Hierarchical-Model F 1tting and Diagnostics

. A PLAN B PAPER
SUBMITTED TO THE DEPARTMENT OF BIOSTATISTICS
OF THE UNIVERSITY OF MINNESOTA

BY
Dr. Peiming Ma

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE
Dr. James S. Hodges, advisor

August, 1997



Acknowledgments

I am grateful to Dr. James S. Hodges for his valuable guidance in this project and for the
financial support from his research grant. [ also wish to thank Dr. J. Williams Thomas for the
advice during the two years of my school work. My sincere thanks go to Dr. DeAnn Lazovich,
Dr. J. Williams Thomas, and Dr. James S. Hodges for giving suggestions to improve this
work and serving in my plan B committee.

It was the loss of my mother from Amyotrophic Lateral Sclerosis (Lou Gehrig’s disease)
two years ago that had me start the program in biostatistics. The memory of her has been

an 1mportant, support in completing the program.



Abstract

We describe certain computer procedures in S+ that were developed to perform
Bayesian computations for hierarchical models by the Gibbs sampler method and to
perform diagnostics: added-variable plots, collinearity measures, case influence, resid-
uals, and a transformation diagnostic. The procedures are then applied to two studies:
one on nicotinic receptors in neural tissues in rats, and the other on stress in an artificial
human mandible.

The study is based on Hodges’ theoretical framework in [H].
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1 Introduction

Hierarchical models have been used widely in understanding and solving statistical problems
because, first of all, the advancement of both computer technology and statistical computing
has made it more practical and, secondly, data often arise naturally with several levels of
hierarchy. For example, suppose a clinician wants to know patients’ blood concentrations of
a certain drug to understand the drug’s bioavailability, assuming the drug is administered

steadily during the study so the inflow of the drug is viewed as constant. He or she measures



the blood concentration n times for each of the k patients. et Yi; be the concentration
at the j-th time from the i-th patient. One way of modeling this is to use the following
equations for two different levels:

Vii = bi+e;
’ ’ t=1...,k j=1,...,n (1)

0 = p+6
where we suppose the error terms ¢; and ¢; are independent, and normally distributed with
sorne unknown variances o2 and 72 respectively (i.e., ¢; %2 N(0, o?) and §; % N(0,7%)). The
parameter 6; can be interpreted as the average amount of the agent for the i-th patient and
t the average amount of the agent among all patients. In a Bayesian setting a prior for y is

generally added:

p=M+¢, (2)

where M is the prior mean of pand € ~ N(0,5?) so s? is the prior variance; M and s? are
assumed known. The equations ( 1) and (2) then comprise a simple hierarchical model of
three levels. See [BR] for a very readable introduction to hierarchical models.

Once a hiera,rchical model is established as reasonable, just as for any modeling problem,
the next tasks are i) model fitting, or estimating all parameters in the model, ii) diagnostics,
or applying procedures to determine if the estimated model provides a, good fit to the data,
and iii) interpretation, or extracting information from the data, through the proposed model.
However, the same tasks for hierarchical models are usually more involved than for simpler
models, for reasons such as the nonlinearity of estimates in the observations, arising from

multiple unknown variances.



Hodges [H] proposed a new method to study hierarchical models. His idea is to refor-
mulate the model as an ordinary linear model with heteroscedastic errors by rewriting the
modeling equations of the higher levels in a special way. The following describes Hodges’

method using the above example. After rewriting the equations in (1) and (2) as

Yii = 0+ e
v=1,...,k

0 = —0;+pu+6 (3)
7=1,....n

M = p-¢

the above equations can be expressed in matrix notation as ¥ = X© + £

1, 010
b,

Y €
= 0 1,0 + (4)

0x —1 1, - )

_— u -

M 0 -~ 011 —£

where y is a vector with components y;;, ¢ = 1,...,k;j=1,... n, properly ordered, 1,, is a

column of vector of 1’s of length m for any given positive integer m, and [ is the identity
matrix of order k. Each 0 in the matrix has appropriate yet obvious size and shape. The
vector E of the error terms has a diagonal covariance structure, namely, the entries of the
covariance matrix F are all zeros except for the diagonal which consists of nk copies of o2,
k copies of 72, and a single s?.

It turns out that many hierarchical models, e.g., variance component models or random



coeflicient regression models defined in [BR], can be written as Y = X0 + F with X,Y in

more general forms:

X110 0 .. 0 0
Yy

H | H, 0 0 0 —
0

0 | Hy H, ... 0 0

X = and Y = : (5)

0

0 6 0 ... H_, H N
M

Gi|Gy Gy ... G,y G,

where the H,’s specify model equations for parameters of levels greater than one and G;’s and
M specify prior means for parameters in © that are not modeled as functions of higher-level
parameters. For convenience, the rows of y and X; will often be referred to as data cases
and, similarly, the rows of H,’s and the rows of G;’s will be called constraint cases and prior
cases, respectively.

The advantage of this matrix expression is that the theory of finite-dimensional vec-
tor spaces can be applied, so the geometric properties of such linear models become more
apparent. This offers insight that might be useful for model-fitting and diagnostics.

With Hodges’ method as the foundation, we have developed computing tools for hierar-
chical model-fitting and diagnostics. In Section 2, we describe a model-fitting method that
uses the Gibbs sampler; and some diagnostic procedures which are generalized from the S+
code that Hodges used in his paper. The complete S+ code of all functions can be found

in Appendix A. Then in Section 3 we consider two data sets, both of which seem to call for



models with hierarchical structure. After fitting the data with the Gibbs sampler, in Section
4 we apply the diagnostic tools and interpret the results that the model has to offer for the
data. There the functionality of the S+ code for diagnostic procedures will also be exhibited.

The purpose of this work is twofold. In addition to creating some general functions
to fit hierarchical models and to do diagnostics, we shall try to explore certain issues in
model-fitting and diagnostics as well as to compare some of the differences between different

parameterizations for the same model or different models for the same data set.

2 Computer Procedures for Hierarchical Models

In this section, we first describe briefly the process of using the Gibbs sampler to obtain
approximate solutions to the hierarchical model equations. Then we present in detail the

S+ functions for model fitting and diagnostics.

2.1 Model Fitting

One method for fitting a linear model of the form Y — XO + E with X and Y in (5), as
a Bayesian analysis problem, is to use the Gibbs sampler, which relies on a Markov Chain
process. Consider Y = XO + E where the error term F 1s normally distributed with mean
vector 0 and covariance matrix ¥, unknown but assumed to be diagonal. (We restrict the
covariance matrices for the error terms to be diagonal because it is adequate for the models
that we are currently interested in and the computation is much simpler. The class of models
Y = X0 + E with X and Y in (5) is more general in that the covariance matrix is usually

block-diagonal.)



To simplify notation, define I' = 7', the diagonal matrix of error precisions. It can be
easily shown that for given X and Y the posterior distribution of O, conditional on I, is
normal with mean (X'TX)"X'TY and covariance (X'TX)™'. And if the distinct diagonal
elements of I', namely the error precisions, are all assumed to have Gamma prior distributions
then, conditional on O, the posterior distributions of the error precisions are still Gammas
with easily computable parameters. Denoting by II the appropriate conditional density, we

can generate a Gibbs sequence of random vectors:
0, ~II(6|Ty), Iy~ H(Tey), ..., O~ [(OTk-1), T ~I(IO;) (6)

where the starting value for I'y is specified and each draw thereafter is made successively from

a distribution with parameters computed from the previous term. The theory of Markov

chains guarantees that as & — oo the quantities £ % _ T, and Tk 0, converge to

E(T'Y) and E(O]Y) respectively, thus yielding estimates for the posterior means of I’
and O when £k is sufficiently large. However, better estimates can be obtained by Rao-
Blackwellization (see [CG]):

E(IY) ~

Y_E(IY,0,,) and EOY)~ - E(O]V,T,,) (7)

?s~|*——*

1
k
when £ is large. The posterior variances of T and © can be approximated analogously by

Var (TY)  ~ r’fy,e,, ( ZE (T, @m))2

1
k
% (©%Y,T,,) ( S BT, )) .

Var (O]Y) =

S
2



2.1.1 Gibbs Sampler

We wrote the S+ function gibbs to create a Gibbs sequence as in (6) from which various
model quantities, including the approximate posterior means and variances of I and © in
(7) and (8), can be obtained.

The gibbs function takes as input arguments X, Y, rows, cols, num.iter, opt, ptab.len,

pta, ptb, prior.var, g.diag, burnin:

¢ X and Y are matrices constructed by the user from the outcome variable and the

covariates as in (5).

