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Abstract

Barnard has often argued that the likelihood can’t be used to test hypotheses
without alternatives; significance tests must be. This paper reviews the writings of
Barnard and Bayesians on the subject; refutes Barnard’s argument that Bayesiaus
cannot test against all alternatives, but argues that it is unnecessary; then refutes
Baycsian argunients against exploratory usc of significance tests by constructing an
appealing alternative distribution and prior probabilitics on the null and alternative
that yield (to arbitrary accuracy) the P-valuc as the posterior probability of the nudl.

The message is that Bayesians can and should use P -values in aun exploratory role.

1. Introduction

1.1 The Role of Significance Tests

One recurring theme in George Barnard’s writing! is a distinction between sit-
uations in which scveral hypotheses are to be compared in the light of some data,
and situations in which the plausibility of a single hypothesis is to be evaluated. For
the former case, Barnard argued (1949, 1962, 1972a, 1975, 1985; Baruard, Jenkins,
and Winsten 1962) that likelihood ratios or some transform of them shiould be used
to compare the hypotheses. For the latter case, no such comparison is available, and
Barnard (1962, 1972a, 1975, 1985) argued that this creates a need for a method that
does not rely solely on the likelihood. This need is met by significance tests.

TIu Barnard's view (1962, 1972a, 1972h, 1975, 1980a, 1985), the quintessential
role of significance tests s to assess “whether agreement between this hypothesis and
the data is so bad that we must begin to exercise our hmaginations to try to think
of an alternative that fits the facts better™ (1972a, p. 129). “If the data do not fit
that [hypothesis|, then it is worthwhile going ahead. If [the hypothesis] is consistent

with the data let us not waste our time” (1962, p. 85). This implies that the test

1References to Barnard’s papers will be given by the date of the paper only.
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is conducted “before seriously considering alternatives” (1980a, p. 305), and thus
with alternatives that are, at best, vaguely specified (1975, p. 260). Moreover, the
need to conduct the test before considering alternatives apparently implies that any
attempt to use a Bayesian approach to this problem would require the specification of
all possible alternative hypotheses, which Barnard considers an impossible task (e.g.
1985, p. 5; see also Anscombe 1963. Many Bayesians consider this a misperception.).
In this respect, among others, Barnard views Bayesian methods as deficient.

The usual multiplicity of differing views can be found among those generally
identified as Bayesians. A great deal of Bayesian writing has treated individual sig-
nificance tests in isolation, as devices for assessing nebulous things like the “evidence”
relating to a hypothesis. For example, long articles by Pratt (1965) and Berger and
Delampady (1987) make only passing mentions of an exploratory role for significance
tests, and Berger and Sellke (1987) makes none at all. The emphasis in these papers
is on the relationship between P-values and Bayesian hypothesis tests of a single
value of a parameter against a simple or composite alternative stated in terms of
that parameter. But the quotes above clearly point to the intrinsically exploratory
role of significance tests (see also Anscombe 1963, Box 1980, Andrews 1985), and so
this large body of work is largely irrelevant to the issue at hand.

Lindley (1980, 1983) argued “that it does not make any sense to test a hypoth-
esis without alternatives in mind” (1983, p. 435). This approach avoids Barnard’s
criticism by dismissing Barnard's problem. But any birdwatcher knows that this
solution is not acceptable: sometimes the bird you see is plainly not of any species
you know, and your methods must be capable of telling you so. Jeffreys is often
associated with the position just attributed to Lindley (see, e.g. Hill 1986, p. 226),
although his actual position is that it does not make any sense to reject a hypothesis
in a significance test without one to replace it (Jeffreys, 1961, pp. 383-398).

