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Abstract

We have theones of statistics and we use statistical methods to solve subject-
matter problems. One might expect that the theories would affect how the methods
are used, but they do so only superficially, because all statistical theories are quite
incomplete as descriptions of and prescriptions for statistical practice. This paper
sketches an extension of Bayesian theory that might address this incompleteness.
The extension is based on five ideas:

1  The product of a statistical analysis is an argument — not an HPD region, pos-
terior distribution, decision, or other data summary, but the entire argument,
mmcluding premises and logical steps.

Arguments come in several logically distinct types, with an argument's type
being defined by the form of its conclusion. The paper catalogs the types of
argument and identifies the main burden of each.

EDA and model-building activities establish a plausible, tractable baseline
argument for a given problem and dataset.

Diagnostics and sensitivity analyses vary the premises of the baseline argument
and display the resulting varation in the conclusion (as opposed to interme-
diate quantities).

An argument is strong to the extent that:

e its premises are conclusions of strong arguments, or
® the region of premises yielding the same conclusion 1s large.

A simple example demonstrates the mechanics of the extended theory. The example
is then generalized to draw implications for statistical foundations, methods, and
computing. This paper amounts to a research agenda, so it poses more problems
than it solves.

Keywords: applied statistics, Bayesian statistics, diagnostics, exploratory
data analysis, foundations of statistics, rhetoric, sensitivity analysis.
1 Introduction.

We have theories of statistics and we use statistical methods to solve subject-
matter problems. One might expect that the theories affect how the methods




are used and, superficially, they do. For example, Fisherians report P-values
and Bayesians do not, at least, not to Bayesian audiences. But the theoretical
veneer is thin. When we work in substantive fields, we all do the same things:
learn something about the subject matter; on obtaining data, poke around in
it and settle on a few models; compute data summaries; do diagnostics; and
report conclusions, perhaps after repeated cycles through these steps. The the-
oretical styles lean toward different, data summaries and models, but otherwise,
foundational leanings have little affect on statistical activities.

This is not just historical inertia. Rather, it happens because all statisti-
cal theories are incomplete as descriptions of and prescriptions for statistical
practice. This being a largely Bayesian event, I will focus on Bayesian theory.
Section 2 makes a brief argument for the incompleteness of Bayesian theory.
Section 3 argues that Bayesian theory can be extended and gives five ideas that
frame the extension. A simple example in Section 4 illustrates the mechanics
of the extended theory. Section 5 generalizes from the example to draw im-
plications for foundations, methods, and computing. Section 6 discusses direct
antecedents and inspirations for the extended theory. This theory is embry-

onic; the present paper amounts to a research agenda, and I beg the reader’s
indulgence.

2 Bayesian theory is incomplete.

All of us, Bayesians included, learn from data by means other than Bayes’
Theorem, the obvious example being exploratory data analysis (EDA). EDA
makes little or no use of the Bayesian formalism and prominent Bayesians have
certified this as kosher (Smith (1], Hill [2], Berger [3]). Predictive calibration
is also difficult to square with Bayesian ideology, but many Bayesians consider
it essential. (Geisser and Zellner are the best-known advocates of this view,
but see also West and Harrison [4], Chapter 10.) Bayesian theory brings no
special facility to the problem of learning enough subject matter to avoid being
a menace. And so on: the examples are easily multiplied.

What might we ask of a theory of applied statistics? Such a theory should
name the activities of applied statistics and the products of those activities. It
should provide a rationale for doing certain activities in specific situations and
not doing other activities, Finally, it should explain how the activities combine
to yield the products. Although Bayesian theory supplies some necessary lan-
guage, the next few sections will show by construction that it provides none of
these elements of a theory of applied statistics — nor, it should be obvious, does
any other statistical theory.

Why is this a problem? For the fastidious, incompleteness is problem
enough. For the more Pragmatic, it is useful to be able to explain what we
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do when we take something from a substantive problem, build a little mathe-
matical world, do operations in that world, and then claim to be better informed
about the original problem. What is the basis of this latter claim? Subjective
(or personalistic) Bayesian theory — to which most of this audience would pledge
some allegiance - describes and prescribes how to use data to make changes in
an individual’s beliefs. With few exceptions, however, a statistician’s problem
is to analyze how data can and should change the beliefs of many or all individ-
uals. If we sweep this under the rug of informality, we risk a variety of errors
in practice.

3 DBut Bayesian theory can be extended.

The problem in extending Bayesian theory to a theory of applied statistics is to
connect mathematical reasoning and verbal reasoning. The time-honored ap-
proach of axiomatics will not do, because axioms are within mathematics. What
is needed, instead, is a rhetorical structure that rationalizes specific mathemati-
cal activities and explicitly connects them to subject-matter issues. This section
proposes such a structure as an extended Bayesian theory of statistics. Five
ideas frame the extended theory:

1. The product of a statistical analysis is an argument.,

2. Arguments come in several logically distinct types. An argument’s type
is defined by the form of its conclusion.

3. EDA and model-building activities establish a plausible, tractable baseline
argument.

4. Diagnostics and sensitivity analyses vary the premises of the baseline ar-
gument and display the resulting variation in the conclusion.

5. An argument is strong to the extent that:

® its premises are conclusions of strong arguments, or

e the region of premises yielding the same conclusion is large.

These ideas will now be described.

