index 

Slope (SE) 
Post-index 
Slope (SE) 

Slope 
Difference 

(SE) 
P 

Difference 
Post-index 

Increase (SE) 
P 

Increase 

Pre-
index 
Start 

Pre-
index 
Stop 

Post-
index 
Start 

Post-
index 
Stop 

Combined 
(observed) 

32355 -1.38 
(0.05) 

-1.98 
(0.04)

-0.60 
(0.06)

<.001 -0.40 
(0.06)

<.001 75.61 72.85 72.45 68.50

Combined 
(uniform) 

32355 -1.60 
(0.05) 

-1.92 
(0.04)

-0.31 
(0.06)

<.001 -0.36 
(0.06)

<.001 73.91 70.70 70.33 66.50

1 2155 -4.05 
(0.16) 

-1.07 
(0.16)

2.97 
(0.23)

<.001 0.00 
(0.21)

1.00 54.74 46.65 46.65 44.50

2 2511 -3.29 
(0.15) 

-1.56 
(0.15)

1.73 
(0.21)

<.001 0.01 
(0.20)

0.95 61.53 54.95 54.96 51.84

3 2874 -2.33 
(0.15) 

-1.86 
(0.14)

0.47 
(0.20)

0.021 -0.47 
(0.19)

0.014 65.97 61.32 60.85 57.12

4 3091 -2.35 
(0.14) 

-1.97 
(0.13)

0.38 
(0.20)

0.057 -0.10 
(0.19)

0.59 70.57 65.88 65.78 61.85

5 3292 -1.87 
(0.14) 

-2.00 
(0.13)

-0.13 
(0.20)

0.52 -0.14 
(0.19)

0.46 73.95 70.21 70.07 66.08

6 3428 -1.30 
(0.14) 

-1.82 
(0.13)

-0.52 
(0.19)

0.007 -0.58 
(0.19)

0.002 76.49 73.90 73.32 69.68

7 3639 -0.90 
(0.14) 

-1.90 
(0.13)

-1.00 
(0.19)

<.001 -0.36 
(0.19)

0.059 78.76 76.96 76.60 72.81

8 3768 -0.43 
(0.14) 

-2.20 
(0.13)

-1.77 
(0.19)

<.001 -0.69 
(0.19)

<.001 81.97 81.12 80.43 76.03

9 3782 -0.02 
(0.14) 

-2.03 
(0.13)

-2.01 
(0.19)

<.001 -0.92 
(0.19)

<.001 85.13 85.08 84.16 80.10

10 3815 0.49 
(0.14) 

-2.77 
(0.14)

-3.26 
(0.20)

<.001 -0.40 
(0.20)

0.040 89.94 90.92 90.51 84.98

 
In addition to estimating the average lines by decile, an overall estimate was obtained by combining the 
deciles using equal weighting (each decile counted equally) and the observed distribution (each decile 
counted according to the number of patients represented).  These two ways of combining the deciles 
differ because the number of patients with available data varied by decile; the figure presents the version 
based on the observed distribution.  
 
The results show the anticipated "bowing."  The middle deciles have similar slope pre- and post-index 
with little change in intercept.  For the lower deciles, the pre-index slopes are fairly steep compared to the 
post-index slopes, which are fairly flat.  The opposite is the case for the higher deciles, where the pre-
index slopes are fairly flat and the post-index slopes are fairly steep.  The differences in estimated 
intercept are an indication that the straight lines do not adequately fit what is presumably a curved 
trajectory.  Although it is reasonable to approximate the rate of change over short times using a straight 
line, fitting straight lines to up to two years of data may be more problematic.  The more curved the true 
underlying trends, the more likely there is to be an observed difference in intercept when straight lines are 
fit in the two time periods.   
 
Table 1 includes many different values, some with standard errors and some with P values, most of which 
came from ESTIMATE statements.  Let's go back to basics and work up to how to produce Table 1. 

ESTIMATE STATEMENT BASICS 
The idea behind the ESTIMATE statement is that you want to calculate the value of a linear combination 
of parameters and (generally) the associated standard error, confidence bounds, or P value for testing 
whether it differs from zero.  If the model is of full rank, as would be typical in the context of a regression, 
each individual parameter is uniquely estimated and any linear combination of the parameters can also 
be estimated.  When the model includes categorical variables (variables listed on the CLASS statement), 
as is typical in the context of analysis of variance (ANOVA), the model may be parameterized to be less 
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than full rank.  As a simple example, consider a variable Sex that takes on two values: Female and Male.  
If you include Sex in the CLASS statement and estimate a simple model Y=Sex using, for example, the 
GLM or MIXED procedure, SAS will not estimate an overall intercept and a value for Female but set the 
value of the estimated parameter for Male to 0.  The estimated value for Males is determined by adding 
the Intercept and the coefficient for Males; the estimated value for Females is determined by adding the 
Intercept and the coefficient for Females.  The best fit model in this case is the group mean, so it turns out 
the Intercept is the mean for Males and the coefficient for Females is actually the difference (Group mean 
for Females minus Group mean for Males).  The t-test that the coefficient for Females is nonzero is the 
same as you would get from PROC TTEST or from LSMEANS in GLM.  It is important to understand this 
simple example thoroughly, as it illustrates a number of principles.  We can code some simple ESTIMATE 
statements can confirm those calculations: 

CODE FOR GLM:    
proc glm data=anal; 
class sex; 
model y1 = sex / solution; 
lsmeans sex / stderr tdiff e; 
estimate 'male' intercept 1 sex 0 1; 
estimate 'female' intercept 1 sex 1 0; 
estimate 'female-male' sex 1 -1; 
title3 'GLM by sex'; 
run; 
 

The GLM procedure makes it relatively easy to see what is going on.  By specifying / SOLUTION on the 
MODEL statement, the parameter estimates are provided (along with standard errors and the t-tests that 
the parameters are zero).  This is almost always useful, if only to make sure the model is being estimated 
as you expect; I essentially always specify the SOLUTION option.  The LSMEANS statement requests the 
Least Squares Means for the specified terms in the model.  In this case, these are the same as the 
ordinary means.  The STDERR option requests the standard errors of each least squares mean, the 
TDIFF option asks for t-tests on all possible pairwise differences among levels of the effects specified on 
the LSMEANS statement, and the E option requests the coefficients used to calculate the least squares 
mean.  In this case, the result is rather simple, but in more complicated situations this is very handy.   
 
The syntax for an ESTIMATE statement is a name in quotes (technically optional but essential for 
identifying the estimate on the output) and then one or more effects from the model each followed by 
coefficients.  The intercept is an implied effect in every model.  So the interpretation of the first ESTIMATE 
statement is to multiply 1 times the intercept and 0 times the first coefficient for SEX and 1 times the 
second coefficient for SEX and add them up.  In this case the ESTIMATE statements mimic the 
information obtained from LSMEANS in this case but are a good test of understanding simple ESTIMATE 
statements.  The final 0 on the 'female' ESTIMATE is optional: trailing zeroes are assumed.  I think it is 
useful to include them to emphasize the number of coefficients associated with the effect. 
 