Is it of the slightest use to reject a hypothesis until we have some idea of

what to put in its place? If there is no clearly stated alternative, and the null

hypothesis is rejected, we are simply left without any rule at all, whereas

the null hypothesis, though not satisfactory, may at any rate show some sort

of correspondence with the facts. [p. 390] ... There has not been a single

date in the history of the law of gravitation when a modern significance test

would not have rejected all laws and left us with no law. Nevertheless the
law did lead to improvement for centuries ... {p. 391]

Nonetheless, Jeffreys (1961) recognized the need to assess deficiencies in a hy-

pothesis even if no alternative were available:

The fundamental idea {of classical significance tests], and one that I should
naturally accept, is that a law should not be accepted on data that them-
selves show large departures from its predictions. [p. 384] ... If the null
hypothesis is not altogether satisfactory we can still point to the apparent
discrepancies as possibly needing further attention, and attention to their
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amount gives an indication of the general magnitude of the errors likely to

arise if it is used; and that is the best v.c can do (p. 391)
that is, without an alternative hypothesis in favor of which the null might be rejected.

Lindley (1980) and several others (e.g. Zellner 1980, or Berger and Wolpert 1984,
section 4.4) have countered that in any significance test, some alternative is lurking
in the background, and the test can only be improved by making tle alternative
explicit. (Sections 3.2 and 3.3 of this paper develop this point, though to a different
end.) Barnard (1965, 1980b) offered counterexamples to this, arising in physics;
Dempster (1971), Dawid (1980), Geisser (1980, 1989) and others expressed similar
views. Box (1980) offered a particularly forceful rebuttal:

[Sjuppose I have an office that looks onto, say, Oxford Strect in London,

normally thronged with people. One day I look out of the window at 11

o'clock in the morning and notice that there are only two people in the whole

strect. My initial reaction surcly is that on the null (stetus guo) model this

is an unusual event possibly worthy of further investigation.  Alternative

models that might explain the phenomenon come later. ... [Tlhe basis of

the initial reaction, which requires no alternatives, is surcly that [ have

{or could have) looked out of the window on many previous occasions and

rarely have [ (would I have) scen as few as two people in the street. The

motivation is economy of effort and is employed by all of us hundreds of

times in our daily lives—when the null model is plausible T will not worry,
but when data make it implausible perhaps T should be concerned. (p. 429)

The notion hiere is logically prior to and more primitive than the specifies of
Bayesian or classical tests. The idea is: if T see something odd--if Oxford Street is
empty or if people are packed into it so tightly that they cannot move—~then I am
moved to seck an explanation for this odd observation.

Hill (1986) allowed that the only purpose of a test without alternatives is “to
help one decide whether it is better to continue to use the ounly model one has, ...
which may or may not be adequate for the purposes one has in mind, or whether it
is better to search for new and improved models or hypotheses” (p. 229). (See also
Hill’s discussion of Barnard 1980a.) Like Barnard, he found this to be “a very dif-
ferent activity from that involved in comparing two sharply formulated hypotheses,
[that] should not be confused with the latter” (p. 229), although he did not accept
significance tests as a consequence. Hill (1974) offered a Bayesian competitor to sig-
nificance tests for linear models with additive errors, although his approach could be
applied to other cases; his method specifies a large but not exhaustive class of alter-
native hypotheses, and thus is apparently vulnerable to Barnard’s and Anscombe’s
criticisims.

Smith (1986) distinguished two forms of model criticism:

global eriticism, which basically asks the question “should we abandon the

current framework completely, despite the fact that we have nothing at all
to propose in ity place?”; [und]
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local criticism, which asks “should the model be modified or extended in
this or that particular direction?” {p. 97)

The latter is plainly susceptible to Bayesian methods; the former “does not ap-
pear to make sense in a Bayesian context without some form of assumption about
alternative models” (p. 98). In Smith’s scheme, these forms of model criticism are ap-
plied once a formal framework for a given problem situation has been determined. In
the earlier stage in the scientific learning cycle in which the formal framework is con-
structed, “much of this activity is very definitely ‘informal’ and not necessarily within
the purview of Bayesian thinking, which requires a more or less structured frame-
work” (p. 97). Smith specifically excluded “conventionally sanctioned goodness-of-fit
criteria (e.g. deviance)” from the collection of techniques that are legitimate at this
stage. One can infer that an acceptable approach to scientific learning would include
poking through the data with informal exploratory techniques, such as plots, until
some particular formal model is postulated, after which only elaborations and sim-
plifications of this model would be considered, and then only in a Bayesian fashion.
Presumably, if doubts begin to arise about the adequacy of the overall framework, the
proper response is not a test of significance but a return to the informal exploratory
phase. Smith (1986) does not indicate the means by which thesc doubts might begin
to arise.