3.1 Idea #1: The product of a statistical analysis is an
argument.

The product of a statistical analysis is not a highest-posterior-density region,
posterior distribution, likelihood, predictive distribution, or decision. Instead,
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Figure 1: Schematic diagram of an argument

the product is an argument — the entire argument - parts of which may use data
sumimaries like those just mentioned. An argument begins with premises, which
are inputs to a logical step, which yields the conclusion. Sometimes premises
are the conclusion of an argument that has its own premises and logical step.
This is shown in Figure 1.

A premise is "a proposition upon which an argument is based or from which
a conclusion is drawn” (American Heritage College Dictionary, 3rd. ed.). Sta-
tistical models are premises, as are assumptions like exchangeability or missing-
at-random. The observed data are also a premise: different data could have
occurred but did not, and an argument must use the data that did occur.
Binary logic provides many logical steps combining premises, such as modus
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ponens: A implies B, A is true, therefore B is true. So does the probability cal-
culus, interpreted as an extension of binary logic. 1 also include arguments like
Fisher’s disjunction (Fisher [5], p. 42): if we observe a datum that is extremely
unlikely under a postulated model, then either a rare event has occurred, or the
posulated model is not true. In a future paper, I will argue that foundational
approaches — of which I count three: randomization-theoretic, model-based fre-
quentist, and personalistic Bayesian - differ in the explicitness and variety of
premises they use. Randomization-theoretic arguments generally use the fewest
premises and Bayesian arguments the most, while randomization-theoretic con-
clusions are least specific to the circumstances at hand and Bayesian conclusions
the most specific (cf Efron [6]). No approach is correct or incorrect; rather, be-
cause they use different premises, they tend to produce different arguments.
Further discussion of this topic is beyond the scope of this paper.

3.2 Idea #2: Arguments come in several logically distinct
types. An argument’s type is defined by the form of
its conclusion.

This subsection discusses five logically distinct types of arguments, each having
subtypes. There may be other types of arguments, but these five cover most uses
of statistics. The arguments are defined below by the form of their conclusions.
Each conclusion is stated non-probabilistically, but statements labeled B can
be replaced by probability distributions in the personalistic fashion. The five
types of arguments are:

e Causal arguments

— inferential: “B was caused by A.”

- predictive: “A will cause B.”

action: “B was caused by A, therefore action C is desirable.” or
“Taking action C in situation D will cause a desirable outcome.”

® Non-causal predictive arguments

— deseriptive: “B will occur.”

— action: “Following rule C in situation D will yield a desirable out-
come.”

Description arquments

~ direct: “We summarize the data as B.”

wr

- inferential: “The unobserved constant C takes the value B.”




— action: “Constant C fakes the value B, therefore, action D is desir-
able.”

o Ezistence arguments

— predictive: “B has occurred; therefore, it can occur.”
— action: “B has occurred, so it can occur: therefore, action C is de-
sirable.”
o Hypothesis-generation arguments
~ daLa-mining: “We ransacked the data and found B, but we have
reason to fear that this finding is spurious.”

- innocuous identification: “We have found B, for which we have no
explanation; explanations should be sought.”

— action: “On the basis of these data, we should invest in the study of
A to make a more definitive argument.”

All five types of arguments have “action” as a subtype. The non-action kinds
of arguments will be considered first, followed by the action subtypes.

Before doing so, though, it is reasonable to ask why we should bother with
a taxonomy like this. The basis of the taxonomy - and the strongest argument
for using it - is that arguments can and should be distinguished according to
their burdens of proof. The remainder of this subsection makes the case that
the five types of arguments and their subtypes do, in fact, have distinct burdens
of proof. Drawing on this material, Section 5 makes the case that the usual
taxonomies of statistical problems - for example, inference vs. prediction vs.
decision, or hypothesis testing vs. point or interval estimation vs. everything
else, and so on - do not identify an argument’s burden of proof and thus do not
differentiate statistical problems usefully.

3.2.1 Non-action arguments.

Inferential causal arguments refer to the causation of an event that occurred
in the past or was determined in the past, while predictive causal arguments
refer to events, often counterfactual, that will or could occur in the future.
The burden of an inferential causal argument is to rule out all but one causal
agent. The additional burden of a predictive causal argument is to show that a
postulated causal agent will produce a given effect in specified future situations.

For example, consider BW02, the clinical trial that justified US licensing of
AZT to treat HIV infection (Fischl et al [7]). BW02 was a randomized, double-
blind, placebo-controlled trial in patients who had had an AIDS-defining illness
or who had AIDS-related complex (ARC). Competent use of randomization,
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double-blinding, and placebo controls are the crux of an argument that AZT
caused the difference in the number of deaths between the two arms of the trial
P an inferential causal argument.

It is harder to make the predictive causal argument that giving AZT to
a general population with AIDS will extend their lifespans. This is because
BWO02:

e enrolled only people with ARC or people who had had exactly one episode
of Pneumocystis cartnii pneumonia (PCP) within six months of enroll-
ment;

e enrolled only people with specific medication histories, in particular, with
no prior use of antiretroviral drugs; and

® restricted concomitant medications, in particular, patients could not use
prophylaxes for PCP, the most common AIDS-defining condition.

It might be possible to make a predictive causal argument in favor of AZT for
patients meeting these conditions, but few such patients exist. A more ambi-
tious predictive causal argument based on BW02 would require a subsidiary
argument that AIDS-defining illnesses, medication history, and concomitant
medications do not affect the efficacy of AZT. This is most unlikely; for exam-
ple, lengthy use of AZT degrades its effectiveness (Kahn et al [8]).