Here are excerpts from output from MEANS, TTEST, and GLM: 
 
FROM PROC MEANS: 
             N 
sex        Obs       N            Mean         Std Dev       Std Error 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
Female     326     326      65.4034956      37.5623024       2.0803835 
 
Male       674     674      68.5128249      36.2429821       1.3960275 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
FROM PROC TTEST: 
TTEST by sex 
Variable    sex               N        Mean    Std Dev      Std Err     
y1          Female          326      65.403     37.562       2.0804    
y1          Male            674      68.513     36.243        1.396   
y1          Diff (1-2)               -3.109     36.678       2.4744 
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                               T-Tests 
Variable    Method           Variances      DF    t Value    Pr > |t| 
y1          Pooled           Equal         998      -1.26      0.2092 
y1          Satterthwaite    Unequal       623      -1.24      0.2150 
 
FROM PROC GLM: 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        1        2124.276        2124.276       1.58    0.2092 
Error                      998     1342572.807        1345.263 
Corrected Total            999     1344697.083 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
sex                          1     2124.275971     2124.275971       1.58    0.2092 
 
                                           Standard 
Parameter                Estimate             Error    t Value    Pr > |t| 
Intercept             68.51282491 B      1.41277729      48.50      <.0001 
sex       Female      -3.10932930 B      2.47437150      -1.26      0.2092 
sex       Male         0.00000000 B       .                .         . 
 
NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve 
the normal equations.  Terms whose estimates are followed by the 
      letter 'B' are not uniquely estimable. 
 
Least Squares Means 
       Coefficients for sex Least Square Means 
                                       sex Level 
Effect                                 Female    Male 
Intercept                                   1       1 
sex       Female                            1       0 
sex       Male                              0       1 
 
                              Standard    H0:LSMEAN=0     H0:LSMean1=LSMean2 
sex          y1 LSMEAN           Error       Pr > |t|    t Value    Pr > |t| 
Female      65.4034956       2.0313972         <.0001      -1.26      0.2092 
Male        68.5128249       1.4127773         <.0001 
                                                                                                                
Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
male                      68.5128249      1.41277729      48.50      <.0001 
female                    65.4034956      2.03139721      32.20      <.0001 
female-male               -3.1093293      2.47437150      -1.26      0.2092 

 
In this simple example, the means, standard deviations, standard errors, t-statistics, and P values all 
match across the various ways of obtaining them.  This gives us confidence to try a harder example. 

ESTIMATE STATEMENTS WITH TWO FACTORS 
Once you go beyond a single factor, things get more complicated.  Among other things, the question 
arises whether to use the OBSMARGINS option (abbreviated OM) on LSMEANS.  This option causes the 
LSMEANS to use the observed marginal distributions of the variable rather than using equal coefficients 
across classification effects (thereby assuming balance among the levels).  Sometimes you want one 
version and sometimes you want the other, but in my work I generally find that OBSMARGINS more often 
gives me the LSMEANS I want.  The issue of estimability also arises (assuming the model is less than full 
rank).  It is quite possible for the LSMEANS to be nonestimable with the OM option but estimable without, 
or vice versa.  Some time spent understanding the model, together with some tools that SAS provides, 
make the determination of estimability less mysterious. 
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Let's consider an example with two categorical variables, race (with five levels) and sex (with two levels).  
In order to get a handle on estimability, we can ask for the general form of all estimable functions by 
include the E option on the MODEL statement.To illustrate the difference, we include one LSMEANS 
statement with the OM option and one without:    

CODE FOR GLM:    
 
proc glm data=anal; 
class race sex; 
model y1 = race sex / solution e; 
lsmeans race sex / stderr tdiff e; 
lsmeans race sex / stderr tdiff e om; 
estimate 'male' intercept 1 sex 0 1; 
estimate 'female' intercept 1 sex 1 0; 
estimate 'female-male' sex 1 -1; 
title3 'GLM by race sex'; 
run; 

 
FROM PROC GLM: 
GLM by race sex 
                 Class Level Information 
Class         Levels    Values 
race               5    Asian Black Hispanic Other White 
sex                2    Female Male 
 
Number of Observations Read        1000 
Number of Observations Used        1000 
 
General Form of Estimable Functions 
Effect                 Coefficients 
Intercept              L1 
race      Asian        L2 
race      Black        L3 
race      Hispanic     L4 
race      Other        L5 
race      White        L1-L2-L3-L4-L5 
sex       Female       L7 
sex       Male         L1-L7 
 
Notice that the levels of RACE are in alphabetic order by formatted value.  The interpretation of the 
"General Form of Estimable Functions," obtained by specifying the E option on the MODEL statement, is 
that the coefficients given as L followed by a number can be assigned any numerical value, but that the 
coefficient for some effects are derivable from the others.  For example, if L2 is assigned a 1 and all the 
other coefficients are assigned 0, then for the function to be estimable the coefficient for White would 
need to be -1.  This would then estimate the difference between Asian and White.  If you wanted just the 
value for Asian, you could assign L1 and L2 a value of 1, and the estimate would be of the Intercept plus 
Asian (and the coefficient for White would be 1-1=0).   
 
 Dependent Variable: y1 
                                        Sum of 
Source                      DF         Squares     Mean Square    F Value    Pr > F 
Model                        5       82152.751       16430.550      12.94    <.0001 
Error                      994     1262544.332        1270.165 
Corrected Total            999     1344697.083 
 
Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
race                         4     80028.47498     20007.11875      15.75    <.0001 
sex                          1      2590.81573      2590.81573       2.04    0.1535 
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                                             Standard 
Parameter                  Estimate             Error    t Value    Pr > |t| 
Intercept               63.39550656 B      1.65404269      38.33      <.0001 
race      Asian          0.96269902 B      3.79755107       0.25      0.7999 
race      Black         15.72610471 B      3.33992898       4.71      <.0001 
race      Hispanic      23.67301601 B      3.48135125       6.80      <.0001 
race      Other         -2.94225607 B      5.41062521      -0.54      0.5867 
race      White          0.00000000 B       .                .         . 
sex       Female        -3.43990976 B      2.40856801      -1.43      0.1535 
sex       Male           0.00000000 B       .                .         . 
 
NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve 
the normal equations.  Terms whose estimates are followed by the 
      letter 'B' are not uniquely estimable. 
                                                                                                                 
The SOLUTION, given above, includes tests of the difference between each race and the White category 
(the last category).  These are more attractively displayed using the LSMEANS and the TDIFF option.  
For more information about SOLUTION, see Usage Note 38384: How to interpret the results of the 
SOLUTION option in the MODEL statement of PROC GLM? at //support.sas.com/notes/index.html. 
 