Box (1980) pointed out that diagnostic plots—a mainstay of Smith’s exploratory
phase—are animated by the same logic as a significance test. These “plots are de-
signed to make manifest certain ‘features’ of the data that would rarely be extreme, if
the model were true,” so that using them to motivate searches for alternative models
is just like using & significance test. But this did not bother Box; indeed, he argued
(Box 1980) that criticism of models cannot be done within the Bayesian framework
(“the difficulty with any attempt to use the Bayesian half of the model alone is that
it is eternally conditional. We can move the conditionality around but we cannot
lose it,” p. 427), so that Bayesian methods must yield to sampling methods for these
_ purposes. (Dempster 1971 made a similar argument.) Box advocated using the pre-
dictive distribution of the observed data, conditional only on the model, that is, after
integrating out the parameters. In various places in the article he suggested using
tail areas calculated under the predictive distribution, or examining its value at the
observed data, much as Jeffreys suggested. Geisser (1989) offered several other ways
to use predictive distributions for the special case of individual observations that may

be discordant with a tentatively entertained model.

Others hive taken a pragimatie posttion 1f one's objeet s to catel certain Kinds
of devintions frots s wosdel, then postudinte ancaltensative that wall result i s Bayesian

hypothesis test that catches those deviations and don't worry about whether the al-

—p—
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ternative is a plausible model of anything. Thus West (1986) devised a Bayesian
method for monitoring the adequacy of a dynamic linear model. It uses a single
alternative at each time t, constructed by increasing the variance of the model en-
tertained at time t. This alternative allows detection of outliers and abrupt shifts in
the level of the time series, but it is not motivated by any belief in the truth of the
alternative as a description of the world.

Leonard (1975), Zellner (1975), and Chaloner and Brant (1988) went a step far-
ther by in effect choosing capacious alternatives that not only allow the detection of a
large number of model failures, but suggest correctives as well. Zellner (1975) treated
the unknown actual residuals of a linear regression (i.e. actual dependent values mi-
nus the unknown correct regression) as the objects of interest. These residuals are
linear functions of the data and the unknown parameters, so that once the data have
been observed, their joint posterior distribution—conditional on the current regres-
sion model—can be obtained easily from the posterior of the regression coefficients.
The posterior distribution of the realized residuals can be exaniined for evidence of
model failures, and also to search for alternative models. (Hill 1969 examined other
uses of the distribution of the realized residuals.)

Leonurd (1975) and Chaloner and Bramt (1988) treated realized residuals as
unknown parameters in similar ways. Chaloner and Brant said that their approach—
which is essentially Zellner’s, but with a different emphasis—-"is a general exploratory
method of investigating whether there is a problem when no alternative model is
immediately apparent” (p. 2). Zellner used very similar words to deseribe his method,
although he noted that once his procedure had been used for exploration, one could
“compute posterior odds ratios relating to variants of a standard model ... that are
helpful in model choice” (p. 130; also Dempster 1971, p. 61).

In sum, significance tests fill an exploratory role, and Bayesian rescarchers have
generally agreed that there is a role to be filled. Some have accepted ordinary signif-
icance tests or variants on them, while others have attempted Bayesian surrogates in
the apparent absence of any possibility of finding a palatable direct analog. However,
little systematic scrutiny has been given to Barnard's assertion that no analog is pos-
sible, and no-one has been able to explain significance tests in satisfuctory Bayesian

terms.