For either type of causal argument, the burden of proof is met by a procedure
- in this case, the data collection procedure - which is reflected either implicitly
or not at all in formulating the statistical problem as a hypothesis test or interval
estimation problem. This pattern recurs in the argument types to follow.

Non-causal predictive arguments refer to events that will occur in the fu-
ture, but they make no assertion of causality. The burden of a non-causal
predictive argument is showing that the predictive rule or procedure has the
properties claimed for it. One example is economic predictions made with vec-
tor autoregressions, which capture relationships in economic time series without
postulating causality (Litterman [9]). Another non-causal predictive argument
is medical use of prognostic measurements. For example, dozens of studies have
shown that in an unselected population of HIV-infected people, CD4+ lympho-
cyte count is a strong predictor of time to an AIDS-defining disease or to death.
This is true even though changes in CD4+ are poor predictors of subsequent
clinical events in interventional clinical trials (Fleming [20], De Gruttola et al
[21], Choi et al [22]). Note that as with the causal arguments, the burden
of proof of a non-causal predictive argument is provided by a procedure — in
this case, an out-of-sample validation - that is not part of the mathematical
formulation of a prediction problem.

Description arguments involve neither causality nor prediction. Direct de-
scription arguments also involve no uncertainty or sampling: all of the entities




exist and have been measured. For example, certain vendors sell summaries of
sales databases gathered by bar-code scanners in consumer-goods stores, mostly
grocery stores [23]; in some regions, the sales data are exhaustive. Among other
things, grocery stores use these data to answer the question “How am I doing?”
compared to nearby grocery stores. The burden of proof in a direct description
argument 1s showing that the summary actually describes the whole for the
purpose at hand (Mallows [10], Draper et al [11]). An inferential description
is almost a direct description - the entities involved exist and are potentially
measurable - but some of the entities either were not or could not be measured.
The obvious example is a census. Large censuses inevitably involve an inference,
as the US census undercount controversy has made clear. Another example is
estimating the number of birds killed in an oil spill (Carter, Page, and Ford [12]):
some number of birds actually died, but it is impossible to count the number
that died at sea and were not washed ashore, and if a census of beached carcasses
is not exhaustive, it is impossible to count the number that washed ashore dead
or died on shore. Any count of dead birds must be by inference. The burden of
proof here is showing that the inferential statement has the properties claimed
for it.

Estimating natural constants might seem to be inferential description, but it
1s not, necessarily. Some constants, such as the gravitational constant in New-
ton’s theory of gravity, do not exist in any meaningful sense. Rather, because
the theory is manifestly false, although useful, the gravitational constant is a
mere tuning knob, like those on a radio, that is adjusted to make the theory
fit the data as well as possible - that is, to facilitate predictions. Arguments
estimating such constants must therefore be considered predictive. By con-
trast, other entities, such as the speed of light or the electron’s mass, truly
exist and thus admit of inferential description arguments. Estimating a given
natural constant might initially be a predictive argument but later become an
inferential description argument as the constant’s bona fides are established.

Existence arguments are have a simple structure: some event has occurred;
therefore, it can occur. The burden of existence arguments is showing that
the event actually did happen. In medicine, case series are a popular but
much-maligned form of existence argument. For example, Blakeman et al [13]
described a series of patients who were on heart-transplant waiting lists because
of severe congestive heart failure and coronary artery disease. Such patients
have bleak prognoses but because of the risk of death during surgery, they
are widely believed to be poor candidates for palliatives like coronary artery
bypass grafts. Nonetheless, 17 of the 20 patients in Blakeman et al’s series
survived bypass grafting and 10 of the 17 were radically more able to perform
ordinary activities. Thus, bypass grafts can be done on high-risk patients with
good results and acceptable operative risk. The series does not identify which
patients should be bypassed, but the result is significant nonetheless.
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Another example indicates the possibilities of existence arguments. It is
sometimes argued that the human immunodeficiency virus (HIV) cannot cause
AIDS because lentiviruses such as HIV cannot work as the conveni.onal view
would have us believe. But the simian immunodeficiency virus (SIV) - which
is similar in structure to HIV - has been shown experimentally to do in mon-
keys precisely what HIV is supposed to do in humans. Such viral behavior
has happened, in monkeys; thus, it can happen. This argument does not im-
ply that HIV behaves in humans in accordance with the conventional view; it
does undermine the claim that no lentiviruses can work in accordance with the
conventional view.

For an instance in which the burden of this argument’s proof could not
be met, consider Koech et al. [24] and Obel and Koech [25], who claimed that
HIV-positive patients in their care became HIV-negative upon administration of
low-dose oral a-interferon. At the time, no-one had claimed to induce so-called
sero-deconversion, so these two reports were greeted with skepticism, and no
investigator has been able to replicate the result. All but a few observers have
concluded that sero-deconversion did not, in fact, occur. Note again that the
burden of proof for existence arguments lies in procedures — external validation

that are not represented mathematically.

The foregoing notwithstanding, existence arguments are limited in scope.
Suppose, for example, that an astronomer uses measurements to infer that an
unobserved planet must exist. There is an existence argument here, but not
a very interesting one: orbital irregularities (say) for this list of planets have
occurred, therefore they can occur. The interesting argument is, instead, a
predictive causal argument: the observed orbital irregularities were caused by an
unobserved planet, which will cause this list of further observable irregularities.