® rows is a vector of integers used to identify the different levels of the model. Given
X as in (5), the elements of rows describe the number of rows of the submatrices
Xi,H,Hs,... H,_;. For example, the first component in rows is also the number of
data cases observed and the sum of the remaining integers in rows is the number of
constraint cases. Finally if n is the row dimension of X , then the difference between n

and the sum of the integers in rows gives the number of prior cases.

® cols is an integer vector defined similarly as rows. It gives the number of columns of ‘
X1, Hy, Hy, ... H, in X. (For the example of the rats study with both parameteriza-
tions in Section 3.1, rows = (48,16) and cols = (22,2); and for the first model in the

Jaw study in Section 3.2, rows = (55, 106) and cols = (55, 52).)

® num.iter is the number of Gibbs iterations that the user wishes to use in computing

posterior quantities. The default is 1000.

® opt is either 0 (default) or 1. It is specified by the user. If opt is 1 then the Gibbs

8



iterates are saved as part of the output; otherwise, they are not.

pla, ptb, and ptab.len are vectors of the same length. Assume all the error precisions
are of the form t;n;,7 = 1,... n, where t; are known constants and 7n; are unknown.
Assume also that n;’s are divided into r groups in such a way that the first n; of the
7:’s equal hy and the next n, of the n:’s equal hy, etc., for a list of distinct random
variables {hy,... h.}. And, a priori, the h;’s are random variables having Gamma
distributions with shape parameter a; and scale parameter b;, therefore, the mean and
variance of the prior Gamma distribution are a;/b; and aj/bf. Then pta and pth are
r-vectors of the parameters, i.e., a;’s and b;’s respectively and ptab.len is an r-vector
of n;’s. (This implies that X must be set up in a particular way so that the lengths
of the error variances for the rows of X correspond to ptab.len.) The default values
of pta and ptb are vectors of 1.1 and 0.1 with the same lengths as rows, respectively,
and for ptab.len the default is the rows vector. (For the rats study in Section 3.1,
r=2, pta= (1,1.1), pth= (0,0.1), and ptab.len = (48,16); for the first model in the
Jaw study in Section 3.2, r = 4, pta= (1.1,1.1,1.1,1.1), ptb= (0.1,0.1,0.1,0.1), and

ptab.len = (55, 5,50, 51)).

g-diag is an n-vector supplied by the user whose components are the t;’s described
above. The ;s of the default g-diag are all equal to 1. (For the parameterizations of

the jaw study in Section 3.2, g.diag will not take the default value.)

prior.var is a vector of variances for prior cases that the user supplies. It can be
specified as a single number instead of a vector, in which case gibbs will use that
number as the variances for all the prior cases, if more than one. The default is

9



1,000,000, corresponding to a “nearly” flat, low-information prior.

e burnin is the number of burn-ins, or initial iterations which the user chooses to discard.
The default value is 100. The total number of runs in gibbs is the sum of num.iter and

burnin.

The gibbs function outputs a list of objects. Besides copying X, Y, rows, cols, num.iter,
ptab.len, g.diag from the input arguments, it also produces mean.theta, var.theta, ehe, vhe,
mean.sig?, var.sig?, Ghe and if opt is 1 then the Gibbs iterates for © and the error precisions

h; are saved in Gibbs.iter.

e mean.theta and wvar.theta give the estimated posterior means and variances of the

parameters ©.

e che and vhe produce the estimated posterior means and variances of all the error

precisions h;.

e mean.sig? and var.sig? are the estimated posterior means and variances of the error

variances, 1/h;.

e Ghe is a vector which contains the square root of the estimated posterior means of the

error precisions, E(t;7;).

® Gibbs.iter is obtained if opt is 1. Gibbs.iter is a list of two matrices thit and hit which
are the Gibbs draws of © and h,’s. The i-th row of the matrices are the saved i-th
Gibbs draws of © and ;s after the burnin iterations. The column dimensions of
thit and hit are equal to the length of © and r, the number of error precisions h;,

respectively.

10



2.1.2 Convergence Plots

It is usually a difficult question to ascertain whether the Gibbs sampler has converged and,
perhaps, more difficult to determine the rate of convergence if it does. One way of getting
some sense for both questions is to make the so-called time plots for the random draws
of parameters in gibbs. In such plots, the horizontal axis is the iteration number and the
vertical axis is the value of the draws.

The function conv takes the model output from gibbs with opt equal to 1 and vectors
theta.idz and error.idz. The two vectors, given by the user, are respectively the indices of the
model parameters © and error precisions h; for which the user wants to make convergence
plots. The function then sketches six time plots per screen for the given indices of the Gibbs
iterates and asks the user’s choice to continue for the next screen of six plots if there are

more.

2.2 Diagnostics

We wrote five functions to do some diagnostics that are popular for ordinary linear mod-
els. They are added-variable plots, collinearity measures, case influence, residuals, and a
transformation diagnoétic. One may find their description in many standard textbooks of
statistical modeling (for example, in [C] and [A]). However, for hierarchical models the usual
diagnostic procedures often need to be modified before they can be meaningfully applied.

The S+ functions given below implement the modified diagnostics described in Section 4 of

[H] in detail.
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2.2.1 Added-Variable Plots

An added-variable plot is used to test whether a variable not currently in the model helps
to explain additional variation or is correlated with the residuals from the current model.

The function addvar makes added-variable plots. It takes as input the g¢ibbs output
object, say, model and an external variable in the level of either data cases or constraint
cases: addvl, addv?. The user can give a variable in one of the two levels; or if the user
specifies both addv! and addv?2, they will be combined, consistent with (5) to produce a
single added variable. addvar also takes an optional argument plotit: if plotit is true (T)
then it will give a scatter plot of the scaled residuals versus the new scaled residuals obtained
after the external variable is regressed on X using the posterior mean of the diagonal of [''/2
as the scale weights. The rationale for this added-variable plot is given in Section 4.1 of
Hodges [H]. The default of plotit is false (F).

The user can also select the plotting characters by supplying the argument labs which is
a vector of characters of length the same as the number of rows of X The default here is
“d” for data cases, “c” for constraint cases, and “p” for prior cases. The function produces
two vectors and three real numbers: the scaled residuals of the external variable avB and
the scaled residuals scal.res from the original regression, the slope from the least squares fit
of the two variables, the usual standard error std.err of the slope, and finally the p-value

p-value for the slope (see [W]).
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2.2.2 Collinearity

Collinearity in the design matrix could be a problem in fitting hierarchical models, as it
could cause slow convergence of the Gibbs sequence and imprecision of parameter estimates.
One way of detecting collinearity is to find the condition number of the matrix [''/2X | j.e.,
to find the ratio of the greatest and smallest eigenvalues of the matrix (Section 4.3 of [H]).

The function colli takes the model output produced by g¢ibbs and computes condition
numbers. The user has the option of only computing the condition number at the posterior
mean of I' if opt is assigned 0. However, if collinearity is of concern and if a study of the
convergence of the Gibbs sequence is intended, then opt may be set to 1 to get condition
numbers at every Gibbs iteration. In the latter case, the call to gibbs also needs to take the

argument opt as 1 so the Gibbs iterates are saved by ¢ibbs.

2.2.3 Case Influence

To study the influence that certain extreme cases have on the fitted model, one would usually
refit the model after deleting such cases and compare the new model fit with the original
one. In the case of model fitting by Gibbs samplers, the amount of computing work involved
in this task is formidable. One alternative described in Section 4.4 of [H] is the linear
approximation method. This method computes the approximate change in the posterior
means of the parameters resulting when the i-th case is deleted. It does so by fixing the
unknown precisions at their posterior means (from the full dataset) and using case-deletion
formulae from linear regression. Then the change in each parameter is divided by its posterior

standard deviation from the full data set (see Section 4.4 in [H] for the definition of the term)

13



to give the relative change from deleting the i-th case.

The function influl takes the model as input and computes a matrix sp(’ whose (2,7)-
entry is the approximation of the relative change of the j-th coordinate of © from deleting
case 1. The cases include constraint and prior cases as well as data cases. It also gives
maz.spC which is the maximum of the absolute values of the relative changes in spC and

entries of the coordinates entries, at which the maximum absolute values occur.

2.2.4 Residuals

The diagnostic procedure used the most is undoubtedly the residual plot. The function resd
takes as its arguments the model output from gibbs and a plotting option plotit and produces
output vectors yhat of fitted values (computed using the posterior mean of @), stud.res of
studentized residuals for all data cases, slope—the slope from the least squares fit of the two
variables stud.res and yhat, and its standard error std.err of slope. The user may choose
to specify the logical variable plotit as false, or, true (which is the default). If true then
resd produces two QQ-plots of studentized residuals, one for the data cases and one for the
constraint cases side by side, and prompts the user’s carriage return to give a residual plot

of stud.res versus yhat for all data cases (see Section 4.5 of [H]).