The first LSMEANS are without the OM option: 
  
Least Squares Means 
                     Coefficients for race Least Square Means 
                                       race Level 
Effect                                 Asian    Black    Hispanic    Other    White 
Intercept                                  1        1           1        1        1 
race      Asian                            1        0           0        0        0 
race      Black                            0        1           0        0        0 
race      Hispanic                         0        0           1        0        0 
race      Other                            0        0           0        1        0 
race      White                            0        0           0        0        1 
sex       Female                         0.5      0.5         0.5      0.5      0.5 
sex       Male                           0.5      0.5         0.5      0.5      0.5 
 
                                Standard                  LSMEAN 
race           y1 LSMEAN           Error    Pr > |t|      Number 
Asian         62.6382507       3.5119521      <.0001           1 
Black         77.4016564       3.0099679      <.0001           2 
Hispanic      85.3485677       3.1771906      <.0001           3 
Other         58.7332956       5.2036501      <.0001           4 
White         61.6755517       1.5532976      <.0001           5 
 
                   Least Squares Means for Effect race 
                 t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
                          Dependent Variable: y1 
i/j              1             2             3             4             5 
   1                    -3.20959      -4.82644      0.623286      0.253505 
                          0.0014        <.0001        0.5332        0.7999 
   2      3.209586                    -1.82924      3.112197      4.708515 
            0.0014                      0.0677        0.0019        <.0001 
   3      4.826444      1.829242                    4.376613       6.79995 
            <.0001        0.0677                      <.0001        <.0001 
   4      -0.62329       -3.1122      -4.37661                    -0.54379 
            0.5332        0.0019        <.0001                      0.5867 
   5      -0.25351      -4.70851      -6.79995      0.543792 
            0.7999        <.0001        <.0001        0.5867 
 
NOTE: To ensure overall protection level, only probabilities associated with pre-planned 
comparisons should be used. 
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Least Squares Means 
       Coefficients for sex Least Square Means 
                                       sex Level 
Effect                                 Female    Male 
Intercept                                   1       1 
race      Asian                           0.2     0.2 
race      Black                           0.2     0.2 
race      Hispanic                        0.2     0.2 
race      Other                           0.2     0.2 
race      White                           0.2     0.2 
sex       Female                            1       0 
sex       Male                              0       1 
 
                              Standard    H0:LSMEAN=0     H0:LSMean1=LSMean2 
sex          y1 LSMEAN           Error       Pr > |t|    t Value    Pr > |t| 
Female      67.4395095       2.2041923         <.0001      -1.43      0.1535 
Male        70.8794193       1.7677880         <.0001 
 
The second LSMEANS are with the OM option: 
 
Least Squares Means 
                     Coefficients for race Least Square Means 
                                       race Level 
Effect                                 Asian    Black    Hispanic    Other    White 
 
Intercept                                  1        1           1        1        1 
race      Asian                            1        0           0        0        0 
race      Black                            0        1           0        0        0 
race      Hispanic                         0        0           1        0        0 
race      Other                            0        0           0        1        0 
race      White                            0        0           0        0        1 
sex       Female                       0.326    0.326       0.326    0.326    0.326 
sex       Male                         0.674    0.674       0.674    0.674    0.674 
 
                                Standard                  LSMEAN 
race           y1 LSMEAN           Error    Pr > |t|      Number 
Asian         63.2367950       3.4954641      <.0001           1 
Black         78.0002007       2.9918561      <.0001           2 
Hispanic      85.9471120       3.1501100      <.0001           3 
Other         59.3318399       5.2019535      <.0001           4 
White         62.2740960       1.4819289      <.0001           5 
 
                   Least Squares Means for Effect race 
                 t for H0: LSMean(i)=LSMean(j) / Pr > |t| 
                          Dependent Variable: y1 
i/j              1             2             3             4             5 
   1                    -3.20959      -4.82644      0.623286      0.253505 
                          0.0014        <.0001        0.5332        0.7999 
   2      3.209586                    -1.82924      3.112197      4.708515 
            0.0014                      0.0677        0.0019        <.0001 
   3      4.826444      1.829242                    4.376613       6.79995 
            <.0001        0.0677                      <.0001        <.0001 
   4      -0.62329       -3.1122      -4.37661                    -0.54379 
            0.5332        0.0019        <.0001                      0.5867 
   5      -0.25351      -4.70851      -6.79995      0.543792 
            0.7999        <.0001        <.0001        0.5867 
 
 
NOTE: To ensure overall protection level, only probabilities associated with pre-planned 
comparisons should be used. 
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Least Squares Means 
 
       Coefficients for sex Least Square Means 
                                       sex Level 
Effect                                 Female     Male 
 
Intercept                                   1        1 
race      Asian                         0.104    0.104 
race      Black                         0.142    0.142 
race      Hispanic                      0.128    0.128 
race      Other                         0.047    0.047 
race      White                         0.579    0.579 
sex       Female                            1        0 
sex       Male                              0        1 
 
                              Standard    H0:LSMEAN=0     H0:LSMean1=LSMean2 
sex          y1 LSMEAN           Error       Pr > |t|    t Value    Pr > |t| 
Female      65.1806844       1.9762366         <.0001      -1.43      0.1535 
Male        68.6205941       1.3735697         <.0001 
 
The ESTIMATE statements are designed to mimic the first set of LSMEANS for SEX: 
 
                                            Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
male                      70.8794193      1.76778797      40.09      <.0001 
female                    67.4395095      2.20419228      30.60      <.0001 
female-male               -3.4399098      2.40856801      -1.43      0.1535 
 
The difference between the two LSMEANS are that the first assumes an equal distribution across the 
categories of the variables, whereas the second uses the observed marginal distribution.  In this context, 
when comparing males and females we can either assume the five levels of the RACE variable each 
have 20% of the population (the default) or we can use the actual distribution of the RACE values (the 
OM option).  In this constructed example, we get the same answer for the difference 'female-male' but 
rather different values for the least squares means.  In general, both the least squares means and their 
differences will change when OM is specified. 

ESTIMATE STATEMENTS WITH TWO FACTORS AND INTERACTION 
Here is an example with a two-way interaction and therefore a somewhat more complicated ESTIMATE 
statement: 

CODE FOR GLM:    
proc glm data=anal; 
class sex race; 
model y1 = race sex race*sex / solution; 
lsmeans race sex / stderr e; 
lsmeans race sex / stderr e om; 
estimate 'male'   intercept 1 sex 0 1 race .2 .2 .2 .2 .2  race*sex 0 0 0 0 0  .2 .2 .2 .2 .2; 
estimate 'female' intercept 1 sex 1 0 race .2 .2 .2 .2 .2  race*sex .2 .2 .2 .2 .2  0 0 0 0 0; 
estimate 'female-male' sex 1 -1 race*sex .2 .2 .2 .2 .2  -.2 -.2 -.2 -.2 -.2; 
title3 'GLM by race sex race*sex'; 
run; 

 
It turns out in this example, the OM version of the least squares means are nonestimable.  This is 
because the observed proportion of males varies by race (or, to put it another way, the distribution across 
race is different for the two sexes).  This makes the coefficients inconsistent.  The ESTIMATE statements 
mimic the least squares means for the sex variable without the OM option: 
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                              Standard 
sex          y1 LSMEAN           Error    Pr > |t| 
Female      68.1117839       2.5611683      <.0001 
Male        70.5239982       1.9646266      <.0001 
 
                                            Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
male                      70.5239982      1.96462660      35.90      <.0001 
female                    68.1117839      2.56116830      26.59      <.0001 
female-male               -2.4122143      3.22790036      -0.75      0.4551 
 