Data-mining arguments are a loose end which is necessary because statis-
ticians and others have not sorted out the relevant issues. The situation is
this: you ransack a dataset, check subgroupings, delete apparent outliers, and
so on, and find a nominally significant result. The traditional view is that such
searches are extremely prone to spurious findings: they do not control Type
I errors (Tukey [14]). Few Bayesians have commented explicitly on this issue.
Leamer [15] can be interpreted as meaning that data-mining is essentially in-
nocuous. With somewhat greater possibility of injustice, this view might be
attributed to Lindley [16], [17]. On the other hand, Berry [18] and Hill [2] ad-
mit that data-mining affects the interpretation of a nominally significant result,
although they do not give prescriptions.

The traditional view is a hypothesis-generation argument: this data-mining
has suggested an interesting hypothesis; perhaps we can make a more com.
pelling argument using another dataset. It captures the belief that, at the
current state of theory at least, a causal argument cannot be based on a data-
directed search because the chances of error are unknowable. The contrasting




Bayesian view is that data-directed searches can, in fact, be the basis of a
predictive causal argument. An intermediate position is that data- directed
searches can be the basis of an action causal argument, if not a predictive
causal argument (Berry [18], discussed below).

Innocuous identification arguments present a result, usually from an obser-
vational study, refute uninteresting explanations like selection effects, and pose
a challenge: “explain this result.” For example, Neaton and Wentworth [19]
used data on over 330,000 men screened for the MRFIT study between 1973
and 1975, along with the National Death Index and Social Security mortal-
ity data, to argue that in men between the ages of 35 and 57, low cholesterol
and low blood pressure are risk factors for death from AIDS. Cross-sectional
studies have shown that patients with HIV disease who are sicker, by various
definitions, tend to have lower cholesterol, but it was unclear whether this was a
consequence of the disease or a pre-existing condition. Neaton and Wentworth’s
result imples that it is at least partly a pre-existing condition and cannot be
explained by misclassification of cause of death or by an association of sexual
orientation with blood pressure and cholesterol. The result poses a challenge:
show how cholesterol and blood pressure are causally related to death from
AIDS or show that they are not. Neaton and Wentworth do not assert that
raising cholesterol or blood pressure can reduce the risk of infection, so it is not
a causal or predictive argument.

For both subtypes of hypothesis-generation argument, the burden is to find
the result and to rule out as many uninteresting explanations as possible. Yet
again, meeting this burden involves procedures not generally reflected in the
explicit mathematical formulation of the statistical problem.

3.2.2 Action arguments.

Each type of argument has an action subtype, because the other subtypes need
not imply action and vice versa. For example, one may be able to make a
compelling action causal argument without being able to sustain either a pre-
dictive or inferential causal argument (cf Berry [18]). A living example of this
is a colleague who has AIDS and uses an unproven anti-HIV drug, peptide-T.
Peptide-T is an analog for the protein in the HIV virus’s envelope that binds
to the CD4 receptor in human cells; it blocks the binding of HIV to these re-
ceptors in vitro, and thus has been suggested for treating HIV. Observational
studies suggest that peptide-T has a potent effect, but the sole controlled trial
of peptide-T is measuring only neurological symptoms. Thus, it is difficult
to sustain a predictive causal argument of more general clinical benefit. But
peptide-T has no known side effects or interactions with other drugs, and my
colleague gets his supply gratis. The cost and risk are small and the poten-
tial benefits immense, so an argument for action — for using peptide-T - is
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Conversely, it is possible to make a cogent inferential or predictive causal
argument without being able to sustain an action argument. For example,

no-onc questious that aerosolized pentamidine (AP) is an effective prophylaxis
for PCP, i.e., it is easy to make a strong predictive causal argument that it re-
duces the chance of PCP. However, neither does anyone question that trimetho-
prim/sulfamethoxazole (TMS) is a much more effective prophylaxis for people
who can tolerate it (Schneider et al [27], Hardy et al [26]). In this case, the ac-
tion argument about taking AP (“don’t take AP, take TMS if you can tolerate
i1t”) requires more information than the predictive causal argument about AP
(“AP reduces the incidence of PCP").

Any action argument involves an implicit or explicit tabulation of costs and
benefits associated with possible courses of action. In decision-theoretic views
of statistics, the tabulation is explicit: in both of the arguments above, the
tabulation is mostly implicit, although in each case it could be made explicit.
(The value of such an exercise is a separate issue.) Whether the tabulation is
implicit or explicit, it adds premises to the action arguments.

For the other argument types. as for causal arguments, a non-action argu-
ment need not imply the corresponding action argument, and vice versa. Brief
examples follow. Non-causal predictive: Litterman [9] and those following his
lead make strong arguments for predictions, not arguments for actions; on the
other hand, political and corporate actors must constantly rationalize action
by predictive arguments that no well-informed person could find compelling.
Descriptive: Counts of birds killed in oil spills have partly rationalized legal
judgments against oil tanker companies; but less well-supported population
counts have been used to draw inferences about sea-bird population dynamics.
(Gross inferences, to be sure.) Existence: When Blakeman et al (1990) showed
that patients with severe heart failure could be radically improved with bypass,
avoiding a costly and hazardous heart transplant, it became necessary to act
by identifying which patients could be so treated. But if someone discovered
the remains of Noah’s ark, this would confirm that it existed but the standards
by which its existence was verified could not, sensibly involve a calculus of costs
and benefits. Hypothesis-generation: Had Neaton and Wentworth tried to use a
specific calculus of gains and losses, it would have had only formal content. But
a pharmaceutical company might reasonably use a subset analysis of a clinical
trial, producing weaker evidence than Neaton/Wentworth’s, to select among
possible future trials in promising patient subgroups.