2.2.5 Transformations

Transformation diagnostics let the the user study the possibility that, after transforming
the response from y to y*, the model would better explain the variation of the transformed
response (see Section 4.2 of [H]). The number A can be estimated roughly and checked

visually using an added-variable plot for the constructed variable glng — g + 1, where the

14



slope of the added-variable plot is 1 — A. This is called the Andrews transformation plot (see
[A] and [C]).

Based on this idea, the function transf takes the model output from gibbs and does an
added-variable plot for the variable (jj + C)In(g + C) = (§ + C) 4+ 1. The constant ' is
user-given and necessary when the fitted values are negative and/or the transformation of y
to (y+C)" is actually of interest. The default value of C is 0. The output of transf consists
of the Andrews added variable avtr, the scaled residuals scal.res, the added constant C, the
estimated exponent lambda for A, and the standard error std.err of \ which comes from the
least squares fit to the added-variable plot. The user again may specify plotit as true (the
default value is false); then transf presents a scatter plot of the scaled residuals versus the
Andrews added variable for transformation with plotting characters “d” for data cases, “c”

for constraint cases, and “p” for prior cases.

3 Discussion of Two Studies and Data Sets

We discuss two studies in this section by describing their data sets and presenting the
questions that the investigators wished to answer. We shall see that the data are suitable
to be modeled with hierarchical structures. We then set up the models by constructing the

model equations. The actual data sets can be found in Appendix B.

3.1 Rats Study

Nicotine acts in the human body in various ways. Its action on neural tissue is of particular

interest to neuroscience researchers. A nicotine molecule acts on neural tissue by binding
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with specific molecules, called receptors, on the surface of a neural cell. Nicotine molecules
can bind to more than one type of receptor. If neural cells are regularly bathed with nicotine
in vivo, then the cell surfaces tend to express more nicotine receptors. However, they will
not necessarily express equal or proportional numbers of different kinds of receptors.

This study was intended to see whether two different kinds of nicotine receptors in rat
neural tissue—types A and B—were expressed in equal numbers after the rats were repeat-
edly injected with nicotine molecules in a saline vehicle. Eight rats were treated by nicotine,
while eight other rats were injected with the saline vehicle only, as a control. When the
rats were sacrificed, two kinds of neural tissue (cortical and adrenal) were harvested from all
eight rats in each group, while two other kinds of neural tissue (hippocampus and thalamus)
were taken from only four rats in each group. Each neural sample was split into two pieces
and assayed to count nicotine receptors. Different radiolabeling molecules were used for the
two pieces: one piece from each pair was assayed using tritiated epibatidine, while the other
was assayed using tritiated cytisine. Epibatidine binds to both types of nicotine receptors,
while cytisine only binds to type A, so the difference between the two counts estimates the
number of type B receptors.

The investigators were interested specifically in whether type B receptors were expressed
In response to nicotine, and whether the number of such receptors (per unit of neural tissue)
differed across the four kinds of neural tissue. Thus the obvious analysis was an ANOVA
with rats as subjects, nicotine vs. control as a between-subject factor, and tissue type as a
within-subject factor. The analysis was complicated by imbalance: two tissue types were

assayed on eight rats per group, while two other tissue types were assayed on only four rats
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per group. Originally, two analyses were done: one including all eight rats per treatment
group but only two tissues (cortical and adrenal), and a second including all four tissues but
only four rats per treatment group.

In this paper, we consolidate these analyses into a single analysis that uses all the data.
The diagnostics also allow us to address a question about the investigator’s method: the rats
were always treated and assayed in the same order (rats number 1 through number 8 in the
control group, followed by rats number 1 through number 8 in the nicotine group), and we
were concerned that there was an order effect.

Let y;;1 be the difference of epibatidine and cytisine receptors for rat 2, treatment j, and

tissue k, where

¢ indexes rats within treatment group, ¢ =1,2,....8;

J indexes treatment, j = | (control) and 2 (treatment); and

k indexes tissue, k = 1,2, 3.4 (in the order cortex, adrenal glands, thalamus, hippocampus).

The within-subject level has three independent parameters for the tissue types and three for
the interaction of treatment and tissue. Call them B, B2, Bs and (1, (o, (s respectively. Then

we model the data by

Yisk = 0;; + fvfﬁl + $§ﬁ2 + $§53 + SC{kCl + Cﬂ#@ + $§kf3 + €5k

where 0;; are the rat-specific intercept parameters and €ijk w N(0,0%). Let o represent the
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treatment effect. Then the between-subjects equation is:

0i; = 1+ zja + §;

where é;; ~ N(0,7%). The z’s and z; in the above two equations are explained below.

We use two different parameterizations, i.e., two definitions of the x’s, z, B’s, (s, and a.
The first one is an indicator parameterization. In this model the covariates are defined as
indicator variables. So for example 2¥ = 1 if the tissue is adrenal (k= 2) and 0 otherwise.
And m{k is an indicator variable describing tissue-by-treatment interactions; so :z:{k = 1if
k= j =2 and 0 otherwise. And 27 = () if j=1and 1if j = 2. The complete definition of
covariates for x’s is shown below:

koogk o ok 1k a0k 1k | ok 2k 2k
kizp x5 of || i 2l 2l R -

410 0 100 0 010 o0 1

With these definitions all the parameters in the model can be intuitively interpreted. For
example, « is the average difference in the number of type B receptors between the nicotine
group and the control group, 6;; measures the average number of type B receptors for cortical
tissue in rat ¢ with treatment j, the parameter 3; is the average difference between adrenal
and cortical tissues in control rats, etc.

The model can be made to have less collinearity by using an orthogonal parameterization.

Since the data are not balanced, a complete orthogonalization would obscure the meanings

18



of the parameters, so we settle just for a partial orthogonal parameterization. The covariates

x’s are defined as follows:

kooooko Lk 1k ok k| o2k 2k ok
klozf af ok || 2t zlk gl ot z3t xl

3 0 I -1 0 I -1 0 -1 1

4 0 -1 -1 0 -1 -1 0 1 1

and 22 = 1if j =1 and —1 if j = 2. Because of the data imbalance, the columns corre-
sponding to z% and a;{k are not orthogonal to each other. Some parameters, nevertheless,
still represent certain quantities of interest in the study: /3y is the negative of one half times
the difference between cortical and adrenal tissue types and similarly o represents one half
times the average change between the control group and treatment group.

The models are fitted with Gamma priors for 1/0?® and 1/72 having parameters equal to
1.1 and 0.1, respectively. And 1000 iterations and 100 burn-ins are chosen. We present the

results of the model-fitting and diagnostics in Section 4.1.

3.2 Jaw Study

Computer technology now allows the construction of a “virtual dental patient”, a three-
dimensional digital simulation of many aspects of an individual’s oral anatomy. One specific
aspect captured by the simulation is the structure of an individual’s mandible (jawbone),
the teeth, and soft tissues attached to it. Such a simulation allows study of the stress

in the structure resulting from various biting forces. In general practice, a simulated jaw

would permit a dentist to examine the effects of orthodontic or other types of treatments in
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simulation and thus reduce the amount of guessing in treating patients.

Before the virtual dental patient is released into general use, it must be evaluated exten-
sively to ensure that it is, indeed, a faithful representation. A recent study applied stress to
a human mandible and measured the resulting strains at several points on the mandible’s
surface. These measurements will be compared to analogous strains computed from the
virtual dental patient.

As an initial study, the experimenters used only a single mandible. Since they had no
prior data on which to base sample-size calculations, a mock data set, constructed using
a plastic mandible manufactured to resemble a human one in shape and gross elasticity,
was analyzed by a statistician to get some sense of the variability of strains (the outcome
measure) at several displacements in a precisely specified distortion. Three strain gauges
were attached to the plastic mandible; each gauge measures the strain in two perpendicular
directions on the surface of the mandible. The data set in Appendix B records an outcome
measure which is the maximum principal (the strain in one of the two directions) from one
gauge, in “microstrain” units. The jaw was flexed 5 times and the process of each time is
called a repetition. We analyze this measurement as a hierarchical model from five distinct
applications of the stress, with each application covering a range of displacements.

In the five repetitions there are 55 strains measured at 52 different displacements—three
of the displacements had two measurements. Let Yj»J = 1,...,55, be the measurements of
the strains (ordered as in the data set). Define two functions /(;) and K (j) as follows: if the
observation y; is in the i-th repetition (1 <4 < 5)and the k-th displacement dek=1,...,52

b

then I(j) = i and K(j) = k (for example, I(1) = 1 and K(1) = 20 since the first observation

20



is in the first repetition and at dy, = —123.6, the 20-th displacement). The table below
gives an abridged layout of the data where the top row indexes the displacements and the

left-most column indexes the repetition.