1.2 Answering Barnard Directly

Though their other merits are considerable, none of these approaches addresses
Barnard’s criticism head on, leaving the impression that Barnard has indeed found
a problens that Bayesian methods cannot handle. In section 2.1, 1 show that for

a large class of problems, it is possible to specify all of the alternatives to a given
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model; in fact it is quite simple. However, it is also quite unnecessary, ever, and the
simpler construction—the Bayesian analog to significance tests—is given in Section
2.2. In section 3.1, this Bayesian construction is shown to have the same structure
as a significance test a la Barnard. Many Bayesian writers (e.g. the contributions
of Dickey, Good, Hill, Leonard, and Zellner to the discussion of Barnard 1980a)
have attempted to interpret P-values from significance tests as approximations to
Bayesian quantities. For pure significance tests, though—as Barnard (1980a, p. 317)
pointed out—such approximations require a specification of an alternative, which the
authors listed above did not give. In sections 3.2, I show that classical significance
tests are equivalent to any of a very large class of Bayesian significance tests in the
sense that they produce the same ranking of possible data outcomes according to
their discrepancy from the model. In section 3.3, the P-value, viewed as a function
of the data, is shown to be, to arbitrary accuracy, the posterior probability of the null
model, for a specific alternative and a specific prior probability of the null. Section 4
discusses these results and their implications for Bayesian arguments against the use
of significance tests as exploratory tools.

The main point here is intended mostly for Bayesian readers. Bayesian analogs to
“alternative-free” tests are straightforward to define, and it turns out that in a large
class of cases, classical significance tests are essentially the same as these Bayesian
tests. Given the exploratory—and thus rough-and-rendy—role that significance tests
are intended to fill, it follows that little can be gained by a finicky concern over logical
niceties and an attendant refusal to make exploratory use of the abundance of non-
Bayesien computer software, especially when competing Bayesian software is non-
existent or much more difficult to use. To anticipate the results further, West's (1986}
method, cited above, is an archetype of the Bayesian analog to significance tests. Like
a significance test, West's test tells its user that something is wrong, but it doesn’t
say what; the user must figure that out some other way. We have some Bayesian
methods that do suggest what is wrong (also cited above)}, so perhaps the message
to be drawn from all this is that it is time we stopped worrying about significance

tests and spent our energies developing more methods like those of Leonard, Zellner,

and Chaloner and Brant.

2. Can Bayesians Do Pure Tests of Sigunificance?

21 A Bayessian Can Spefy Al Pos abde Altenianives fa Saine Probloms
Let X = {2y, 22, - v n) b an i veeton of ohservabiles, carh of winel can tidke

a finite number of values, For casc of exposition, let each r; be a binary obscrvable,
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taking the values 0 and 1; extension to the more general case is straightforward.
(Berger and Wolpert 1984 allow countable sample spaces, but restrict themselves
to independent and identically distributed random variables.) Any probability dis-
tribution for X, with arbitrary dependencies, can be specified as a 2"-vector p as
follows. Label the coordinates of p with the 2" patterns of 0's and 1’s, so that
P = (P00...0,P10..0s- - - 1 P11...0, P11...1)- The coordinates of p are in the closed interval
from zero and one, they sum to one, and each coordinate gives the probability of
observing the value of X that is its subscript. Call the collection of such p’s S; it
is the space of all probability distributions for X. Any alternative to a given hy-
pothesis regarding the distribution of X can be represented as a subset of S, and so
all alternatives are captured in it. (Diaconis 1977, Meeden 1986, Draper 1988, and
others have used this construction for different purposes.) Thus, existing Bayesian
hypothesis testing ideas can (not to say should) be used in this manner to construct
an explicit test of a model against all alternatives.

For example, consider testing whether, conditional on 8, the z; are independent
and identically distributed Bernoulli random variables with Pr(z, = 1]8) = 6. Tn
the manner of Bayesian hypothesis tests, let H, be this Bernoulli model with a beta

distribution as the prior for 8;
f(8la,b) = Bla, 1)1 11 —0*~" for 6€(U,1) (1)

where B(a,b) is the beta function. (In practice, of course, the prior would depend
on the situation.) For the alternative, let Hy be S, the space of all models, with the
flat prior distribution f(p) = (2"} on the simplex S. (In practice one would almost
certainly use another prior, as will be seen below.) Let the prior probabilities for H,
and H; be n and 1 — m, respectively.