Now that the argument types have been differentiated according to their
burdens of proof, a new diagram of arguments, Figure 2, can replace Figure 1.
Commonly, researchers approach an investigation with the intention of even-
tually drawing a particular kind of conclusion, that is, of making a particular
type of argument. The desired type of argument determines the mathematical
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3.3 Idea #3: Model-building activities establish a plausi-
ble, tractable baseline argument.

In the world portrayed in data analysis classes, certain activities precede model-
fitting. First, the dataset is summarized until the analyst understands it as
data, that is, to ensure that data items have not been garbled, to figure out
coding schemes, and the like. Then, the dataset is summarized some more until
the analyst has a few ideas of what it says about the subject-matter problem;
for example, pictures are drawn to reveal trends, groupings, and other features
that can be modeled. With luck, the result is a few models or data summaries
and some tentative arguments that are tractable, have simple elements, and are
not plainly inconsistent with the data.

But in some places where statistics is used - clinical trial organizations, for
example — models and types of arguments are often specified before the data
are collected. As soon as the data are entered into the computer system and
run through basic edits, proportional-hazards models are fit to them like a bit
and bridle.

Whether your world looks more like the data-analysis class or the clinical
trial organization, what you have at this point is a baseline argument. It is an
argument in the sense used above; it is a baseline in two senses. First, because
it passed the EDA test (in the world of the data-analysis class) or because it
has achieved the status of a convention (in the clinical trial world), it is the
argument to which variations will be compared, in the hope that the variations
have little effect and the baseline argument can be reported. Second, the term
“baseline” commonly implies that attempts will be made to improve on it. In
the extended theory of statistics, both senses are important. It is desirable to
report the baseline argument because it is often simple and has conventional
acceptability. On the other hand, it is important that the baseline argument
not be accepted without substantial scrutiny.

3.4 Idea #4: Diagnostics and sensitivity analyses vary
the premises of the baseline argument and display the
resulting variation in the conclusion.

This idea has consequences for measuring the influence of perturbations and for
choosing the class of perturbations to be examined.

Measuring the influence of perturbations. We do diagnostics and sensitivity
analyses to see if a small change in the data, model, prior, or loss function
induces a large change in . . . what? Cook’s distance (Cook and Weisberg [28],
p. 115) measures the change in the vector of regression coefficients against the
inverse of its covariance matrix. Cook [29] assessed the effect of a perturbation
by the change it induces in the parameters of the baseline model, measured by




the associated change in the value of the baseline likelihood. Some Bayesian
analogs use Kullback-Liebler distance to measure how perturbations change the
posterior or predictive distributions (Johnson and Geisser [30], McCulloch [31],
Carlin and Polson [32]).

These measures are helpful but we lack the words to describe how they help.
What does one do if a point is influential? Cook and Weisberg ([28], p. 104)
gave little advice, noting that“final Judgments [about influential cases] must
necessarily depend on context, making global recommendations impossible.”
They suggested some useful considerations — Is the influential point erroneous?
Are more data available near the influential point? - but otherwise, they con-
centrated on methods for detecting influential cases.

The extended theory has a clear implication here: if a perturbation of the
baseline argument has large influence according to some measure but does not
change the outcome of the argument or suggest a need to change its structure,
then . . . who cares? Influence measures should focus on conclusions of
arguments, not intermediate steps.

The method of Kass, Tierney, and Kadane [33] allows this focus: it assesses
the influence of perturbations on the posterior expectation of a general class of
functions of the baseline model’s parameters. The disadvantage of this method
is that it measures influence locally, around the posterior mode. However, recent
advances in Bayesian computing (e.g., Gelfand, Dey, and Chang [34]) should
permit non-local influence measures for general functions.

Choosing the class of perturbations to be examined. Premises of a statisti-
cal argument often include exact mathematical specifications. Some specifica-
tions are explicit, such as probability density functions, while others are im-
plicit, such as exchangeability assumptions (Draper et al [35]). It is rare to see
a demonstration of strong support for the specifics of an argument’s premises,
More commonly, a case is made that the argument does not depend on the
specifics, that is, the baseline argument is used for convenience and then shown
to be only a convenience.

This is in the spirit of the extended theory, but one generally sees only
modest variations on premises. Leave-one-out diagnostics are fairly common
(Carlin [36]), as are checks of (say) logistic—regresaion-in-place—of—probit (Gib-
bons et al [37]) or if-we-used-this-different-measurement (Caulkins and Padman
(38]). However, we see hardly any checks for failures of proportional hazards -
and SAS even supplies a test! [t is truly extraordinary to see the full range of
an argument’s premises bent to see where the argument breaks,

Why are we so timid? Why not bend all of an argument’s premises?
Tractability was an acceptable excuse ten years ago; perhaps it still is, but

it will certainly not be in ten years. Why do we not use our computing power —
raw CPU power and flexible modeling systems like generalized linear models -
to put experimental design methods to work exploring variations of premises?
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Of course, any applied statistician can supply plausible excuses. For exam-
ple, we think we know which variations are important, and we examine those
variations. But do we know which variations are important? For linear regres-
sions with normal errors, we probably do. For other models, the research does
not support such an assertion, especially not for the bigger, less comprehensible
models that computing power has made possible. (For example, see Zaslavsky
(39].) And when we do know which variations are important, do we examine
them? Judging from the medical literature, almost never. It is harder to assess
other fields, but based on editing experience and conferences, if variations are
examined, they are not discussed.