1 2 3 4 ) 6 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52
1 |y Y10
2 Y11
3 Yaa Y33 | Y4
4 Y35 Y43 Yaq Yas
5| Yao | Yar Yas T Ysg Yss

The 55 observations y;,j = 1,...,55 are labeled in the table from left to right then top to
bottom. So the first observation y1 has coordinates : = 1,k = 20 and Y46 at the lower left
corner has coordinates ¢ = 5,k = 1.

Each repetition can be thought of as yielding a smooth curve of strain as a function of
displacement, with each curve being a draw from a distribution of similar curves. Here is a

heuristic description of the model:

1. Each strain is a draw with error from its repetition’s smooth function of displacement,

2. Each repetition’s smooth function is linked to a mean smooth function as follows: at
the smallest absolute value of the displacement for which that repetition was observed,

the repetition’s smooth function equals the mean smooth function plus an error.

3. Each repetition’s smooth function changes between each pair of adjacent displacements
by an amount “similar to” corresponding changes in the mean smooth function.
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With these hypotheses, we may now establish the hierarchical model. Define 6;; to be

the value of the strain function at the k-th displacement in the i-th repetition. Then the

first assumption above leads to the following model equations:

Y :9[(]')’]\«'(]')—}—6]‘, 6]‘%./\/'(0,0'2), ]: 1,,55

Now let y; be the value of the mean function at the k-th displacement. Five equations result

from the second assumption:

b33 = pas+ vy, 0234 = pag + vy,

U330 = pap + va, 0130 = pso + vy, (9)

Os31 = par + vs,

where v; % N(0,7%). For each fixed i, let j and J =1 be such that I(j) = I(j — 1) = i, the

third assumption yields fifty equations:
Oirctiy = Oik(im1) = Hrc) = By + 85, 8 % N(O, (disy — di(j-1))7%). (10)
And finally from the smoothness of the mean function another set of model equations follow:
rrr = g+ € G Y N(0, (dyy — d)d?), k=1, 52, (11)

Again, for the precisions 1/02,1/92,1/72, and 1/¢* we shall initially use Gamma priors with

shape parameter 1.1 and scale parameter 0.1 to fit a hierarchical model by the Gibbs sampler
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method, using 1000 iterations and 100 burn-ins. Then we propose a modified model and fit

the data with different priors. The interpretation and diagnostic results are in Section 4.2.

4 Results from Diagnostics

4.1 Rats Study—Two Parameterizations

Both the indicator and orthogonal parameterizations were fitted with quick convergence. We
show the convergence plots for 6, B3, (1, a, and the two error precisions 1/0%,1/72 for the

indicator parameterization:
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Figure 1: Convergence plots for Os2, B3, (1, o, and hy; = 1/0? hy = 1/7? in the indicator
parameterization (plots ordered first from left to right then top to bottom).

One possible concern here is the long u per tail on 1/7% visible in the convergence plot.
g up ) g p
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This suggests that a Gibbs run longer than 1000 iterations may be necessary to reduce
variation in the estimates of posterior quantities. We did a run of length 6000 and got
essentially the same results reported here.

The scaled design matrix I''/2X for the indicator parameterization has condition number
14.7, greater than the condition number 5.1 for the orthogonal parameterization, as we
expected. Two factors cause the condition number for the indicator parameterization to be
greater than the condition number for the orthogonal parameterization. First, the original
design matrix X is less “orthogonal” so the eigenvalues are more extreme than for the
orthogonal parameterization. Another reason is that the posterior means of error precisions
1/0% and 1/72, which form the diagonal elements of T', have a bigger range for the indicator
parameterization. However, collinearity does not seem to be a problem for the indicator
parameterization.

The influence diagnostic shows that few cases are influential. The maxima of the relative
change of posterior standard deviations are —2.5 and —2.3 respectively for the indicator
and the orthogonal parameterizations. Consistent for both models, it points to the 61-st
constraint case. The deletion of the case has the biggest influence on the parameter 05, (the
intercept term of the data-case equation for rat number 5 in nicotine treatment group. It is
no surprise after we identified the 61-st constraint-case equation as sy = p + o + 659, 650 ~
N(0,7?) for the indicator parameterization, or 5, = p — a + 85, 855 ~ N(0,7%) for the
orthogonal parameterization. Also, the rat number 5 in the nicotine group has the lowest
cortical measurement and the next to the lowest adrenal measurement; therefore, the model-

fitting has shrunk #5, the most and the deletion of the constraint-case equation would affect
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05, the most.

The residual plot for the indicator parameterization is in Figure 2. The points in the
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Figure 2: Residual plot for the indicator parameterization. A: adrenal, C: cortical, T:
thalamus, H: hippocampus

plot form clusters. The 16 data cases on the right side of Figure 2 have fitted values greater
than 10. They come from adrenal tissue of which the measurements for cytisine are all (0 and
for epibatidine are relatively large in the data. Their differences as response values are large
and so is the variation of the differences. The middle cluster of 8 points come from thalamus
tissue. And the cortical and hippocampus tissue form the rest of the data-case points.

The plot shows an increasing spread toward the right, suggesting that a variance stabi-
lizing transformation of the observed may be needed.

The normal error assumption seems to be questionable for the indicator parameterization
(see Figure 3). The QQ-plots show that the data-case distribution has long fat tails and an
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Figure 3: QQ-plots for the indicator parameterization.
elevated center, resembling perhaps some ¢-distributions with fairly small degrees of freedom
and that the constraint cases look more normally distributed.

For the orthogonal parameterization, the residual plot and the QQ-plots are very similar
to those for the indicator parameterization.

Of particular interest to us is the added-variable plot. From the data description, it
seems that the rat sequence number may play an adverse role in the randomization of this
experiment since the investigator has always examined the rats in the same order. To study
this, we define external variables which take the values =3.5, =2.5, —1.5, —0.5, 0.5, 1.5,
2.5, and 3.5 for the sequence of the eight rats in the group that we consider and 0 for the
eight rats in the other group. With this sequence number as the external variable defined for

either control or treatment group, the added-variable plots are drawn (see for example, the
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added-variable plot with regard to the control rat sequence in Figure 4 for the orthogonal

parameterization). We find that for the orthogonal parameterization the slopes from ordinary

Scaled residuals
4]

d
d
T
0

Candidate added variable

Figure 4: Added variable plot; control rat sequence.

least squares fit are —0.30 and —0.52 with standard errors 0.17 and 0.16 respectively for the
sequences of treatment and control rats as an external variable.

For the indicator parameterization, the added-variable plots give almost identical answers:
the slope for the treatment group is —0.30 with standard error 0.16. And for the control
group the slope is —0.52 with standard error 0.15. Just as in orthogonal parameterization,
the added-variable plots show stronger evidence against randomization in control rats. So
there seems to be a trend in both groups where later rats tend to have lower counts of type B
nicotine receptors. Working in such a fixed sequence, the investigator might have introduced

bias into the experiment.
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The parameter estimates from both parameterizations are given below:

Parameters B B, B3 Gy 2 (3 «
Parameterization Indicator
Posterior Mean 10.71 | 248 | —0.39 | 1.39 | 0.29 | 0.61 —0.27

Posterior Std. Dev. | 0.93 | 1.17 | 1.17 | 1.32 1.63 ! 1.63 0.97

Parameterization Orthogonal

Posterior Mean =5.70 | 1.36 | 2.22 |0.35]0.08 | —0.06 | —0.15

Posterior Std. Dev. | 0.34 |0.47 | 0.31 |0.34 0.47 | 0.30 0.33

Besides the concern for the normality assumption of data-case and for certain bias issue in
the experiment, we are fairly assured of the validity of the model from the above diagnostics
and from the robustness of the normal tests. From the table, we conclude that not enough
evidence is present to believe that the type B receptors expressed in response to nicotine
differ from control among different types of neural tissue since the interaction terms are not
significant. However, the number of type B receptors is different among different tissues.
For example, the average difference between the adrenal and cortical types of tissue is §; =
10.71 (note in the orthogonal parameterization model the corresponding parameter is half
of 10.71 and differ by a sign). There does not appear to be a treatment effect since « is not
significantly different from 0. The conclusions are partially supported by the residual plot

too: the differences of variations between the neural tissues are obvious.
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4.2 Jaw Study—Two Models

Despite the complicated model design, the jaw problem fits well into the framework of
the model ¥ = X0 + E with X and YV in (5). The big dimensions of 161 rows and
107 columns of the design matrix X make the Gibbs sampler gibbs slow to run for 1000
iterations after discarding 100 iterations. However the convergence in 0; ;’s and p’s appears

to be immediate, as suggested by the two top plots in Figure 5. As in the rats example,
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Figure 5: Convergence Plots for 8,6, 41, 1/o?, 1/n* 1/7% and 1/¢°.

some of the precisions have long upper tails, especially 1/0%, 1/92, and to a lesser extent,
1/7%. Again, a longer run might be desirable.