Any consistent distribution for the other variables can be used to calculate least squares means – you are 
not limited to the uniform distribution or the observed distribution.  For example, we might want to use the 
distribution over the RACE variable from some reference population.  In this case, it might make sense to 
use the distribution used to generate the simulated data.  Or, we might want to use the observed overall 
distribution of RACE (not separately by sex) instead.  Here's how we might code the ESTIMATE 
statements and the associated output from GLM: 

CODE FOR GLM:    
proc glm data=anal; 
class sex race; 
model y1 = race sex race*sex / solution e; 
estimate 'male (h)' intercept 1  sex 0 1  race  .10 .15 .15 .05 .55   
          race*sex 0 0 0 0 0  .10 .15 .15 .05 .55; 
estimate 'female (h)' intercept 1  sex 1 0 race  .10 .15 .15 .05 .55   
          race*sex .10 .15 .15 .05 .55  0 0 0 0 0; 
estimate 'female-male (h)' sex 1 -1 race*sex .10 .15 .15 .05 .55   
          -.10 -.15 -.15 -.05 -.55; 
estimate 'male (o)' intercept 1  sex 0 1  race  .104 .142 .128 .047 .579   
          race*sex 0 0 0 0 0  .104 .142 .128 .047 .579; 
estimate 'female (o)' intercept 1  sex 1 0 race  .104 .142 .128 .047 .579   
          race*sex .104 .142 .128 .047 .579  0 0 0 0 0; 
estimate 'female-male (o)' sex 1 -1 race*sex .104 .142 .128 .047 .579   
          -.104 -.142 -.128 -.047 -.579; 
estimate 'female-male (off)' sex 1 -1 race*sex .105 .142 .128 .047 .579   
          -.105 -.142 -.128 -.047 -.579; 
title3 'GLM by race sex race*sex with hypothetical and observed race weights'; 
run; 

 
Notice the last ESTIMATE statement, with the difference marked "(off)" in the label.  That ESTIMATE 
statement is nonestimable because the coefficients add up to 1.001 instead of 1.000 within each sex.  It is 
easy to end up with values, even with many decimal places specified, that are off just a bit and which are 
therefore reported as nonestimable.  One solution is to adjust the values slightly to make sure they add 
up to 1.  Another solution is to use the DIVISOR option to ensure the values add up, as illustrated in the 
next sections.  Here are the results from GLM: 
 
                                            Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
 
male (h)                  69.2219208      1.38231738      50.08      <.0001 
female (h)                65.7862376      1.98334675      33.17      <.0001 
female-male (h)           -3.4356832      2.41753297      -1.42      0.1556 
male (o)                  68.6049088      1.37605701      49.86      <.0001 
female (o)                65.1115576      1.98344075      32.83      <.0001 
female-male (o)           -3.4933513      2.41403606      -1.45      0.1482 
 
Notice that we get somewhat different estimates of the female-male difference depending on how we 
weight the levels of RACE (and both differ from the default values in the previous output).     
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TESTING FOR LINEAR TREND 
 
One use of the ESTIMATE statement is to assess a linear trend across levels of a categorical variable.  
These can be equally spaced or unequally spaced.  The DIVISOR option is used to specify a number that 
each coefficient is divided by.                       

CODE FOR GLM:    
 
proc glm data=anal; 
class sex educat; 
model y1 = sex educat / solution; 
lsmeans sex educat / stderr e; 
lsmeans sex educat / stderr e om; 
estimate 'educat linear (no divisor)' educat -2 -1 0 1 2; 
estimate 'educat linear (divisor=10)' educat -2 -1 0 1 2 / divisor=10; 
estimate 'educat linear (divisor=40)' educat -4 -2 0 2 4 / divisor=40; 
estimate 'educat by year (not centered)' educat 8 12 14 16 20; 
estimate 'educat by year (centered)' educat -6 -2 0 2 6 / divisor=80; 
title3 'GLM by sex educat'; 
run; 

 
It turns out that not centering the coefficents results in a nonestimable function:  
 
                                                  Standard 
Parameter                         Estimate           Error    t Value    Pr > |t| 
educat linear (no divisor)      55.7056111      10.3314131       5.39      <.0001 
educat linear (divisor=10)       5.5705611       1.0331413       5.39      <.0001 
educat linear (divisor=40)       2.7852806       0.5165707       5.39      <.0001 
educat by year (centered)        1.8542778       0.3765941       4.92      <.0001 
 
Perhaps the hypothesis test is of greater interest in this context than the estimated parameter.  If you are 
interested in the estimated slope the coefficients should be normalized by dividing by the sum of squares 
(so the Euclidean length of the vector of parameters is 1).  This example shows that changing the divisor 
or multiplying all the coefficients by the same value changes the estimate and standard error 
proportionally and the t-statistic is unchanged.  Alternatively, unequally-spaced values can be used. 
 
USE OF COUNTS AND THE DIVISOR OPTION 
 
It is common for there to be changes in the analyses, for example deciding to omit a few subjects or a 
whole group.  This can mean redoing all the carefully calculated and transcribed coefficients.  A separate 
problem is making sure that the coefficients add exactly to 1.  Both of these can be helped by using 
counts of subjects and the DIVISOR option on the ESTIMATE statement.  Here's an example where it 
was decided to omit the Asian and Other categories of RACE: 

CODE FOR GLM:    
proc glm data=anal; 
class sex race; 
model y1 = race sex race*sex / solution e; 
estimate 'male (333)' intercept 1  sex 0 1  race  .333 .333 .333   
          race*sex 0 0 0  .333 .333 .333; 
estimate 'female (333)' intercept 1  sex 1 0 race  .333 .333 .333   
          race*sex  .333 .333 .333  0 0 0; 
estimate 'female-male (333)' sex 1 -1 race*sex  .333 .333 .333  -.333 -.333 -.333; 
estimate 'male (334)' intercept 1  sex 0 1  race  .333 .333 .334   
          race*sex 0 0 0  .333 .333 .334; 
estimate 'female (334)' intercept 1  sex 1 0 race  .333 .333 .334   
          race*sex  .333 .333 .334  0 0 0; 
estimate 'female-male (334)' sex 1 -1 race*sex  .333 .333 .334  -.333 -.333 -.334; 
estimate 'male (d)' intercept 3  sex 0 3  race  1 1 1  race*sex 0 0 0  1 1 1 / divisor=3; 
estimate 'female (d)' intercept 3  sex 3 0 race  1 1 1  race*sex 1 1 1  0 0 0 / divisor=3; 
estimate 'female-male (d)' sex 3 -3 race*sex 1 1 1   -1 -1 -1 / divisor=3; 
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estimate 'male (o)' intercept 849  sex 0 849  race  142 128 579   
          race*sex 0 0 0  142 128 579 / divisor=849; 
estimate 'female (o)' intercept 849  sex 849 0 race  142 128 579   
          race*sex 142 128 579  0 0 0 / divisor=849; 
estimate 'female-male (o)' sex 849 -849 race*sex 142 128 579   -142 -128 -579 / divisor=849; 
title3 'GLM without Asian/Other; race weighted using default and observed using counts'; 
run; 

 

We show the ESTIMATE statements we might use to get the default (equally-weighted) values, namely 
coefficients of .333.  Unfortunately, those do not add up to 1 exactly and so are nonestimable.  We can 
solve the problem by putting one of them to .334 (or adding more digits and still making sure one ends in 
4 instead of 3, or adding enough digits that the sum is close enough to 1), but that is not very elegant.  
Instead, we can specify a DIVISOR of 3 and all the coefficients are divided by 3.  This means that where 
we would normally want a 1 we need to put a 3, which is a bit strange looking but does the trick.   
 