By a straightforward application of familiar Bayesian theory,

Pr(H,|X)=Q Pr(X|H,)Pr(H,) = QnB(a,b)"'Bla +Y,b+n-Y) (2)
and
Pr(H\|X)=Q Pr(X|H)Pr(H,)=Q(1 ~m)2™" (3)
whiere @ is a proportionality constant, ¥ = Zu;, and
/ P f(p)dp = D(2")/T(@" 4 1) = 27 (4)
S

(This last is casy to derive dircetly, without computing the integral.) Thas, for
a = b =1, the posterior odds ratio Pr(H,| X))/ Pr(H|X) is
r PTY + DM -Y +1)

1-7 M{n+2) (%)
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which, as it turns out, has a number of unpalatable properties. The most important—
which holds for all choices of a and b—is that it depends on the data only through
Y, so that according to this test one’s posterior beliefs about the tenability of the
binomial model depend only on the sufficient statistic under that model.

Apart from exemplifying the point that Bayesians can indeed test against all
alternatives, this example illustrates once again that the outcome of a Bayesian hy-
pothesis test must depend on which prior is used conditional on the null and the
alternative hypotheses. Parenthetically, it also illustrates that the naive flat prior on
5 is a piece of information with less than obvious implications, which should be used
with great caution.

Contrary to Barnard’s assertion, then, a Bayesian can sometimes specify all
alternatives and, in the usual manner, test a precisely specified hypothesis against
them. But a reading of Barnard's papers on this subject suggests that this concern
might not be satisfied by S and the constructed hypothesis test, and that he might
raise several objections at this point. The first might be that this construction fails
as a prospective way of encompassing all possibilities, because it will not capture
unanticipated outcomes like the flipped coin that is lost in the flipping (1949, p. 136).
But Barnard’s (1947) discussion of a Fisherian significance test regarding sceds clearly
permits the post hoc construction of the sample space, so this objection will not hold.

A more interesting objection is that the combination of S and a prior distribu-
tion on it cannot properly represent the nature of uncertainty about hypotheses as
yet unconceived or inconceivable (1985, p. 5). But the construction permits positive
chunks of prior probability to be assigned to subspaces corresponding to specific para-
metric models; and is it unreasonable that point hypotheses elsewhere are given prior
{and thus posterior) probability zero? Posterior probability in S can still aggregate
in the neighborhood of such hypotheses, and besides, the failure to assign positive
probability to a specific model a posteriori does not seem to be a disadvantage; it
may even be preferable.

For a third possible objection, Barnard’s papers show a strong disinclination to
place prior probabilities on hypotheses as a matter of course, so that he might object
to the whole idea of placing a prior distribution on S, judging it to be incapable
of sufficiently precise specification and thus arbitrary and unworthy of the name
“probability” (1985, p. 5). But this would hold the Bayesian approach to a higher
standard than that applied to significance tests by Anscombe (1963), which Barnard

(1972u) endorsed. This point is diseussed further in seetion 3.1

292 But It s Not Necosany ta Specify AL Possilde Alternanives

1t 3s possible ta speafy all adternatives for some problems, bt the denviation n
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the last section shows that there is no need to do so, for this type of problem or for
any other. Recall that

Pr(H\|X) x Pr(X|H\)Pr(H,)=(1-7)27", (6)

so that the posterior probability of H, depends only on the marginal probability
of the data given H;, that is, on the a priori predictive probability of the data
given Hy. Thus, the only new thing that a Bayesian needs to make an analog to
the pure significance test is an alternative predictive distribution for the data—not
a parametric alternative or even a class of parametric alternatives. (This fact was
alluded to by Pratt 1965 in his rejoinder to the discussion.) In this sense, West’s

(1986) “model monitoring” method is the archetype of the Bayesian significance test.