The error precision 1/4? has a distribution close to zero while the other precisions are
notably larger. The prior and the estimated posterior mean, variance, and the standard

deviation of the error precisions are given in the following table:
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Prior Posterior

Vo, 1 1/t 1/ | 1/e®  1/n* 1fr2 1/

Mean 11.0 10.84 9.30  3.76  0.01
Var. 110.0 102.82° 105.94 3.39 0.00
Std. Dev. 10.5 10.14  10.29 1.84 0.00

The table indicates that the two error precisions 1/0?,1/n* gain little information from the
data set since the means and variances of their distributions change only slightly from prior
to posterior. The error precision 1/5? does not change much since there are only 5 constraint
cases—the equations in 9—relating to it. And given the small posteriors of error precisions
1/7% and 1/#* the model does not have much information with which to change 1/0%.

The small mean and variance of the error precision 1 /#* implies that the underlying mean
strain as a function of the displacement is rugged. See F igure 6, where the estimated mean
function is plotted against displacements along with the five repetition’s draws. There we
see that the mean function is very rough and all strain functions are close to the data, which
implies that the model has done little smoothing to the data. The model, closely fitting the
data, does not bind the mean principal strains tightly between different displacements, i.e.,
the precision 1/¢* is small so the 1;’s need not be near each other. One possible reason for
this 1s that the 55 data cases are too few in comparison with 107 parameters to estimate.

The scaled design matrix of the model has a condition number of 256, The big condition
number is somewhat expected. For all iterations, the condition numbers are between 48 and
384. So collinearity is a big problem, which may cause imprecision of some of the parameter
estimates, especially those in the second level. This may be the reason why the standard
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Figure 6: Mean principal strain as a function of displacement with plotting character “M”
at the function values; the five repetition’s draws are plotted as curves

deviations of the most estimated s vary between 3 to 11, except for the middle H30—H3s
which tie to the 6; ; by the second-level equations in (9). The standard deviations of H3o—[h3s
range only from 1.07 to 1.57.

The data suggest that the strain measurements in the first répetition may be different
from the ones in other repetitions. We considered an added-variable plot with a constant
shift added to the first repetition as an external variable. This is equivalent to changing the
first equation in (9) to:

033 = c+ paz + 1y (12)

with an unknown constant ¢ as the external variable. The ordinary least squares fit to the

added-variable plot (Figure 7) shows a slope of 32.2 with standard error 20.9; therefore, the
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Figure 7: Added-variable plot for adding a constant shift in Rep 1.

first repetition probably is not shifted relative to the other repetitions. The capital letter C
in the plot represents the 5 constraint cases from (9) and all the values of the added variable
corresponding to the other constraint cases are close to zero except the ones relating to s,
and ps3 in (11).‘ The outlier with the greatest scaled residual 2.0 is the constraint case 56; it
does not have too much effect on the slope 32.2 since it is outlying in the vertical direction.
Other influential points in the plot are all related to parameters that appear in the first
repetition. The points having the maximum and minimum values of the candidate added
variable correspond to the two equations involving pss in the 51 equations of (11). After
deleting the point with the maximum value of the candidate added variable, the least squares
fit to the rest gives a slope of 25.7 and standard error of 34.8. So the apparent increasing

trend depends on the presence of the outliers. All the data cases are blended into the middle
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cloud of the plot and are not distinguishable.

The influence diagnostic shows that eliminating the constraint case 56 or, equivalently,
the first equation in (9) has the greatest effect on parameters by the linear influence estima-
tion. In fact, its deletion from the model would cause the posterior mean of t33 to decrease
by 136 posterior standard deviations or 214’micro-strain units and estimates of most other
parameters of 1 (except uag, K31, f32, fi34, fi35) decrease by 2 to 29 posterior standard devia-
tions. The influence for a few of these cases is perhaps exaggerated since the linear influence
approximation may overstate the effect when the change from a case deletion is large (see
Hodges [H], Section 4.4). This is, however, consistent with our visual observation of the data
and from the first equation in (9) about pss;. Since the measurements in the first repetition
have relatively large displacements and take relatively large values of strain, deleting the
equation would pull most of the u’s toward the negative direction.

Another big influence is from the observation 687.2 at the smallest displacement of —528
corresponding to the data case 46. Deleting it would decrease the posterior mean of the
parameter 046 by about 86 posterior standard deviations or about 38 micro-strain units.

The residual plot for data cases points to the 46-th observed value as a moderate outlier.
In Figure 8 the outlier is marked by a capitalized D. The residual plot for the data cases
is typical of what a good least squares fit may give. The slope 0.0004 (with standard error
0.004) is not significant. This indicates that there is not much shrinkage in this fit (see
Hodges Section 4.5).

The largest data-case studentized residual is only 1.19 in contrast to the biggest constraint-

case studentized residual of 40.9 (constraint case 56) corresponding to the first equation in
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Figure 8: Residual plot for the first parameterization in the jaw study; d: data; ¢: constraints.

(9) for constraint cases. This shows that the model has a good fit to the data cases and that
the equations in (9) do not have much influence on the model. The model-fitting process
chooses to ignore them, therefore making them outliers.

The normality assumption seems reasonable for the data cases (see Figure 9), although
the variance of the data-case studentized residuals seem to be too small. The same outlier
(constraint case 56) appears in the constraint-case QQ-plot (the upper-right corner of the
plot) and other four outliers near the lower left corner correspond to the rest of the five
equations in (9). Apart from these 5 outliers, the constraint-case distribution is reasonably
normal.

The transformation diagnostic suggests that a transformation of y; to y} with A = 0.8

(standard error 0.005) is helpful in modeling the data (see Figure 10). Notice that all the
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Figure 9: QQ plots for data cases and constraint cases.
data cases in the plot form a small pile in the middle, which suggests that the transformation
reduces mostly the constraint-case variation.

Overall, the model seems to fit the data quite well in the level corresponding to data
cases but does a poor job for constraint cases. It is clearly seen from Figure 6 that the
mean function for the repetitions u; is not smoothed much by the model-fitting process.
One reason is that the equations in (11) used to smooth the mean function tend to model
the mean function either close to a constant or else as a fairly rugged function. To relax

the restrictions by the equations in (11) we may replace the difference equations of the first

degree in (11) by the difference equations of the second degree

He1 — fe = fg — gy + ‘fka gk ~ N(Ov (dk+1 - dk—l)¢2)7 k= 27 .. '351' (13)
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Figure 10: Transformation plot for the first model of the jaw study; A = .8 and std.err. is
.005

Namely,

Pkt — 2k + fe—y = &k, §e ~ N(O,(dipr — die1)9®), k=2,...,51 (14)

The equations in (14) penalize deviations from linearity, instead of deviations from constancy.

We set up the design matrix X as before, which now has one less row than for the first
model. For the new analysis we chose a different Gamma prior for the error precision 1/¢2.
The new prior distribution of 1/¢* has shape parameter 10 and scale parameter 1, so the
mean and the variance are both 10. By letting the prior variance of the error precision 1 s
be smaller, the posterior distribution of 1 /¢* is less influenced by the data. Therefore, the

error precision 1/¢* should not be too small, as in the first model. Thus we hope that the
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mean curve of g is smoother than in the original fit. We then ran the Gibbs function with
a) 1100 iterations discarding the first 100 iterations; and b) 3000 iterations discarding the
first 1000 iterations.

The convergence plots for the gibbs function seem to have unusual patterns. The posterior
distributions for some of the parameters and the error precisions appear to have some quite

complicated yet interesting behaviors (Figure 11). The convergence for 1/¢? is evident. After
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Figure 11: Convergence plots for 1/02,1/52,1/72, 1/¢?* from runs a) (left) and b) (right).

some 600-700 initial draws that are close to zero, the error precisions of 1/n* and 1/72 start
to oscillate but the runs in b), with 3000 draws and the first 1000 of them discarded, show
a uniform convergence to somewhere near zero. The draws for 1 /o? also have such behavior
of pattern-changing. The posterior distribution of p-parameters all seem to have limits.