To get the values for the observed proportions, instead of using long decimals (and making sure they add 
up to 1 exactly) we can instead simply put in the counts and the overall N as the divisor.  The counts will 
add up to the overall N and we should have no trouble with estimability: 
 
                                            Standard 
Parameter                   Estimate           Error    t Value    Pr > |t| 
male (334)                76.4417741      1.88286738      40.60      <.0001 
female (334)              73.1831213      2.63245041      27.80      <.0001 
female-male (334)         -3.2586528      3.23650811      -1.01      0.3143 
male (d)                  76.4543608      1.88419071      40.58      <.0001 
female (d)                73.1974355      2.63417346      27.79      <.0001 
female-male (d)           -3.2569253      3.23867943      -1.01      0.3149 
male (o)                  69.8106240      1.48329152      47.06      <.0001 
female (o)                65.6371940      2.17514619      30.18      <.0001 
female-male (o)           -4.1734301      2.63275800      -1.59      0.1133 
 

These are some examples of the use of the ESTIMATE statement but there are many other contexts 
where they are useful, such as in complex multifactor models.  A good resource for coding ESTIMATE 
statements with multifactor models is Usage Note 24447: Are there any examples of writing proper 
CONTRAST and ESTIMATE statements? at //support.sas.com/notes/index.html. 

THE STRATIFIED PIECEWISE LINEAR MODEL AND SOME ESTIMATE STATEMENTS 
Now that we have a better grasp on the ESTIMATE statement, let us return to the cystic fibrosis model we 
introduced at the beginning.  Recall that the model stratifies patients into ten deciles (based on their lung 
function at an index event) and fits two separate lines for each patient, one before the index event and 
one after the index event.  Shown below is the model and the first group of ESTIMATE statements.  The 
model includes four variables that define the two lines.  The intercept estimates the value at time 0 (the 
index event) using the pre-index data.  The variable t represents time and ranges from -2 to +2.  The 
variable tafter is 1 for the time after index and 0 before; it represents the change in intercept from pre- to 
post-index.  The variable t0 equals max(t,0) and therefore represents the change in slope between the 
pre-index and post-index periods.  This is a convenient parameterization for piecewise linear models 
because it provides a direct test of the change in intercept and the change in slope, both of which are 
likely to be of interest.  For more on parameterization of piecewise linear models, see Pasta 2005. 
 
The model includes the decile variable (which takes on values 1 to 10 to represent the 10 deciles of 
severity) alone and interacted with t, t0, and tafter.  This causes the MIXED procedure to calculate, for 
each decile, an estimated average value for the intercept, t, t0, and tafter.   
 
Technical Note: Because the same patient could contribute more than one index event, the mixed model 
allows for within-patient correlation through the use of two RANDOM statements.  At the level of the index 
event, all four parameters of the lines were treated as random effects with an unstructured covariance 
matrix parameterized as fa0(4) to ensure it is positive semi-definite.  At the level of the patient, the slope 
and intercept of the pre-index line were treated as random effects with unstructured covariance; we found 
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empirically that the patient-level variances associated with the change in intercept and the change in 
slope were near zero, so we set them to zero to avoid numerical instabilities.  This implies that there is a 
correlation within patient for the overall slope and intercept but not for the change values. 
 

proc mixed data = anal01 noclprint; 
  class patid patid_age decile; 
  model fev1pct = decile 
                  decile*t 
                  decile*t0 
                  decile*tafter / solution ddfm=bw; 
  random intercept t / sub=patid type=fa0(2) g gcorr; 
  random intercept t t0 tafter / sub=patid_age(patid) type=fa0(4) g gcorr; 
  *** Estimates for slope BEFORE index event ***; 
  estimate 'Before:1'   decile*t   1 0 0 0 0 0 0 0 0 0; 
  estimate 'Before:2'   decile*t   0 1 0 0 0 0 0 0 0 0; 
  estimate 'Before:3'   decile*t   0 0 1 0 0 0 0 0 0 0; 
  estimate 'Before:4'   decile*t   0 0 0 1 0 0 0 0 0 0; 
  estimate 'Before:5'   decile*t   0 0 0 0 1 0 0 0 0 0; 
  estimate 'Before:6'   decile*t   0 0 0 0 0 1 0 0 0 0; 
  estimate 'Before:7'   decile*t   0 0 0 0 0 0 1 0 0 0; 
  estimate 'Before:8'   decile*t   0 0 0 0 0 0 0 1 0 0; 
  estimate 'Before:9'   decile*t   0 0 0 0 0 0 0 0 1 0; 
  estimate 'Before:10'  decile*t   0 0 0 0 0 0 0 0 0 1; 
  estimate 'Before:U'   decile*t   1 1 1 1 1 1 1 1 1 1 / divisor=10;     
  estimate 'Before:O'   decile*t   0.0666048524 0.0776077886 0.0888270746 
                                   0.0955339206 0.1017462525 0.1059496214 
                                   0.1124710246 0.1164580436 0.1168907433 
                                   0.1179106784 ; 
  [MORE . . . ] 
 

These estimate statements start out pretty easy.  To get the estimated slope before the index event for 
each decile, we just need to pick out the interaction of the decile and the time variable for that decile.  
Note that the 0s after the 1 are not strictly necessary; I like to include them to make clear what is going 
on.  The decile*t effect represents 10 parameters, so I like to have all 10 coefficients appear. 
 
Is it possible to get these same estimates simply by specifying "solution" on the model statement?  Indeed 
it is.  Later values will not be possible to get that way and this is a good check on the coding. 
 
The next two ESTIMATE statements obtain an overall average "before" slope.  The one labeled U uses a 
uniform distribution across the deciles – each decile is given a weight of 0.1.  This could be expressed as 
a coefficient of 0.1 for each or, as is done here, by specifying a 1 for each coefficient and a divisor of 10.  
The divisor approach is especially convenient for avoiding long fractions when there are, say, 7 or 13 
categories.  The one labeled O uses the observed distribution across the deciles.  The extent to which 
some deciles are over- or under-represented here is a reflection of the actual data available.  There are 
times when the uniform approach makes the most sense and there are times when the observed 
approach makes the most sense.  This choice corresponds to the default in LSMEANS (the uniform 
approach) or the version you get when you specify OBSMARGINS (the observed approach).  Note that 
the observed version requires calculating to many decimal places to get good accuracy and making sure 
the coefficients sum exactly to 1.0 (if they do not, because of rounding, they need to be adjusted so that 
they do).  We will see a couple of easier ways to specify these coefficients later. 

MORE ESTIMATE STATEMENTS 
In addition to the pre-index slope, we want to look at the post-index slope and various other values 
derived from the four values (intercept, t, t0, and tafter).  Here are more ESTIMATE statements. 