3. The Similarity of Bayesian and Conventional Significance Tests

3.1 Both Tests Rank the Possible Data Outcomes by Their “Discrepancy”

A conventional significance test requires two ingredients: a hypothesized model
and a function that assigns a “discrepuncy” to the possible dita outcomes (1962,
1980a; Cox 1977; Anscombe 1963 uses the term “test eriterion™). The discrepancy
function sorts all possible data outcomes from the least to the most discrepant; when
the actual data are observed, the P-value is computed as the probability, under the
hypothesized model, of observing an ontcome as discrepant as or more discrepant
than that which was actually observed. A conventional significance test, then, has two
products: a ranking of the possible outcomes and a method of attaching a probability
to the sorted outcomes. The choice of this discrepancy function is quite arbitrary; it
depends on the model failures one considers likely or interesting (Anscombe 1963).
To Jeffreys (1961}, this was a disadvantage, because for any set of data, sone function
is likely to look odd. But as will become clear shortly, Bayesian methods are no more
immune to this criticism than classical tests.

A Bayesian significance test, as defined in section 2, requires four ingredients:
the same hypothesized model as in the conventional significance test, plus a prior
distribution on the paramcters of the hypothesized model, a predictive distribution
that specifies the alternative hypothesis aud a prior probability of the null hypothesis.
(Actually, three ingredients suffice: predictive distributions for the null and alterna-
tive, and the prior probability of the null.) The prior distribution on the parameters
and the alternative predictive distribution produee, as in the conventional case, a cri-
terion for ranking the possible data outcomes from least to mnst discrepant—where

in this case inereasing discrepancy corresponds to decreasing posterior probability of
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the hypothesized model—but altogether these ingredients yield a different method
for tacking probabilities onto the ranked outcomes.

This structural similarity removes the force of the third objection to the construc-
tion of section 2.1, that priors on S (and thus alternative predictive distributions)
are arbitrary. The arbitrariness of the alternative predictive distribution corresponds
precisely to the arbitrariness of the discrepancy function of a conventional significance
test. If the latter is tolerable for the limited legitimate purpose of significance testing,
the former must be tolerable as well. This structural similarity also removes the force
of Jeffreys’ criticism (noted above) of classical tests based on the arbitrariness of the
discrepancy function. It is possible to argue that Jeffreys’ criticisin still holds as long
as the alternative models are chosen before looking at the data, but this requirement
is incompatible with the exploratory function; if any kind of test is to be useful in
exploration, it must be used to consider things that were not envisioned before the
data were analyzed.

The foregoing shows that both Bayesian and couventional significance tests pro-
duce rankings of the possible data outcomes and formulae for assigning a measure of
discrepancy calibrated as a probability. This prompts two questions: (i) can sorting
algorithins produced by significance tests be duplicated by Bayesian tests, and (ii) if
so, are the P-values posterior brobabilitics for any interesting constructed alterna-
tive and prior for the null model? The answers will be shown in sections 3.2 and
3.3 to be (i) yes, always, and (ii) to an arbitrary degree of accuracy, for significauce
tests in which the P-value is distributed as a uniform random variable under the null
hypothesis. These results extend those in Cox {1962, p. 84-85) and DeGroot (1973).
Many Bayesian authors show similar relations between classical significance tests of
a null hypothesis and Bayesian hypothesis tests of the same null against a specific
alternative. For example, Zeliner (1984) gives an example of a Bayesian test of a
hypothesis about a regression parameter in which the P-~value is identical to the pos-
terior probability that the hypothesis is true. The correspondence between Bayesian

and classical methods in this literature is different from the one to be developed now.

3.2 The Significance Test’s Ranking Can Always Be Reproduced Exactly

Let X be a random variable (scalar, vector, matrix, or whatever) and let z be
a realization of X. Let T = T(z) be a test statistic or test criterion that can be
calculated from z, and suppose without loss of generality that it is to be used in a
test of significance in which larger values will be treated as less favorable to the null
model than smaller values. Let P(z) be the P-value computed for the observation
2 from the null model; P is actually a function of T alone, but in the sequel the

argument of P will be given as T or z as convenience and clarity dictate. For now,
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this need not be an exact P-value (although in section 3.3, it will), but it must
be a function of the data and not of any unknown parameters. Let F(z) be the
marginal distribution function of these data z under the hypothesized model, and for
convenience let it have a density f(z) with respect to Lebesgue measure. (This does
not affect the generality of the result.) This distribution is marginal with respect to
the prior for any unknown parameters of the null model; no restrictions are required
on that prior except that F(z) must exist.