The 55 f-parameters have their draws close to their convergent means with fits of sudden
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oscillations. One possible reason for such strange behavior is that the posterior distributions
are quite flat which makes the Markov chain unstable. Another 4000 iterations show that
the draws for 1/0? have occasional excursions from the apparent centre of the distribution.
Other error precisions have basically benign convergence behavior. More runs are needed
to assure if the sudden oscillations for 1/o? are persistent. If not, then the initial loitering
in other neighbourhoods may come from the fact that the posterior distribution of 1/0? is
multimodal or has a long tail.

For the sake of brevity, next we study the diagnostics of this problem, although many the
convergence issues above need to be further explored. We shall concentrate on the model
results from run b) as it is likely to be more accurate.

The table below gives the prior and the posterior mean, variance, and standard deviation
of all error precisions after fitting by the Gibbs sampler. We have also included the results

from the first model.

Prior Posterior

Lo® 1/n* 1/ 1/¢* | 1fo®  1fp® 17> 1/

Second Mean 11.0 10.0 8.28 0.01 0.15 3.03
Model Var. 110 10.0 || 106.47 0.00 0.00 1.87
Std. Dev. 10.5 3.16 10.32 0.00 0.05 1.37

First Mean 11.0 10.84 9.30 3.76 0.01
Model Var. 110.0 102.82° 105.94 3.39 0.00
Std. Dev. 10.5 10.14  10.29 1.84 0.00

From the table we see that the posterior mean of the error precision 1/¢* is bigger: 3.03,
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compared to 0.01 in the first model. Hence the u’s among different displacements are more
correlated; the mean curve of 4 is smoother. On the other hand, since 1/0? has a smaller
posterior mean we see that the model at the first level does not, fit the data as closely as the
previous model does. There is still not much information gained for the posterior distribution
of 1/0? since the posterior mean and variance are close to the prior mean and variance, as
in the first model. We also note that the posterior mean of 1/n* has decreased close to 0.
This implies that the new model does not require that each repetition’s curve be anchored
close to the mean curve g at the smallest displacement. The smaller posterior mean for 1/72
in this model implies less similarity between the mean curve of p# and the five draws of 0
compared to the first model.

The condition number of the scaled design matrix is 356, bigger than the condition
number in the previous model. The range of condition numbers at all 2000 iterations is
between 89 and 996, probably indicating the difficult problem of convergence,

With a constant shift in the first repetition as an external variable, the added-variable
plot (not shown) gives a slope from an ordinary least squares fit of 33 (standard error 5)
which suggests that a constant shift in the first repetition helps to explain the variation of
the data. However, the added-variable plot shows that the constraint-case 56 (corresponding
to the first equation in (9)) as an outlier. So the significance of slope may be due to a few
outliers. The case-influence diagnostic selects data case 48 at d;, = —465.8 in repetition 5 as
the most influential. The deletion of the case would cause the parameter 043 to increase by
99 posterior standard deviation or 136 micro-strain units.

The residual plot (Figure 12) presents the data case 46 at the smallest displacement
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dy = —528.0 in repetition 5 as an outlier.
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Figure 12: Residual plot. D: case 46; d: data.

Compared with Figure 9, we see that the normality assumption of the studentized resid-
uals seems more reasonable for the constraint cases than in the first model (see Figure 13),

although the plot shows a long lower tail. For the data cases, the distribution of the residuals

still seems normal, but now its variance is larger.

The transformation diagnostic again gives A = 0.8 (standard error 0.005, see Figure 14).

Finally, the estimated mean functions (Figure 15) from the modified model appear

smoother than in the previous model (Figure 6).
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Figure 13: QQ plots for data cases and constraint cases.

5 Future Work

Despite the advance of computer technology, hierarchical model fitting, as described in this
article, remains a difficult problem. One reason is that the set-up of the model usually
involves matrices of huge sizes, as seen in the examples given, which renders it computation-
ally intensive. It is often a difficult question of balancing, for example in writing the ¢ibbs
function, between computing speed and generality. To achieve better efficiency, future com-
puting work should include rewriting the gibbs function as object code using a lower-level
computer language such as C++ or Fortran. There is also much maintenance work to be
done for all the functions, such as adding the argument matching features so they become
more user-friendly. After such improvements so the model-fitting and diagnostic programs

become more versatile, properties of hierarchical modeling with the Gibbs sampler can be
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Figure 14: Transformation plot for the jaw study; The second model.

further studied and it is then possible to generalize the functions and to test more extensively
by working with data sets of various structures. In particular, another model specification
function is needed that takes S+ model language formulae as inputs and then constructs
X,Y and other inputs to gibbs, and finally calls gibbs. All of this seems to be promising
future work.

In the direction of hierarchical model-fitting, much exploration is needed regarding the
models that are designed. In the jaw data, we think that with more repetitive data at the
same displacements, the model can be better assessed. In all the analyses, we have used only
a few prior distributions of error precisions. It is interesting to see how the model-fitting
would be affected by the change of the prior information; much more work needs to be done

before this is understood.
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Figure 15: Mean principal strain as a function of displacement with plotting character “M”;
Repetition’s draws are plotted as curves for the second model.

As an example of the remaining model design questions, consider the second assumption
on Page 21 which stipulates that, at only the smallest absolute value of displacements, the
value of each repetition’s smooth function is the mean function value plus an error. This
and the third assumption there would imply that at all other displacements, the values of
each repetition’s smooth function is also the mean function value plus an error which has
bigger variation. For instance, at the displacement dyy = —123.6, we easily conclude from

equations in (9) and (10) that

O35 = pizz + 11, vy~ N(O,UQ)

0133 — 120 = paz — pigo + 6

43



where 8" ~ N(0, (ds3 — dap)7?). Therefore,

91,20 = figo + 11 — & = f20 + V/'/ v~ N(Ov 772 + (d33 - d20)7'2) (15)

Perhaps it is also reasonable to require that each repetition’s function value relate to the
mean function value at-any displacement in exactly the same fashion. Namely, the five

equations in (9) are replaced by

016), k() = wKG) +vi,  vi~ N(0,7?). (16)

'Then,wmtnﬁghtexpecttoseethateachIepeﬁtknfsfuncﬁonAapproxhnatetheIneanfuncﬁon

more uniformly.

6 Appendix A: S+ programs

Included here are the S+ programs of the seven functions: g¢ibbs, conv, addvar, colli, influl,

resd, and transf
o gibbs:

gibbs_ function(X, Y, rows, cols, num.iter = 1000,
opt = 0, ptab.len = rows,
pta = rep(1.1, length(rows)), ptb = rep(.1,length(rows)),
prior.var = 1000000, g.diag = rep(1.0,nrow(X)),
burnin = 100)

if (opt '= 0 &% opt '= 1) stop("\nopt can only be 0, 1")

num.err_ length(ptab.len)

if (num.err != length(pta) || num.err != length(ptb) )
stop("\npta, ptb, and ptab.len have different lengths")

rX_ dim(X) [1]; c<X_ dim(X) [2]

pri.var.len_ length(prior.var)
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c.err.len_ sum(ptab.len)

if (pri.var.len '= 1 && (pri.var.len + c.err.len) '= rX)
stop("\ntoo many or too few error terms")
(;>ran,err_ rgamma (num. err,pta)/(ptb+10~(-8)) ran.em

err_ rep(1l/prior.var, rX-c.err.len)
¢ '/wi/[jfor (i in num.err:1) err _ c(rep(ran.err[il,ptab.len[il),err)
5 sV gamm_ g.diag * err
tﬂrfhl ahit_ ptab.len/2+pta
hit_ lhit_ rep(NA,num.err)

1i_1
while (i <= burnin) {
sv. . svd(t(X * gamm) %*% X)

Vhit _ sv$u %Y (t(sv$v) * (1/sv$§d))
eThit_ Vhit %% (t(X) %*% (gamm * Y))
Thit _ sv$u %*% ((t(svdv) * sv$d~(-.5))
%*% as.matrix(rnorm(cX))) + eThit
resd _ g.diag * (Y - X %*% Thit)"2
ixl_ 0
for (j in 1l:num.err) {
ix2_ ptab.len[j] + ix1
1hit[j1_ ptb[j] + sum(resd[(ix1+1):ix2])/2
1x2_ ix1
}
hit_ rgamma(num.err,ahit)/lhit
err_ rep(1/prior.var, rX-c.err.len)
for (j in num.err:1) err_ c(rep(hit[j],ptab.len[j]),err)
gamm_ g.diag * err
1 _ 1+1
}
lhit_ matrix(NA,num.iter,num.err)
eThit_ vThit_ matrix(NA,num.iter,cX)
if (opt==1) {
Thit _ matrix(NA,num.iter,cX)
hit_ matrix(NA,num.iter,num.err)
i1
while (i <= num.iter) {
sv_ svd(t(X * gamm) %*Y% X)
Vhit_ sv@u %*% (t(svdv) * (1/sv$d))
vThit[i,]_ diag(Vhit)
eThit[i,]_ Vhit %*% (£(X) %% (gamm * Y))
Thit[i,]J_ sv$u %*% ((sv$d~(-.5) * t(svv))
%% as.matrix(rnorm(cX))) + eThit[i,]
resd_ g.diag * (Y ~ X %*% Thit[i,])"2
ixi_ 0
for (j in 1:num.err) {
ix2_ ptab.len[j] + ix1
1hit{i,jl. ptb[j] + sum(resd[(ix1+1):ix2])/2
ixl_ ix2