  *** Estimates for slope AFTER index event ***; 
  estimate 'After:1'    decile*t      1 0 0 0 0 0 0 0 0 0 
                        decile*t0     1 0 0 0 0 0 0 0 0 0; 
  estimate 'After:2'    decile*t      0 1 0 0 0 0 0 0 0 0 
                        decile*t0     0 1 0 0 0 0 0 0 0 0; 
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  estimate 'After:3'    decile*t      0 0 1 0 0 0 0 0 0 0 
                        decile*t0     0 0 1 0 0 0 0 0 0 0; 
  estimate 'After:4'    decile*t      0 0 0 1 0 0 0 0 0 0  
                        decile*t0     0 0 0 1 0 0 0 0 0 0; 
  estimate 'After:5'    decile*t      0 0 0 0 1 0 0 0 0 0 
                        decile*t0     0 0 0 0 1 0 0 0 0 0; 
  estimate 'After:6'    decile*t      0 0 0 0 0 1 0 0 0 0 
                        decile*t0     0 0 0 0 0 1 0 0 0 0; 
  estimate 'After:7'    decile*t      0 0 0 0 0 0 1 0 0 0 
                        decile*t0     0 0 0 0 0 0 1 0 0 0; 
  estimate 'After:8'    decile*t      0 0 0 0 0 0 0 1 0 0 
                        decile*t0     0 0 0 0 0 0 0 1 0 0; 
  estimate 'After:9'    decile*t      0 0 0 0 0 0 0 0 1 0 
                        decile*t0     0 0 0 0 0 0 0 0 1 0; 
  estimate 'After:10'   decile*t      0 0 0 0 0 0 0 0 0 1 
                        decile*t0     0 0 0 0 0 0 0 0 0 1; 
  estimate 'After:U'    decile*t      1 1 1 1 1 1 1 1 1 1 
                        decile*t0     1 1 1 1 1 1 1 1 1 1 / divisor=10; 
  estimate 'After:O'    decile*t      0.0666048524 0.0776077886 0.0888270746 
                                      0.0955339206 0.1017462525 0.1059496214 
                                      0.1124710246 0.1164580436 0.1168907433 
                                      0.1179106784 
                        decile*t0     0.0666048524 0.0776077886 0.0888270746 
                                      0.0955339206 0.1017462525 0.1059496214 
                                      0.1124710246 0.1164580436 0.1168907433 
                                      0.1179106784 ; 
   
*** Estimates for DIFFERENCE in slope between before and after index event ***; 
  estimate 'Diff:1'     decile*t0     1 0 0 0 0 0 0 0 0 0;  
  estimate 'Diff:2'     decile*t0     0 1 0 0 0 0 0 0 0 0; 
  estimate 'Diff:3'     decile*t0     0 0 1 0 0 0 0 0 0 0; 
  estimate 'Diff:4'     decile*t0     0 0 0 1 0 0 0 0 0 0; 
  estimate 'Diff:5'     decile*t0     0 0 0 0 1 0 0 0 0 0; 
  estimate 'Diff:6'     decile*t0     0 0 0 0 0 1 0 0 0 0; 
  estimate 'Diff:7'     decile*t0     0 0 0 0 0 0 1 0 0 0; 
  estimate 'Diff:8'     decile*t0     0 0 0 0 0 0 0 1 0 0; 
  estimate 'Diff:9'     decile*t0     0 0 0 0 0 0 0 0 1 0; 
  estimate 'Diff:10'    decile*t0     0 0 0 0 0 0 0 0 0 1; 
  estimate 'Diff:U'     decile*t0     1 1 1 1 1 1 1 1 1 1 / divisor=10;  
  estimate 'Diff:O'     decile*t0     0.0666048524 0.0776077886 0.0888270746 
                                      0.0955339206 0.1017462525 0.1059496214 
                                      0.1124710246 0.1164580436 0.1168907433 
                                      0.1179106784 ; 
 
  *** Estimates of INCREASE AFTER the index event ***; 
  estimate 'IncAfter:1'  decile*tafter  1 0 0 0 0 0 0 0 0 0; 
  estimate 'IncAfter:2'  decile*tafter  0 1 0 0 0 0 0 0 0 0; 
  estimate 'IncAfter:3'  decile*tafter  0 0 1 0 0 0 0 0 0 0; 
  estimate 'IncAfter:4'  decile*tafter  0 0 0 1 0 0 0 0 0 0; 
  estimate 'IncAfter:5'  decile*tafter  0 0 0 0 1 0 0 0 0 0; 
  estimate 'IncAfter:6'  decile*tafter  0 0 0 0 0 1 0 0 0 0; 
  estimate 'IncAfter:7'  decile*tafter  0 0 0 0 0 0 1 0 0 0; 
  estimate 'IncAfter:8'  decile*tafter  0 0 0 0 0 0 0 1 0 0; 
  estimate 'IncAfter:9'  decile*tafter  0 0 0 0 0 0 0 0 1 0; 
  estimate 'IncAfter:10' decile*tafter  0 0 0 0 0 0 0 0 0 1; 
  estimate 'IncAfter:U'  decile*tafter  1 1 1 1 1 1 1 1 1 1 / divisor=10; 
  estimate 'IncAfter:O'  decile*tafter  0.0666048524 0.0776077886 0.0888270746 
                                        0.0955339206 0.1017462525 0.1059496214 
                                        0.1124710246 0.1164580436 0.1168907433 
                                        0.1179106784 ; 
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To get the slope after the index event, it is necessary to include the coefficient of t and of t0 for the 
corresponding decile.  Note that there is not a semicolon between the two lines; you are creating a single 
estimate using coefficients from two different terms in the model. 

MACRO VARIABLES TO SIMPLIFY THE ESTIMATE STATEMENTS 
We can use macro variables to simplify the ESTIMATE statements and make them easier to follow.  Here 
we are getting the two intercepts at time zero: the one for the end of the BEFORE period and the one at 
the beginning of the AFTER period.  We need to include the INTERCEPT term (included in the model by 
default).  
 