" Let ¢(T) be any positive monotone increasing function that can take T as an
argument, and define an alternative density for X by pa(z) = Ko f(2)¢(T(z)), where
Iy is the constant of proportionality that makes p, a probability distribution. This
alternative places more mass in those regions where the test statistic is large, which
mimics the intuition behind selecting the test statistic. (DeGroot 1973 used a very
similar construction for a somewhat different purpose; Cox 1962 uscd a special case.)
The requirement that Ky be nou-zero places a further constraint on ¢(T'), which I
will henceforth assume to be satisfied. This is not generally an onerous restriction; for
statistics T having moment generating functions under the null model, for example,
the exponential function will be pernissible. If 7 is the prior probability of the null
model, then the posterior probability given z is

1o mpae)] T [, LT
[+ 5] = [ ] v

so that the ranking produced by this alternative is equivalent to the ranking given

by #(T), and thus, by the monotonicity of ¢, equivalent to the ranking given by T
itself.
Thus the ranking given by the significance test can be reproduced by a Bayesian

significance test, indced, by any Bayesian significance test in a large class.

3.3. Usually the Significance Test’s P-Value Is, To Arbitrary Accuracy, a

Posterior Probability

For cases in which an exact continuous distribution can be given for the test
statistic T, the P-value P(T) has a uniform distribution under the null, conditional
on any unknown parameters, Thus, for these cases, P(T) has a uniform distribution
with respect to F(z), the marginal distribution of the observation X under the null.
For the remainder of this section, I will restrict consideration to test statistics and
P-values having this property. This includes all of the familiar tests associated with
the analysis of variance, for example. It excludes approximate P-values and P-values
for discrete distributions; results similar to those below can be produced for at least

some of these cases, but I will not do so here.
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For significance tests in this restricted class, construct an alternative distribution
by specifying $(T) = P(T)*~! — 1 in the notation of section 3.2, where 0 < § < 1.
Then K;l = E(P(T)‘s"‘) — 1, where the expectation is with respect to the marginal
distribution F(z), that is, where P(T) has a uniform distribution. Set the prior
probability of the null hypothesis, 7y, so that it satisfies (1 — my) Ky /7y = 1; this
givesmy = Ky4/(1+ K ). Because we are only considering cases for which P(T') has a
uniform distribution, I\"‘;l = (1—6)/4 and 7y = §. For this alternative distribution
and this prior probability on the null hypothesis, the posterior probability of the
null is P(T)!~%. That is, the P-value can be made arbitrarily close to the posterior
probability of the null model, whatever z i3, for a specific alternative and prior
probability of the null that do not depend on the data. In the limit as é goes to zero,

however, the constructed alternative becomes improper and 7y goes to zero.

4. So What? (May Bayesians Do Pure Tests of Significance?)

As section 1.1 made clear, some people associated with the Bayesian viewpoint
have no difficulty with the use of significance tests for exploratory purposes. Others
continue to object because significance tests appear to be in violation of the likelihood
principle (Lindley 1980, Berger and Wolpert 1984), or because they are apparently
otherwise incapable of a satisfactory Bayesian explanation. It appears that the basis
of these continuing objections has been weakened considerably.

Pratt (1965) argued that significance tests suppress uncertainty by hiding the
uncertainty about the implicit alternative hypothesis. But section 3.2 showed that
for a very broad class of possible alternative hiypotheses, the ranking produced by the
resulting Bayesian significance test is identical to that of the Barnardian significance
test. To insist that this class is not large enough is to insist on a logical point beyond
any practical implication; certainly this class of alternatives captures the vague notion
that moves a statistician to consider a particular test statistic. Continuing objection
can only be based on the assignment of the specific posterior probability, described
in section 3.3.