Well, can we not handle such difficulties qualitatively? For example, editors
of medical journals expect papers to report losses to follow-up, and if such
problems are bad enough the editors will reject the paper. But there is a
middle ground between rejecting papers and dropping standards entirely: if
an argument can be shown to hold in spite of problems, then it has value.
(Crawford et al [40] make an argument like this.)

At bottom, one senses a worry that if we bend premises too much, we will
never sustain any results. But perhaps that is the right answer: maybe we
need to find out how far we must bend premises to break a result, and then let
people sort out their beliefs about the result according to their beliefs about
how much the premises should be bent. This leads to the last of the five ideas.

3.5 Idea #5: An argument is strong to the extent that
the premises are supported by strong arguments or
the region of premises yielding the same conclusion is
large.

A premise is strongly supported when it is the conclusion of a strong argument.
(This appropriately raises the specter of infinite regress.) When a premise is
strongly supported, there is no need to examine variations of it or, at least, not
large variations. It is easy to think of strongly supported qualitative premises —
for example, that a coefficient should be positive because it can’t be negative -
but difficult to find instances of strong support for mathematical specifics like
normality or linearity. Ehrenberg and Bound [41] give some exceptions in the
field of marketing; their exceptional quality suggests that we heed Ehrenberg
and Bound’s call to seek regularity across many sets of similar data.

It is more common to find arguments that are strong because the specifics
of the premises do not matter, for example, the same result is obtained whether
the errors are assumed to be normal or ¢. If the outcome of an argument is the
same for all variations of its premises, the argument is strong. If the outcome
of the argument varies as the premises vary, then you can argue about metrics
on the space of premises, but ultimately the choice of a metric is subjective.
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This is another way to reach the conclusion, sometimes attributed to D.F.
Andrews, that “objectivity is a hoax”: an argument’s strength can only be
defined with respect to a specific body of knowledge and belief. One cannot
foreclose the possibility that ten years into the future, someone will invent a
new way to bend premises that does change the outcome of the argument, at
which point the old, sturdy argument falls or surrenders some of the ground it
occupies, as Newtonian mechanics did a century ago.

4 A simple example illustrates the extended
theory’s mechanics.

This example is from Carlin and Louis [42] (henceforth CL), who were motivated
by a clinical trial in which Bayesian monitoring was conducted in parallel to con-
ventional monitoring (Carlin et al [43]). The trial compared pyrimethamine to
placebo as prophylaxes against toxoplasmic encephalitis in HIV-infected people.
For the time-to-event analysis below, the endpoint was death from any cause.
The investigators wanted to make an inferential causal argument about the effi-
cacy of pyrimethamine, which CL formulated as a Bayesian test of a point-null
hypothesis against a composite alternative. (Other formulations might have
made sense; this is discussed in Section 5.) The primary premises are that
the treatment groups did not differ systematically in baseline characteristics,
concomitant treatments, or in ascertainment of deaths. These are supported
by the procedural features of randomization and blinding. CL focused on the
secondary mathematical premises.

The baseline model - specified in the trial’s protocol document — was a
proportional-hazards regression. CL used two explanatory variables for each
patient: a dummy indicating treatment group (1 for pyrimethamine, 0 for
placebo) and the CD4+ count at entry into the trial. CL integrated the CD4+
coefficient out. of the partial likelihood, leaving the marginal (partial) likelihood
for the pyrimethamine coefficient. Call that coefficient # and call the marginal
likelihood f(z|@), where = represents the data from the trial. The explicit
mathematical form of the baseline argument was:

o Null hypothesis, Hg : @ = 0: the prior probability of Hy is 7 = 0.25:

e Alternative hypothesis, H, : 8 # 0, where the prior cumulative distribu-
tion function of # under H, is G(#); and

o Test: if P(Hg|z) > p, choose Hy, otherwise choose H,, where p = 0.1.

Applying the extended theory. To use the extended theory, one must first fix

an aspect of the problem that is essential to its definition. For CL, that aspect
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was 0, the log relative hazard of patients receiving pyrimethamine compared
to those receiving placebo. Any other aspect of the problem formulation is
a premise that can be varied: exchangeability of the treatment. groups, the
proportional hazards assumption, the use of a partial instead of a full likelihood,
7, p. G(9), ete.

Next, the baseline model is expanded to represent the premise variations
under consideration, with the baseline premises corresponding to a specific prior
on the expanded space. The term “model expansion” may cause some confusion:
in the extended theory, it includes not Just familiar (and typically modest)
model expansions, but any and all premise variations.

Having expanded the model, the next step is to examine priors on the ex-
panded space to find ones that change the baseline argument’s conclusion. If
any are found, the last step is to understand why those variations change the
conclusion.

