SAS Training 2019

Exercise 2

1. (a) Using a data-step, create a SAS dataset called wtsbp reading in the following variables from the tomhss SAS dataset: ptid, group, age, sex, marital, wtbl, wt12, sbpbl, and sbp12. (Use a SET and KEEP statement).
(b) Compute two new variables in the data step; change in weight and change in systolic blood pressure after 12-months. Name the variables wtdif and sbpdif. The formula for wtdif is:
wtdif = wt12 - wtbl; Define sbpdif in a similar manner.
Note: by computing the differences in this way negative values will indicate a decrease from baseline and positive values will indicate an increase from baseline.

Also compute a new variable to indicate whether the participant was taking active treatment or placebo.
if group $=6$ then active $=2$; else active $=1$;
(c) Run proc means on all numeric variables to help verify the new variables where defined correctly. What was the average weight change and SBP change for all participants?
(d) Run proc means on the variable sbpdif separately by active and placebo groups. What was the average change in SBP in the active groups; in the placebo group? Test if the change in SBP differed significantly between the active and placebo groups using proc ttest.
(e) Run proc univariate for the variable wtdif. What are the 25th, 50th, and 75th percentiles of weight change.
(f) Use a procedure to display the cross-tabulation of participants marital status and gender. What is the percentage of men that are currently married? What are the percentage of women that are currently married? Note: The values of marital status are $1=$ never married, $2=$ separated, $3=$ divorced, $4=$ widowed, $5=$ married. Test if the distribution of marital status differs significantly between men and women. Use the chisq option on the table statement.
(g) Using proc sgplot display side-by-side boxplots of weight change by gender.
2. In a new SAS data-step read the following variables from the tomhss SAS dataset: ptid, age, sex, and income creating a SAS dataset called ageincome.
(a) Using if/then/else statements compute a new variable with 5 categories for age (45-49, 50-54, 55-59, 60-64, 65-69).
(b) Using the IN function compute a new variable with two categories for reported income: making $\$ 40,000$ or more (values $5-8$) versus making less than $\$ 40,000$ (values 1-4).
(c) Using proc freq display the distribution of age and income categories. What percentage of participants are 65-69? What percentage make \$40,000 or more?
(d) Using proc freq display the percentage of participants making $\$ 40,000$ or more by gender.