The first point here, shown in section 3.3, is that for a large class of commonly
used significance tests, the P-values are, to arbitrary accuracy, posterior probabilities
for a specific constructed alternative hypothesis and prior probability of the null. So
the only objection that seems to remain is that the P-value is only @ posterior
probability, not my posterior probability in some given instance. But what would

one’s posterior probability be in this situation? To quote Dempster (1971, p. 60):

In principle ... the concept of a prior probability of a null hypothesis clashes
with the very concept of a null hypothesis as a tentative stopping place on
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the way to devising a model in accord with the known facts. One knows
that no null hypothesis could ever be true, but hopes to find one that fits
and illumines the facts. Even to conceive of a numerical degree of certainty
attached to such an entity is awkward, letting alone the practical question of
specifying the number. In practice, when the data are such that judgments
of significance are borderline, the dependence of the posterior probability of
the null hypothesis on its prior probability will be crucial, and the user will
be led to agonize over a largely fictitious aspect of his prior knowledge at
the expense of constructively examining his-available data.

This is, ultimately, the point: why waste any energy over the remaining dif-
ference? Berger and Delampady (1987), among others, argue that one can always
construct an alternative in cases apparently without one, and that one should do so
and then conduct the Bayesian test. But the P-value is precisely the result of such
a construction; so why not use it for exploration — especially when we have so many
readily available tools for computing P-values, and almost no tools for the competing
Bayesian quantities? It is a counsel of inefliciency to insist that we should not use
what is available and should use what is not available, particularly when the latter
offers no practical advantage and the most ethereal of logical advantages.

4.1 A Footnote

Many Bayesians (e.g., Pratt 1965) have found it objectionable that significance
tests will, for a large enough sanple, find any deficiency in & model, no matter how
small. It is odd that this should be considered a disadvantage;, what are we to
make of a tool for finding problems that fails to detect them under advantageous

circumstances? To quote again from Dempster (1971, p. 62):

Some may hold that the beauty of science lies in a conjunction of truth
and simplicity, and certainly there are way stations along the path of sci-
ence which give that impression, but I would hold ... that the real world,
even the real world of some quite restricted scientific phenomenon, is end-
lessly complex. ... The real life process of constructing a model may be
roughly conceived as operating between a floor and a ceiﬁng where increas-
ing altitude means increasing complezily of the model. The floor pushing
complexity upward consists in the need for the model adequately to fit the
known facts of the phenomenon under study. The ceiling, however, is a
much less well understood logical construct which I should like to label con-
fusion. Confusion arises because too many dimensions of an overly complex
model are insufficiently determined by the available facts, so that predic-
tions and insights from the model are muffled. I believe, in other words,
that there are inherent limitations on the process of estimation which im-
ply that restricted fixed data simply cannot determine a broadly acceptable
posterior distribution on the many parameters of a highly complex model.
Thus, the processes of model searching and estimnation interact through the
determination of a comfortable altitude of complexity at which the available
supply of factual data can be reasonably absorbed and interpreted.

As a body of data gets larger, should we not expect, indeed, desire that it will

reveal deficiencies in any currently held model? For various reasons we may choose
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to ignore the revealed deficiencies, but that does not mean that we are better off

ignorant of them,
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CONGLOMERABILITY, COHERENCE
AND COUNTABLE ADDIVITY

David A. Lane

University of Minnesota

Abstract

This paper offers answers to two foundational questions relating to the Law of
Total Probability:
~ Is the Law always available? That is, for a given partition of the sample
space and unconditional probability distribution, is there necessarily a set
of conditional probability distributions that yield the unconditional distri-
bution when the Law is applied?

- When the Law is available, what are the consequences of violating it?

1. Introduction

In this paper, I will offer answers to two foundational questions relating to
the Law of Total Probability. Statisticians and probabilists of all foundational per-
suasions use the Law as a fundamental tool for probability assessment. That is, to
determine the probability of a proposition A4, one often finds it convenient to in-
troduce a set H of mutually exclusive, exhaustive propositions; then to evaluate a
probability distribution u over H and, for each h in H, P(A | h); and finally to
invoke the Law to assess the probability for 4 by the formula

P(4) = /P(A | k)dp(h). (1)

The questions relating to the Law that 1 will consider are the following:
~ Is the Law always available? That is, for a given M and unconditional
probability P, is there nccessarily a set of conditional probabilities {P(- |
1)}, such that P can be obtained according to equation (1)?
— When the Law is available, must it be respected? And if so, why? That is,

what are the consequences of violating it?
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