}
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hit[i,] _ rgamma (num.err,ahit)/1hit[i,]
err_ rep(i/prior.var, rX-c.err.len)
for (j in num.err:1) err_ c(rep(hit[i,j],ptab.len(j]),err)
gamm_ g.diag * err
1 _ i+l
}
eth _ apply(eThit,2,mean)
vth _ apply(vThit,2,mean) + apply(eThit,?2,var)
ehe _ apply(ahit/t(1lhit),1,mean)
vhe _ apply(ahit/t(1lhit)"2,1,mean) + apply(ahit/t(lhit),1,var)
esig _ apply(t(lhit)/(ahit~1),1,mean)
vsig _ apply(t(1lhit)~2/((ahit-1)"2%(ahit-2)),1,mean) +
apply(t(lhit)/(ahit-1),1,var)
z_ list(
Y=Y, X=X, num.iter = num.iter,
rows = rows, cols = cols, ptab.len = ptab.len,
mean.theta = eth, var.theta = vth,
ehe = ehe, vhe = vhe,
mean.sig2 = esig, var.sig2= vsig,
Ghe = gamm™.5, g.diag = g.diag,
Gibbs.iter=list(thit=Thit,hit=hit)

)
z
}
else {
1 1

while (i <= num.iter) {
sv_ svd(t(X * gamm) %x% X)
Vhit_ svdu %*% (t(svv) * (1/sv$d))
vThit[i,]_ diag(Vhit)
eThit[i,]_ Vhit %*% (t(X) %*% (gamm * Y))
Thit_ sv$u %x) ((t(sv$v) * (sv$d~(-.5)))
%h*h matrix(rnorm(cX),byrow=T)) + eThit[i,]
resd_ Y - X %*% as.matrix(Thit)
resd_ g.diag * resd"2
ixi_ 0
for (j in 1l:num.err) {
ix2_ ptab.len[j] + ixt
1hit[i,j]_ ptb[j] + sum(resd[(ix1+1):ix2])/2
1x1_ ix2
}
hit_ rgamma(num.err,ahit)/lhit[i,]
err_ rep(1/prior.var, rX-c.err.len)
for (j in num.err:1) err_ c(rep(hit[j],ptab.len[j]),err)
gamm_ g.diag * err
1 _ i+l
}
eThit_ eThit[1l:num.iter,]
vThit_ vThit[1:num.iter,]
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lhit _ lhit[1:num.iter,]
eth _ apply(eThit,2,mean)
vth _ apply(vThit,2,mean) + apply(eThit,2,var)
ehe _ apply(ahit/t(lhit),1,mean)
vhe _ apply(ahit/t(1lhit)"2,1,mean) + apply(ahit/t(lhit),1,var)
esig _ apply(t(lhit)/(ahit-1),1,mean)
vsig _ apply(t(lhit)~2/((ahit-1)"2%(ahit-2)),1,mean) +
apply(t(1hit)/(ahit-1),1,var)
z_ list(Y = Y, X = X, num.iter = num.iter,
rows = rows, cols = cols, ptab.len = ptab.len,
mean.theta = eth, var.theta = vth,
ehe = ehe, vhe = vhe,
mean.sig2 = esig, var.sig2 = vsig,
Ghe = gamm™.5, g.diag = g.diag,)

Y N

® Cconv:

conv_ function(model, theta.idx = 0, error.idx = 0)
{
if (is.null(model$Gibbs.iter))
stop("\nmodel input not from gibbs(...) with opt=1")
Gibbs_ model$Gibbs.iter
iterations_ c(1:length(model$Gibbs.iter$thit[,1]))
ixl_ theta.idx[theta.idx > 0 & theta.idx <= length(Gibbs$thit[1,])]
ix2_ error.idx[error.idx > 0 & error.idx <= length(Gibbs$hit[1,])]
if ( length(ix1) != 0 || length(ix2) !'=0) {
par(mfrow=c(3,2))
for (i in 1:(length(ix1) + length(ix2))) {
if (i !'=1 && (i-1) %% 6 == 0) {
cat("continue plotting (y/n) ?\t")
ans_ scan(what = character(),n=1)
if (ans != "Y" &% ans !'= "y" g&
ans '= "Yes" && ans !'= "yes") stop()
par(mfrow=c(3,2),ask = F)
}
if (i <= length(ix1)) {
plot(iterations,Gibbs$thit[,ixl[i]],xlab=”iterations”,
ylab=paste("theta", ix1[il),type="1",1ty=1)
}
else {
plot(iterations,Gibbs$hit[,ix2[i—length(ix1)]],
xlab="iterations",
ylab=paste("err.pr", ix2[i-length(ix1)]),type="n")
points(iterations,Gibbs$hit[,ix2[i-length(ix1)}],
type="1",1ty=2)
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e addv

ar:

addvar_ function(model, addvli = rep(0,model$rows[1]),

e colli:

addv2 = rep(0, sum(model$ptab.len) - model$rows[1])
plotit = F,

labs = c(rep("d",model$rows[1]),

rep("c", sum(model$ptab.len)-model$rows[1]),
rep("p",dim(model$X) [1]-sum(model$ptab.len))) )

pJ

rX1_ model$rows[1]; X _ model$X; rX_ dim(X)[1]
if (length(addvi) > rX1 || length(c(addvi,addv2)) > rX)
stop("\nadded variable doesn’t have the right length.")
Y . model$Y
G _ model$Ghe * model$g.diag
E _Y - X %%/ as.matrix(model$mean.theta)
sE_ as.vector(G * E)
temp_ svd(X * G)
V _ temp$u %*% t(temp$u)
addv2_ c(rep(O,er),addv2,rep(0,rX—length(adva)—er))
B_ as.matrix(c(addvl,rep(0,rX-rX1)))+ as.matrix(addv2)
sB . B x G
avB _ as.vector((diag(rX) - V) %x% sB)
av.ls_ 1lsfit(avB,sE)
if (plotit) {
plot(avB, sE, xlab="Candidate added variable",
ylab="Scaled residuals", type="n")
if (all(addv1==0) && all(addv2==0))
warning("added variable has all zero values")
text(avB, sE, labs, cex = 1)
abline(av.ls)
}
av.lsp_ ls.print(av.ls,print.it=F)
z_ list(avB = as.vector(avB), sE = as.vector(sE),
slope = av.lsp$coef.table[2,1],
std.err = av.lsp$coef.table[2,2],
p-value = av.lsp$coef.table[2,4],)
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colli_ function(model,opt = 0,
v.iter = c(1:length(model$Gibbs.iter$hit[,11)))
{
if (opt!=0 && opt'!=1 )
stop("\nopt can only be 0, 1")
g-diag_ model$g.diag
if (opt==0) {
svdX _ svd(model$X * sqrt(model$Ghe * g.diag))
cond_ ifelse(svdX$d[length(svdX$d)],
svdX$d[1]/svdX$d[length(svdX$d)], "infinity")
- return(cond)
}
else {
if (is.null(model$Gibbs.iter))
stop("\nmodel input not from gibbs(...) with opt=1")
gibbs.len_ length(model$Gibbs.iter$hit[,1])
v.iter_ v.iter[v.iter<=gibbs.len]
cond.len_ min(length(v.iter),gibbs.len)
cond_ rep(NA,cond.len)
d.c.len_ dim(model$X) [v.iter[1]]
c.err.len_ sum(model$ptab.len)
for (i in 1:length(v.iter)) {
err_ NA
for(j in 1:length(model$ptab.len))
err <- c(err, rep(model$Gibbs.iter$hit[v.iter[i],j]
model$ptab.len[j]))

¥

err _ err['is.na(err)]
G_ sqrt(g.diagl[i:length(err)] * err)
if (length(G) < length(g.diag)) G_
c(G, model$Ghe[(length(G)+1):length(g.diag)])
svdX _ svd(model$X * G)
cond[i]_ ifelse(svdX$d[length(svdX$d)],
svdX$d[1]/svdX$d [length(svdX$d)], “infinity")