%let S_1    = 1 0 0 0 0 0 0 0 0 0; 
%let S_2    = 0 1 0 0 0 0 0 0 0 0; 
%let S_3    = 0 0 1 0 0 0 0 0 0 0; 
%let S_4    = 0 0 0 1 0 0 0 0 0 0; 
%let S_5    = 0 0 0 0 1 0 0 0 0 0; 
%let S_6    = 0 0 0 0 0 1 0 0 0 0; 
%let S_7    = 0 0 0 0 0 0 1 0 0 0; 
%let S_8    = 0 0 0 0 0 0 0 1 0 0; 
%let S_9    = 0 0 0 0 0 0 0 0 1 0; 
%let S_10   = 0 0 0 0 0 0 0 0 0 1; 
%let S_none = 0 0 0 0 0 0 0 0 0 0; 
%let P_U    = .1 .1 .1 .1 .1 .1 .1 .1 .1 .1; 
%let P_O    = 0.0666048524 0.0776077886 0.0888270746 
              0.0955339206 0.1017462525 0.1059496214 
              0.1124710246 0.1164580436 0.1168907433 
              0.1179106784 ; 
  *** Intercept at the end of the BEFORE and at the beginning of the AFTER ***; 
  estimate 'LS:1_Before'   intercept             1 
                           decile                &S_1. 
                           decile*tafter         &S_none.;       
  estimate 'LS:1_After'    intercept             1 
                           decile                &S_1. 
                           decile*tafter         &S_1.;    
  estimate 'LS:2_Before'   intercept             1 
                           decile                &S_2. 
                           decile*tafter         &S_none.;       
  estimate 'LS:2_After'    intercept             1 
                           decile                &S_2. 
                           decile*tafter         &S_2.;       
  . . . 
  estimate 'LS:10_Before'  intercept             1 
                           decile                &S_10.  
                           decile*tafter         &S_none.;       
  estimate 'LS:10_After'   intercept             1 
                           decile                &S_10. 
                           decile*tafter         &S_10.;       
  estimate 'LS:Before_U'   intercept             1 
                           decile                &P_U. 
                           decile*tafter         &S_none.;  
  estimate 'LS:After_U'    intercept             1 
                           decile                &P_U. 
                           decile*tafter         &P_U.;   
  estimate 'LS:Before_O'   intercept             1 
                           decile                &P_O. 
                           decile*tafter         &S_none.;    
  estimate 'LS:After_O'    intercept             1 
                           decile                &P_O. 
                           decile*tafter         &P_O.; 
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The S_none macro variable is not necessary here but it helps show the parallelism of the constructs.  
Note that P_U is expressed as a fraction.  If we use the DIVISOR option here, we need the coefficient of 
the INTERCEPT to be equal to the DIVISOR, which is a bit obscure.  It seems easier to follow this way.   

TESTING HYPOTHESES WITH CONTRAST STATEMENTS 
In general, ESTIMATE statements provide the necessary functionality to calculate estimated 
combinations of parameter values, their standard errors, and the associated confidence intervals.  At 
times, however, a CONTRAST statement is needed because you want to test a hypothesis with more 
than one degree of freedom.  In this context, we wanted to test the null hypothesis that both the change in 
intercept and the change in slope are simultaneously zero, i.e. that the AFTER line segment is not 
statistically different from the BEFORE line segment.   
 
They syntax of CONTRAST statements is very similar to the syntax of ESTIMATE statements except that 
multiple effects are specified and separated by commas.  Using the macro variables created above, the 
statements are quite compact using this parameterization: 
 

  *** Simultaneous test of change in intercept and slope ***; 
  contrast  'PIntSlope:1'  decile*t0      &S_1.,  
                           decile*tafter  &S_1.; 
  contrast  'PIntSlope:2'  decile*t0      &S_2.,  
                           decile*tafter  &S_2.; 
  . . . 
  contrast  'PIntSlope:10' decile*t0      &S_10.,  
                           decile*tafter  &S_10.; 
  contrast  'PIntSlope:U'  decile*t0      &P_U., 
                           decile*tafter  &P_U.; 
  contrast  'PIntSlope:O'  decile*t0      &P_O., 
                           decile*tafter  &P_O.; 

OBTAINING SUBGROUP COUNTS AND PROPORTIONS AUTOMATICALLY 
One considerable annoyance when constructing ESTIMATE statements is the need to specify proportions 
very precisely.  It is possible to use the macro language and SYMPUT to get the subgroup counts and 
automatically construct the necessary proportions.  In addition to being less error-prone, this is a lifesaver 
when the counts change because the analysis is slightly revised.   
 

*** Obtaining subgroup Ns to automatically feed into model ***; 
*** First get unique patient_age records with decile ***; 
proc sort data=temp01(keep=patid_age decile) out=temp02 nodupkey; 
  by patid_age decile; 
run; 
 
data _null_; 
  set temp02; 
  by patid_age decile; 
  if not(first.patid_age and last.patid_age)  

then error 'ERROR: decile varies within patid_age'; 
run; 
 
ods listing close; 
ods output onewayfreqs = temp03(keep=decile frequency cumfrequency); 
proc freq data = temp02; 
  tables decile; 
run; 
ods listing; 
 
data _null_; 
  set temp03; 
  call symput('N_'||left(trim(put(decile,2.))),frequency); 
run; 
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data _null_; 
  set temp03; 
  if (decile eq 10) then call symput('Ntot',cumfrequency); 
run; 
 
data _null_; 
  call symput('P_1', &N_1. / &Ntot.)); 
  call symput('P_2', &N_2. / &Ntot.); 
  call symput('P_3', &N_3. / &Ntot.); 
  call symput('P_4', &N_4. / &Ntot.); 
  call symput('P_5', &N_5. / &Ntot.); 
  call symput('P_6', &N_6. / &Ntot.); 
  call symput('P_7', &N_7. / &Ntot.); 
  call symput('P_8', &N_8. / &Ntot.); 
  call symput('P_9', &N_9. / &Ntot.); 
  call symput('P_10', &N_10. / &Ntot.); 
run; 
 
*** Macro variable for model specifications ***; 
%let P_O = &P_1. &P_2. &P_3. &P_4. &P_5. &P_6. &P_7. &P_8. &P_9. &P_10.; 

 
Specifying the SYMBOLGEN option results in the assigned values appearing in the log: 
 
SYMBOLGEN:  Macro variable NTOT resolves to        32355                                                        
                                                                                                                 
SYMBOLGEN:  Macro variable N_1 resolves to         2155                                                          
SYMBOLGEN:  Macro variable N_2 resolves to         2511                                                         
SYMBOLGEN:  Macro variable N_3 resolves to         2874                                                          
SYMBOLGEN:  Macro variable N_4 resolves to         3091                                                          
SYMBOLGEN:  Macro variable N_5 resolves to         3292                                                          
SYMBOLGEN:  Macro variable N_6 resolves to         3428                                                          
SYMBOLGEN:  Macro variable N_7 resolves to         3639                                                         
SYMBOLGEN:  Macro variable N_8 resolves to         3768                                                          
SYMBOLGEN:  Macro variable N_9 resolves to         3782                                                          
SYMBOLGEN:  Macro variable N_10 resolves to         3815                                                        
 
SYMBOLGEN:  Macro variable P_1 resolves to 0.0666048524                                                          
SYMBOLGEN:  Macro variable P_2 resolves to 0.0776077886                                                          
SYMBOLGEN:  Macro variable P_3 resolves to 0.0888270746                                                          
SYMBOLGEN:  Macro variable P_4 resolves to 0.0955339206                                                          
SYMBOLGEN:  Macro variable P_5 resolves to 0.1017462525                                                         
SYMBOLGEN:  Macro variable P_6 resolves to 0.1059496214                                                          
SYMBOLGEN:  Macro variable P_7 resolves to 0.1124710246                                                          
SYMBOLGEN:  Macro variable P_8 resolves to 0.1164580436                                                          
SYMBOLGEN:  Macro variable P_9 resolves to 0.1168907433                                                          
SYMBOLGEN:  Macro variable P_10 resolves to 0.1179106784                                                         