CL considered only variations on G and constrained them by specifying
quantiles. That is, they defined an indifference zone (an interval such that
they are indifferent between @ in this region and § = 0; see Freedman and
Spiegelhalter [44]) (zy,zy) = (—0.288,0) for # and defined the constraints by
Pe(0 <zp)=ar and P(0 > zy) = ay, for specified az, ay € [0,1] satisfying
ar +ay < 1. The maximum partial likelihood estimate of 8 was (.6, that is,
pyrimethamine appeared to decrease survival time. Given the data, 7, p, and
the indifference zone, for any pair (ar,ay) the boundary of interest is linear: if
ay > 0.145ap + 0.273, then a prior GG exists that satisfies the constraints and
results in the rejection of H,. Otherwise, no prior permits rejection of Hy.

This is the boundary of variations at which the result changes. Its meaning
1s simple: if G puts enough probability above the indifference zone, it is possible
to reject. Hy; otherwise, it is not possible. This much is trivial: the non-trivial
part is that CL quantified “enough” precisely, in the linear equation given above.
(Sargent and Carlin [45] extended this result three ways, by using interval null
hypotheses, including sample size considerations, and allowing 7 to vary.)

5 A generalization of the simple example sug-
gests implications for foundations, methods,
and computing.

The example in Section 4 can be generalized to derive five steps in applying the
extended theory. In practice, it will often be necessary to iterate among the
steps.

Step 1. Fix the aspect of the problem that is essential to its definition.
There may be more than one way to do this. For example, suppose CL had




varied the proportional hazards premise, replacing 6, the log relative hazard
of pyrimethamine, by v + g(t), where { is time and g() is a function of time.
Are we interested in v, or the whole function ¥ + g(¢), or some average of it?
When the essential aspect of the problem has no single formulation, it may be
necessary to vary the formulation in addition to varying baseline premises.
Step 2. Do EDA/model-building to form a baseline argument (Ideas #2 and
#3). This is still art, not science, but the extended theory gives it a bottom
line: get to an argument, or to the conclusion that no interesting argument can

be made.

Step 3. Specify model expansions (Ideas #3 and #4). Each mathematical
specific of the baseline premises is a conventence parameter: each specific is of
no intrinsic interest but conveniently permits arguments to be built. Even the
essential aspect of the problem is often just a convenience. This step requires
a model expansion corresponding to each baseline premise that is not strongly
supported.

Recall that “model expansion” includes everything. Whatever the premise
variations, they can all be formulated as model expansions even if the various
models cannot be nested. Sometimes this is awkward, but it can be done.

Step 4. Do a restricted search for priors on the convenience parameters that
change the conclusion (Ideas #3 and #4). The search is restricted because
it rarely makes sense to consider absolutely everything. One unhappy feature
of robust Bayesian approaches generally and CL’s approach in particular is
that the G yielding extreme solutions are usually bizarre priors that nobody
would advocate. Thus, it is desirable to impose smoothness constraints by
means of, say, bounds on derivatives. Such constraints will partly address the
concern mentioned in Section 3, that no result will ever stand up under the
premise variations advocated here. The trick is to constrain priors in ways that
are substantively innocuous but express genuine beliefs, like unimodality and
continuity.

Step 5. On finding the boundary of such priors, figure out why the conclusion ‘
changes there (Idea #5). The baseline argument should be reported if it stands ‘

|

up under variations, but we also need to report where the baseline argument
breaks in the expanded premise space, and why it breaks there. Does it break
when we delete a few odd points? Is it so fragile that it breaks with some
combination of modest deviations from several premises, or is a catastrophic
failure of some premise needed? Such qualifications of the baseline argument
are as important as the baseline argument itself.

5.1 Implications for foundations.

The most important implication is that the sensitivity analysis is the analysis,
and that a sensitivity analysis must focus on the effects of perturbations on the
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conclusion of the baseline argument. Sensitivity checks are not a mere nicety;
they are central to the analysis.

Another implication is that the usual taxonomies of statistical problems

for example, inference vs. prediction vs. decision, or hypothesis testing vs.
point or interval estimation vs. everything else - do not make useful distinc-
tions among statistical problems. One might say, paraphrasing de Finetti, that
inference does not exist: “inference” is not a separate type of argument, but
several subtypes of different types of argument. Perhaps the futile quality of the
foundational dispute over inference arises in part because there is no such thing
as “inference”, but, rather, qualitatively different types of inference. Similarly,
there is no single kind of prediction or decision, but qualitatively different kinds
of each. Finally, although it serves a mechanical purpose to formulate a prob-
lem as a hypothesis test or an interval estimate, it is clear that tests, estimates,
and intervals play a role in most or all of the types of arguments.

The extended theory also makes it clear - if you are not already convinced

- that it is not helpful to reduce all statistical arguments to exercises in deci-
sion theory. While non-action arguments can often be cast in decision-theoretic
terms, it is sterile to do so. How could any meaningful loss function be con-
structed for the Neaton/Wentworth argument or for the causal arguments? The
main burden of such arguments is not picking a particular estimate or posterior
distribution, but sustaining the finding against alternative explanations. But
fear not, purists: it is possible, after all, to use Savage’s axioms for probability
without using the axioms for utility.

A final implication, which cannot be treated here, is that past a certain point
it is usually futile to try to express all variability and uncertainty as probability.
For most argument types, it would be a waste of time to specify a probability
distribution on the premise variations and integrate it out, because it would be
just one more aspect of the problem to vary. (But perhaps not always; Hodges
[46] discusses possible exceptions.)

5.2 Implications for methods.

Four of the five steps in applying the extended theory have immediate implica-
tions for methodological development.