< 9

.c_ list(v.iter = v.iter, cond = cond)
.c

e influl:

influl_ function(model) {
G_ model$Ghe
sE _ G * (model$Y - model$X ¥%x*Y as.matrix(model$mean.theta))
svX_ svd(model$X * G)
#H_ svX$v %*) (t(svX$v)*(1/svX$d"2))
V_ svX$u %*% t(svi$u)
if ( (sum(diag(V)) <= 0) > 0)
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stop("\nnot all diagonals of V are greater than O")

spC _ - ( svX$v * sqrt(c(1/model$var.theta)) ) Y*Y
( t(svX$u * (as.vector(sE)/(i-diag(V))))*(1/svX$d))

maxabs_ max(abs(spC))
rr_ dim(spC) [1]; nn_ dim(spC)[2]
idx_ (1:(rr*nn))*(abs(spC)==maxabs)
idx1_ idx2_ idx_ idx[idx>0]
max.spC_ rep(NA,length(idx))
for (i in 1:length(idx)) {

idx1[i]_ idx[i] %% rr

idx2{il_ 1 + as.integer(idx[il/rr)

max.spClil_ round(spClidx1[i],idx2[i]],3)
+
ifu_ 1ist(spC=t(spC),entries=cbind(rows=idx2,cols=idx1),

max.spC = max.spC)

1fu

e resd:

resd_ function(model,plotit=T,
labs=rep("d",model$rows[1]) )
{

X_ model$X; G_ model$Ghe

rX1_ model$rows[1]

yhat_ as.vector(X %*% model$mean.theta)

rX _ dim(X) [1]

E_ model$Y - yhat

svX_ svd(X * G)

V. _ svX$u %% t(svX$u)

sE _ G x E

stud.res_ sE/sqrt(diag(diag(rX)-V))

stud.resl_ stud.res[1:rX1]; stud.res2_ stud.res[(rXi+1):rX]

if (plotit) {
par(mfrow=c(1,2),pty="s"
qqnorm(stud.res[1:rX1], main="the data cases")
abline(1,1ty=3)
qqnorm(stud.res[(rX1+1) :sum(model$ptab.len)],

main="the constraint cases")

abline(1,lty=3)
par(mfrow=c(1,1),pty="nm",ask=T)
plot(yhat[1:rX1],stud.rest, xlab="fitted value",
ylab="scaled data-case residual",type='"n"
text (yhat,stud.res, labs, cex = 1)
fit.sry_ lsfit(yhat,stud.res)
abline(fit.sry)

}

z_ list(yhat=as.Vector(yhat),stud.res=stud.res,
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slope=1-fit.sry$coef[2],
std.err=ls.diag(fit.sry)$std.err[2])

o transf:

transf_ function(model, C=0, plotit=F,
labs=c(rep("d",model$rows[1]),
rep("c",sum(model$ptab.len) -
model$rows[1]),
rep("p",dim(model$X) [1] -
sum(model$ptab.len)))

X_ model$X
rX1_ model$rows[1]
rX1.1_ sum(model$ptab.len)
rX_ dim(X)[1]
e_ as.matrix(model$mean.theta)
yhat_ X %*) e + C
E_ model$Y - yhat - C
sE_ as.vector(E * model$Ghe)
svk_ svd(model$X * model$Ghe)
V_ svX$u %*% t(svX$u)
yhat_ yhat[1:rX1]
1f (any(yhat <= 0)) stop("\nnegative fitted values, choose Cc>07")
G_ as.matrix(c(yhat*log(yhat) - yhat + 1,
rep(0, rX - rX1))) * model$Ghe

avtx_ as.vector((diag(rX) - V) %*% G)
fit.avtx_ lsfit(avtx,sE)
if(plotit) {

plot(avtx, sE,

xlab = "Andrews added variable for transformation",
ylab = "Scaled residuals", type="n")

text(avtx,sE,labs, cex = 1)

abline(fit.avtx)
}
z_ list(avtx = avtx, scal.res = sE, C=C,

lambda = 1 - fit.avtx$coef[2],
std.err = 1s.diag(fit.avtx)$std.err[2])



7 Appendix B: Data Sets

7.1 Rats Data

The data set below is from 16 rats in the two treatment groups. The first column (“Epi”)

is the count of epibatidine receptors (per unit neural tissue); the second column (“Cyt”) is

the count of cytisine receptors; the third column (“Diff”) is the difference of epibatidine and

cytisine. This should be positive, but it is not surprising that a few are negative, because the

epibatidine and cytisine receptors were assayed on different pieces of tissue (and the assay

has non-trivial error). The fourth column (“Tx”) is the treatment group—C for control and

N for nicotine. The fifth column (“Tiss”) is the tissue type: CORtical, ADRenal, THAlamus,

and HIPpocampus. The last column (“Rat”) gives the number of the rat from which the

tissue was drawn.

Epi  Cyt Dif Tx Tiss Rat
3.951 2.82 1.131 C COR 1
3.585 2.43 1.155 C COR 2

4.77  3.96 0.81 C COR 3
4.491 3.8 0.691 C COR 4
4.783 4.35 0.433 C COR 5
4.455  4.02 0.435 C COR 6
4.245  3.95 0.295 C COR 7
4.284 3.91 0.374 C COR 8
4.779  2.88 1.899 N COR 1
4.993 4.4 0.593 N COR 2
5.905 5.37 0.535 N COR 3
5.562 5.81 -0.248 N COR 4
4.689 5.07 -0.381 N COR 5
5.583 5.43 0.153 N COR 6
5.285 4.47 0.815 N COR 7
4.642 4.85 -0.208 N COR 8
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Epi  Cyt Diff Tx Tiss Rat
1569 0O 15.69 C ADR 1
1509 0 15.09 C ADR 2

9.15 0 9.15 C ADR 3
1423 0 14.23 C ADR 4

875 0 8.75 C ADR 5
1204 O ’12.04 C ADR 6

7.84 0 7.84 C ADR 7

824 0 8.24 C ADR 8
11.21 0 11.21 N ADR 1
1718 0 17.18 N ADR 2

148 0 14.8 N ADR 3

129 0 12.9 N ADR 4

859 O 8.59 N ADR 5
14.78 0 14.78 N ADR 6

798 0 7.98 N ADR 7
1252 0 12.52 N ADR 8
9.914 6.411 3.503 C THA 1
9.783  6.503 3.28 @ THA 2
8971 6.001 2.97 C THA 3

10.069  6.58 3.479 C THA 4
10.339 6.774 3.565 N THA 1
9.929 7.257 2.672 N THA 2
11.553 7.676 3.877 N THA 3
10.887 7.851 3.036 N THA 4
2.024 1498 0.526 C HIP 1
2.089 1.731 0.358 C HIP 2
2.234 1.661 0.573 C HIP 3
1.823 1.537 0.286 C HIP 4
2.723  2.083 0.64 N HIP 1
2.906 2169 0.737 N HIP 2
3.231  2.492 0.739 N HIP 3
3.119  2.298 0.821 N HIP 4
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7.2 Jaw Data

The data set below contains these measurements: the first column is the bend repetition
(Rep), taking values 1 through 5; the second column is the displacements; and the third is
the measurement of principal strains. The displacements are not all unique: there are 55

measurements but only 52 distinct displacements.

Rep Disp Princ
1 -123.60 0.40
1 ~-120.50 8.50
1 -86.30 26.70
1 -73.80 52.20
1 -45.80 83.50
1 3.90 114.20
1 75.50  135.90
1 94.20 152.50
1 122.20 163.10
1 143.90 172.10

2 -412.90  428.10

2 -409.80 394.20

2 -360.00 329.50

2 -325.80  248.50

2 -238.70 153.80

2 -129.80 50.50

2 -86.30 29.30
2 -24.10 55.90
2 13.30 81.50
2 44.40 105.10
2 78.60 122.50
2 106.60  127.90
2 112.80  126.50

3 -425.40  435.90

3 -375.60  322.70
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Rep Disp Princ
3 -269.80 189.40
3 -151.60 89.50
3 -80.10 36.50
3 -52.10 46.40
3 -2.30 78.60
3 72.40  110.20
3 112.80 127.60
3 125.30 137.70
3 137.70  140.70
4 -465.80  474.40
4 -394.20 333.40
4 -244.90 184.40
4 -148.50 71.70
4 -67.60 37.50
4 -14.70 66.60
4 41.30  102.50
4 91.00 130.20
4 140.80 149.30
4 156.40  159.20
4 171.90 167.60
5 -528.00 687.20
5 -512.50  599.10
5 -456.50  447.30
5 -335.10  260.60
5 -195.20 90.70
5 -70.70 48.10
5 -5.40 94.50
5 81.70 126.70
5 122.20 143.80
5 159.50 153.60
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