 
Additional programming can be used to capture the results of the ESTIMATE and CONTRAST 
statements and construct Table 1 automatically.  This involves careful use of the ODS tables and some 
attention to getting the rows and columns in the right order.  The effort is repaid many times over when 
(not if!) the analysis needs to be rerun with slight variations.   
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OUTPUT FROM PROC MIXED 
The output from MIXED includes some information that helps you check the ESTIMATE statements were 
coded correctly.  Specifically, you can compare the solution for fixed effects with the corresponding 
estimates to see if the values match (where they should match) and can do a little arithmetic to see if they 
are about right in other cases.                                                                                      
                                                                                                                 
                             Solution for Fixed Effects                                                         
                                                                                                                 
                 Age-adjusted               Standard                                                            
Effect           FEV1 decile     Estimate       Error      DF    t Value    Pr > |t|                             
                                                                                                                 
Intercept                         90.9166      0.2888    14E3     314.76      <.0001                             
decile            1              -44.2671      0.4340    11E3    -101.99      <.0001                             
decile            2              -35.9684      0.3977    11E3     -90.44      <.0001                             
. . . 
decile           10                     0           .       .        .        .                                 
t*decile          1               -4.0451      0.1646    58E4     -24.58      <.0001                             
t*decile          2               -3.2907      0.1547    58E4     -21.27      <.0001                             
. . . 
t*decile         10                0.4887      0.1409    58E4       3.47      0.0005                             
t0*decile         1                2.9726      0.2320    58E4      12.81      <.0001                             
t0*decile         2                1.7332      0.2149    58E4       8.06      <.0001                             
. . . 
t0*decile        10               -3.2569      0.1966    58E4     -16.57      <.0001                            
tafter*decile     1              0.000519      0.2103    58E4       0.00      0.9980                             
tafter*decile     2               0.01151      0.1998    58E4       0.06      0.9541                             
. . . 
tafter*decile    10               -0.4046      0.1971    58E4      -2.05      0.0401                             
                                                                                                                 
                                                                                                                
          Type 3 Tests of Fixed Effects                                                                          
                                                                                                                 
                  Num     Den                                                                                   
Effect             DF      DF    F Value    Pr > F                                                               
                                                                                                                 
decile              9    11E3    1669.15    <.0001                                                               
t*decile           10    58E4     183.24    <.0001                                                               
t0*decile          10    58E4      74.12    <.0001                                                               
tafter*decile      10    58E4       5.94    <.0001                                                              
 
 
                             Estimates 
                                                                                                                 
                              Standard                                                                           
Label             Estimate       Error      DF    t Value    Pr > |t|                                            
                                                                                                                 
Before:1         -4.0451      0.1646    58E4     -24.58      <.0001                                              
Before:2         -3.2907      0.1547    58E4     -21.27      <.0001                                             
. . . 
Before:10         0.4887      0.1409    58E4       3.47      0.0005                                              
Before:U         -1.6042     0.04690    58E4     -34.20      <.0001                                              
Before:O         -1.3799     0.04678    58E4     -29.50      <.0001                                              
After:1          -1.0725      0.1620    58E4      -6.62      <.0001                                              
After:2          -1.5574      0.1465    58E4     -10.63      <.0001                                              
. . . 
After:10         -2.7682      0.1373    58E4     -20.17      <.0001                                              
After:U          -1.9179     0.04498    58E4     -42.64      <.0001                                              
After:O          -1.9758     0.04484    58E4     -44.06      <.0001                                              
Diff:1            2.9726      0.2320    58E4      12.81      <.0001                                              
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Diff:2            1.7332      0.2149    58E4       8.06      <.0001                                              
. . . 
Diff:10          -3.2569      0.1966    58E4     -16.57      <.0001                                             
Diff:U           -0.3137     0.06375    58E4      -4.92      <.0001                                              
Diff:O           -0.5959     0.06354    58E4      -9.38      <.0001                                              
IncAfter:1      0.000519      0.2103    58E4       0.00      0.9980                                              
IncAfter:2       0.01151      0.1998    58E4       0.06      0.9541                                              
. . . 
IncAfter:10      -0.4046      0.1971    58E4      -2.05      0.0401                                              
IncAfter:U       -0.3633     0.06130    58E4      -5.93      <.0001                                              
IncAfter:O       -0.4000     0.06174    58E4      -6.48      <.0001                                              
LS:1_Before      46.6494      0.3465    58E4     134.61      <.0001                                             
LS:1_After       46.6500      0.3369    58E4     138.48      <.0001                                              
LS:2_Before      54.9482      0.3042    58E4     180.66      <.0001                                              
LS:2_After       54.9597      0.2934    58E4     187.31      <.0001                                             
. . . 
LS:10_Before     90.9166      0.2888    58E4     314.76      <.0001                                              
LS:10_After      90.5120      0.2834    58E4     319.33      <.0001                                              
LS:Before_U      70.6974      0.1506    58E4     469.43      <.0001                                              
LS:After_U       70.3342      0.1491    58E4     471.84      <.0001                                              
LS:Before_O      72.8524      0.1502    58E4     484.89      <.0001                                              
LS:After_O       72.4524      0.1488    58E4     486.96      <.0001                                              
                                                                                                                 
                                                                                                                 
                     Contrasts                                                                                   
                                                                                                                 
                   Num     Den                                                                                  
Label               DF      DF    F Value    Pr > F                                                              
                                                                                                                 
PIntSlope:1        2    58E4      82.72    <.0001                                                                
PIntSlope:2        2    58E4      32.84    <.0001                                                                
PIntSlope:3        2    58E4       6.27    0.0019                                                                
PIntSlope:4        2    58E4       2.07    0.1261                                                                
PIntSlope:5        2    58E4       0.44    0.6444                                                                
PIntSlope:6        2    58E4       7.53    0.0005                                                                
PIntSlope:7        2    58E4      14.46    <.0001                                                                
PIntSlope:8        2    58E4      47.18    <.0001                                                                
PIntSlope:9        2    58E4      62.39    <.0001                                                               
PIntSlope:10       2    58E4     137.91    <.0001                                                                
PIntSlope:U        2    58E4      27.38    <.0001                                                                
PIntSlope:O        2    58E4      60.41    <.0001                                                                
 
This example also illustrates the importance of clear labeling of the individual estimates and contrasts.  

CONCLUSION 
With a good understanding of the parameterization of your model, you should be able to code ESTIMATE 
and CONTRAST statements.  A number of examples have been given to try to demystify the process.  A 
complicated mixed model with ten levels of stratification across patients and two fitted lines within patients 
provides a context for many examples of ESTIMATE and CONTRAST statements.  Some shortcuts in 
creating ESTIMATE and CONTRAST statements can make the process simpler and make it easier to 
check the results.  To check your code, it is helpful to use the SOLUTION option on the MODEL 
statement and to use LSMEANS statements (with OBSMARGINS specified).  You can use the SYMPUT 
function to get counts from the data into macro variables to allow you to automatically calculate 
coefficients for ESTIMATE and CONTRAST statements.  Although the examples given here use GLM 
and MIXED, most of the sample principles can be applied to other procedures that use ESTIMATE or 
CONTRAST statements. 
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