Step 1. Each type of argument has a small group of characteristic problem
formulations. For example, CL’s inferential causal argument was formulated
as a Bayesian hypothesis test. We need to catalog problem formulations for
each argument type and develop CL-style setups friendly to perturbations of
the generality discussed here.

Step 3. Step 2, the EDA /model-building step, produces a tractable baseline
argument. Often this will involve a standard model, such as linear regression, so
statisticians will routinely need to examine variations on the premises of these




standard models. Thus, we will need standard “baskets” of model expansions
for standard models. Of course. some users will need to go beyond the standard
basket of model expansions, and one research challenge is to figure out how to
allow them to do so without respecifying the standard model expansions.

Step 4. This step is a search through priors on the expanded model space
for priors that change the conclusion of the baseline argument. To do this
readily, we need friendly classes of priors on the standard baskets of model
expansions, and constraints on them corresponding to conditions like continuity
and unimodality.

Step 5. We need more ways to assess the effects of perturbations on conclu-
sions of arguments. Kass, Tierney, and Kadane [33] suggests one approach; a
computational idea will be suggested below. When the search is finished. we
need ways to describe the boundary where the baseline argument’s conclusion
changes. CL drew a simple picture to summarize their search; more complicated
model expansions will require more ingenious pictures.

5.3 Implications for computing.

It is not easy to search for the boundary where the conclusion changes. Explicit
solutions are awkward for minor elaborations of CL’s problem and for more
general problems we cannot avoid computer-intensive searches.

One possible approach is an environment that searches premise variations
stochastically, maps the boundary, and suggests diagnostics to elucidate why
the conclusion changes there. Ordinarily, if we are using (say) a linear regression
model, we have a dozen or so standard diagnostics that we apply, one by one,
looking for problems. We may use all the standard diagnostics and find nothing,
or a particular diagnostic may indicate a problem which we then pursue with
other diagnostics. The computing system described above would invert this
process by searching for places in premise space where the conclusion of the
baseline argument changes and, by reference to the model expansion that seems
to cause the change, displaying diagnostics that indicate what has gone wrong.

One might view the latter as an intelligent agent that does diagnostics for the
human user. Other expert systems can help the human implement Step 2, the
EDA /model-building step. Particularly in large data sets, it may not be cost-
effective to have the human waiting while the computer does arithmetic: rather,
it may be more efficient to have an intelligent agent do EDA/model-building
and bring back a summary that the human can peruse at her convenience. The
difficulty is designing an interface that allows the human to direct the agent so
that it does not bring back mostly junk.
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6 Antecedents.

‘e ideas in this paper have several immediate antecedents and, of course,
innumerable less immediate predecessors. In a paper of this scope, only the
former can be given their due; my apologies to the latter.

The nearest antecedent is a catalog of uses of simulation models in policy
analysis (Hodges [47], Hodges and Dewar [48]) and Bankes’ [49] notion of ex-
ploratory (as opposed to predictive) modeling which was followed by statistical-
ly-oriented unpublished work by Bankes and JL Adams. These streams merged
and incorporated experimental design ideas in Dewar et al [50].

Carlin and Louis [42)] is also a direct antecedent. Although their results are
technically modest and related to other results in Bayesian robustness, they are
a departure among statisticians in their focus on the conclusion of the analysis.
(Others, such as decision analysts, have long focused on conclusions.)

Smith [51] suggested the idea of extravagant sensitivity analyses by noting
that Bayes' theorem allows us to “report a rich range of the possible belief map-
pings induced by a data set”; he was referring to individual parameters, but
the idea can readily be expanded. Cox and Snell [52] differentiated the primary
aspect of a model, specifying the main question of interest, and the secondary
aspects, which complete the model and indicate a suitable analysis. This is an
ancestor of the notion of the essential aspect of a problem and of the distinc-
tion between primary and secondary premises. Cook and Weisberg (e.g., Cook
and Weisberg [28], Weisberg [53]) advocated model expansion, which Weisberg
credits to Cox [54]. Cook [29] and Ramsay and Novick [55] introduced methods
for diverse perturbations, the latter in the form of PLU (prior-likelihood-utility)
robust decision theory. Kass, Tierney, and Kadane [33] developed measures of
case influence on general functions of parameters. Finally, the Bayesian robust-
ness literature (Wasserman [56] is a recent survey) has focused on robustness to
prior distributions, although some authors have considered sensitivity to other
aspects of the baseline argument.

Other antecedents come from off the beaten track. Smith [1], Hill [2],
and Berger [3] discussed Bayesian notions of data analysis, with the consen-
sus that non-Bayesian methods are acceptable during model-building. Kadane
and Schum [57] discussed Bayesian thinking within a scheme of diagramming
legal arguments. Lindley and Singpurwalla [58] considered the amount and
type of evidence needed to obtain agreement between adversaries with different
prior information and loss functions. Rosenbaum (e.g., [69]) pushed random-
ization theory in an unusual direction with methods for sensitivity analyses in
observational studies. These methods evaluate the strength of relationship be-
tween the mechanism treatment assignment and the outcome that is necessary
to overturn an apparent causal relation between the treatment itself and the
outcome. Finally, Leamer [15] incorporated model-searching into formal statis-




tical inference and Leamer [60] catalogued distinct patterns of model-searching.
[ find it unhelpful to think of uses of statistics as specification searches, but the
debt of the present paper to Leamer is clear.
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